(完整)七年级上册数学期末动点问题专题
人教版七年级上册数学期末动点问题训练题(含简单答案)
![人教版七年级上册数学期末动点问题训练题(含简单答案)](https://img.taocdn.com/s3/m/29078898cf2f0066f5335a8102d276a200296014.png)
人教版七年级上册数学期末动点问题训练题(1)求点C对应的数.(1)若点P为的中点,直接写出点PAB(1)M、N两点间的距离为,点P表示的数是 (用含(2)经过多少秒时点P与点N的距离为4个单位长度?(1)______,______,并在数轴上标出=a b =(1)写出数轴上点表示的数是__________,点(1)写出点B 表示的数;(2)如图1,当点A 、B 位于原点O 的同侧时,动点P 、Q 分别从点时相向而行,动点P 的速度是动点Q 的速度的2倍,4秒后两动点相遇,当动点达点5时,运动停止.在整个运动过程中,当时,求点(3)如图2,当点A 、B 位于原点O 的异侧时,动点P 、Q 分别从点A B 3PQ =(1)数轴上点对应的数是 ,点(1)化简:;(1)写出数轴上点B 表示的数 ;B 2a b a b a ++--MP=NP= (1)若点在线段上运动,当时,;P AB7(1)a的值为______,b的值为______c的值为(2)点P是数轴上A,C两点间的一个点,当数.同时出发,求:①当点P 运动多少秒时,点P与点Q 重合?②当点P 运动多少秒时,点P 与点Q 之间的距离为3个单位长度?16.如图,点A ,B 是数轴上两点,点A 表示的数为,A ,B 两点之间的距离为20,动点P 、Q 分别从A 、B 出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是_______;(2)若点P ,Q 同时出发,t 为何值时,这两点相遇?(3)若点P ,Q 同时出发,t 为何值时,点P 和点Q 刚好相距5个单位长度?17.如图,已知数轴上点表示的数为12,是数轴上位于点左侧一点,且,动点从点出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点表示的数是______,点表示的数是______(用含的代数式表示);(2)若为线段的中点,为线段的中点,在点运动的过程中,线段的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点从点处出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问点运动多少秒时与点相距4个单位长度?18.如图,点,,在数轴上表示的数分别为,,,是最大的负整数,,.16-()0t t >A B A 32AB =P A t B P t M AP N BP P MN t Q B P Q P Q A B C a b c a 11AB =2AC =参考答案:。
2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)
![2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)](https://img.taocdn.com/s3/m/af189f2da55177232f60ddccda38376baf1fe029.png)
2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(1) ______, ______(1)若点P 到A 、B 两点的距离都相等,请直接写出点P 对应的数(2)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为10=a b =(1)___________,___________.(2)若在数轴上有两动点、分别从同时出发向右运动,点的速度为2个单位长度/秒,点的速度为1个单位长度秒,当点在点追上了点,求点对应的数为多少?=a c =P Q A B ,P Q P D Q D(1)写出数轴上点B 表示的数 ;(2)表示5与3之差的绝对值,实际上也可理解为(1)求出线段的长度;(1)点表示的数为________,点|53|-AB A(1)请直接写出a 、b 、c 的值. ______,设点P 运动时间为t 秒.(1)若M ,N ,P 三点同时出发,=a(1)数轴上点B 表示的数是 ;当点P 运动到(1)则______,______. A =a b =(1)A 点所表示的数是___________,C 点所表示的数是___________;(2)若动点P 从点C 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一动点Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设点P 和点Q 在数轴上的点M 相遇,求点M所表示的数是多少?(3)若动点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左运动,另一动点Q 恰好从A 点出发,以每秒2个单位长度的速度沿数轴也向左运动,是否存在时间t ,使得P ,Q 到原点的距离相等,并求出此时点P 和点Q 所表示的数.13.如图,点在线段上,,,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动;同时,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动.当点到达终点时,点也随之停止运动.设点的运动时间为秒.(1)线段的长为______.(2)当点与点相遇时,求的值.(3)当点与点之间的距离为个单位长度时,求的值.(4)当时,直接写出的值.14.如图,在数轴上点A 、C 、B 表示的数分别是、1、12.动点P 从点A 出发,沿数轴以每秒3个单位长度的速度向终点B 匀速运动;同时,点Q 从点B 出发,沿数轴以每秒2个单位长度的速度向终点A 匀速运动,设点Q 的运动时间为t 秒.C AB 3AC =11BC =P A AB 3B Q B BA 2A P Q P t AB P Q t P Q 9t 2.5PC QB +=t 8-(1)的长为________;AB(2)当点P与点Q相遇时,求t的值;(1)点A表示的数为___________,点B表示的数为(1)OA=__________cm,OB=__________cm参考答案:。
七年级上期末动点问题专题(附答案)
![七年级上期末动点问题专题(附答案)](https://img.taocdn.com/s3/m/006b437352d380eb62946d67.png)
七年级上期末动点问题专题1.已知点A在数轴上对应得数为a,点B对应得数为b,且|2b﹣6|+(a+1)2=0,A、B之间得距离记作AB,定义:AB=|a﹣b|.(1)求线段AB得长.(2)设点P在数轴上对应得数x,当PA﹣PB=2时,求x得值.(3)M、N分别就是PA、PB得中点,当P移动时,指出当下列结论分别成立时,x得取值范围,并说明理由:①PM÷PN得值不变,②|PM﹣PN|得值不变.2.如图1,已知数轴上两点A、B对应得数分别为﹣1、3,点P为数轴上得一动点,其对应得数为x.(1)PA= _________ ;PB= _________ (用含x得式子表示)(2)在数轴上就是否存在点P,使PA+PB=5?若存在,请求出x得值;若不存在,请说明理由.(3)如图2,点P以1个单位/s得速度从点D向右运动,同时点A以5个单位/s得速度向左运动,点B以20个单位/s 得速度向右运动,在运动过程中,M、N分别就是AP、OB得中点,问:得值就是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB得中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN得长度;(2)若点P在直线AB上运动,试说明线段MN得长度与点P在直线AB上得位置无关;(3)如图2,若点C为线段AB得中点,点P在线段AB得延长线上,下列结论:①得值不变;②得值不变,请选择一个正确得结论并求其值.4.如图,P就是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s得速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上得位置:(2)在(1)得条件下,Q就是直线AB上一点,且AQ﹣BQ=PQ,求得值.(3)在(1)得条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N 分别就是CD、PD得中点,下列结论:①PM﹣PN得值不变;②得值不变,可以说明,只有一个结论就是正确得,请您找出正确得结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应得数就是200.(1)若BC=300,求点A对应得数;(2)如图2,在(1)得条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R得速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR得中点,点N为线段RQ得中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后得情形);(3)如图3,在(1)得条件下,若点E、D对应得数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q得速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ得中点,点Q在从就是点D运动到点A得过程中,QC ﹣AM得值就是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上得点,且AB=12,CE=6,F为AE得中点.(1)如图1,若CF=2,则BE= _________ ,若CF=m,BE与CF得数量关系就是(2)当点E沿直线l向左运动至图2得位置时,(1)中BE与CF得数量关系就是否仍然成立?请说明理由.(3)如图3,在(2)得条件下,在线段BE上,就是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M就是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s得速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD得值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= _________ AB.(3)在(2)得条件下,N就是直线AB上一点,且AN﹣BN=MN,求得值.8.已知数轴上三点M,O,N对应得数分别为﹣3,0,1,点P为数轴上任意一点,其对应得数为x.(1)如果点P到点M,点N得距离相等,那么x得值就是_________ ;(2)数轴上就是否存在点P,使点P到点M,点N得距离之与就是5?若存在,请直接写出x得值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度得速度从点O向左运动时,点M与点N分别以每分钟1个单位长度与每分钟4个单位长度得速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N得距离相等?9.如图,已知数轴上点A表示得数为6,B就是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度得速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示得数_________ ,点P表示得数_________ 用含t得代数式表示);(2)动点R从点B出发,以每秒4个单位长度得速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP得中点,N为PB得中点.点P在运动得过程中,线段MN得长度就是否发生变化?若变化,请说明理由;若不变,请您画出图形,并求出线段MN得长;10.如图,已知数轴上点A表示得数为6,B就是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度得速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示得数_________ ,点P表示得数_________ (用含t得代数式表示);②M为AP得中点,N为PB得中点.点P在运动得过程中,线段MN得长度就是否发生变化?若变化,请说明理由;若不变,请您画出图形,并求出线段MN得长;(2)动点Q从点A出发,以每秒1个单位长度得速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度得速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶得路程就是多少个单位长度?参考答案与试题解析一.解答题(共10小题)1.已知点A在数轴上对应得数为a,点B对应得数为b,且|2b﹣6|+(a+1)2=0,A、B之间得距离记作AB,定义:AB=|a﹣b|.(1)求线段AB得长.(2)设点P在数轴上对应得数x,当PA﹣PB=2时,求x得值.(3)M、N分别就是PA、PB得中点,当P移动时,指出当下列结论分别成立时,x得取值范围,并说明理由:①PM÷PN得值不变,②|PM﹣PN|得值不变.考点: 一元一次方程得应用;数轴;两点间得距离.分析:(1)根据非负数得与为0,各项都为0;(2)应考虑到A、B、P三点之间得位置关系得多种可能解题;(3)利用中点性质转化线段之间得倍分关系得出.解答:解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB得长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况得点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=PA,PN=PB,当①PM÷PN得值不变时,PM÷PN=PA÷PB.②|PM﹣PN|得值不变成立.故当P在线段AB上时,PM+PN=(PA+PB)=AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=|PA﹣PB|=|AB|=2.点评:此题主要考查了一元一次方程得应用,渗透了分类讨论得思想,体现了思维得严密性,在今后解决类似得问题时,要防止漏解.利用中点性质转化线段之间得倍分关系就是解题得关键,在不同得情况下灵活选用它得不同表示方法,有利于解题得简洁性.同时,灵活运用线段得与、差、倍、分转化线段之间得数量关系也就是十分关键得一点.2.如图1,已知数轴上两点A、B对应得数分别为﹣1、3,点P为数轴上得一动点,其对应得数为x.(1)PA= |x+1| ;PB= |x﹣3| (用含x得式子表示)(2)在数轴上就是否存在点P,使PA+PB=5?若存在,请求出x得值;若不存在,请说明理由.(3)如图2,点P以1个单位/s得速度从点D向右运动,同时点A以5个单位/s得速度向左运动,点B以20个单位/s 得速度向右运动,在运动过程中,M、N分别就是AP、OB得中点,问:得值就是否发生变化?请说明理由.考点: 一元一次方程得应用;数轴;两点间得距离.分析:(1)根据数轴上两点之间得距离求法得出PA,PB得长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)根据题意用t表示出AB,OP,MN得长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应得数分别为﹣1、3,点P为数轴上得一动点,其对应得数为x, ∴PA=|x+1|;PB=|x﹣3|(用含x得式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3、5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1、5;(3)得值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AB=OA+OB=25t+4,AP=OA+OP=6t+1,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别就是AP、OB得中点,得值不发生变化.点评:此题主要考查了一元一次方程得应用,根据题意利用分类讨论得出就是解题关键.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB得中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN得长度;(2)若点P在直线AB上运动,试说明线段MN得长度与点P在直线AB上得位置无关;(3)如图2,若点C为线段AB得中点,点P在线段AB得延长线上,下列结论:①得值不变;②得值不变,请选择一个正确得结论并求其值.考点: 两点间得距离.分析:(1)求出MP,NP得长度,即可得出MN得长度;(2)分三种情况:①点P在AB之间;②点P在AB得延长线上;③点P在BA得延长线上,分别表示出MN得长度即可作出判断;(3)设AC=BC=x,PB=y,分别表示出①、②得值,继而可作出判断.解答:解:(1)∵AP=8,点M就是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N就是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB得延长线上;③点P在BA得延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).点评:本题考查了两点间得距离,解答本题注意分类讨论思想得运用,理解线段中点得定义,难度一般.4.如图,P就是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s得速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上得位置:(2)在(1)得条件下,Q就是直线AB上一点,且AQ﹣BQ=PQ,求得值.(3)在(1)得条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N 分别就是CD、PD得中点,下列结论:①PM﹣PN得值不变;②得值不变,可以说明,只有一个结论就是正确得,请您找出正确得结论并求值.考点: 比较线段得长短.专题: 数形结合.分析:(1)根据C、D得运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上得处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB得关系;(3)当点C停止运动时,有,从而求得CM与AB得数量关系;然后求得以AB表示得PM与PN得值,所以.解答:解:(1)根据C、D得运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上得处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB得延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以=;(3)②.理由:如图,当点C停止运动时,有,∴;∴,∵,∴,∴;当点C停止运动,D点继续运动时,MN得值不变,所以,.点评:本题考查了比较线段得长短.利用中点性质转化线段之间得倍分关系就是解题得关键,在不同得情况下灵活选用它得不同表示方法,有利于解题得简洁性.同时,灵活运用线段得与、差、倍、分转化线段之间得数量关系也就是十分关键得一点.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应得数就是200.(1)若BC=300,求点A对应得数;(2)如图2,在(1)得条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R得速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR得中点,点N为线段RQ得中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后得情形);(3)如图3,在(1)得条件下,若点E、D对应得数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q得速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ得中点,点Q在从就是点D运动到点A得过程中,QC ﹣AM得值就是否发生变化?若不变,求其值;若不变,请说明理由.考点: 一元一次方程得应用;比较线段得长短.分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应得数就是200,即可得出点A对应得数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过得时间为y,得出PE=10y,QD=5y,进而得出+5y﹣400=y,得出﹣AM=﹣y原题得证.解答:解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应得数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)设经过得时间为y,则PE=10y,QD=5y,于就是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则就是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.点评:此题考查了一元一次方程得应用,根据已知得出各线段之间得关系等量关系就是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上得点,且AB=12,CE=6,F为AE得中点.(1)如图1,若CF=2,则BE= 4 ,若CF=m,BE与CF得数量关系就是(2)当点E沿直线l向左运动至图2得位置时,(1)中BE与CF得数量关系就是否仍然成立?请说明理由.(3)如图3,在(2)得条件下,在线段BE上,就是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.考点: 两点间得距离;一元一次方程得应用.分析:(1)先根据EF=CE﹣CF求出EF,再根据中点得定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可得解;根据BE、CF得长度写出数量关系即可;(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x得值,再求出DF、CF,计算即可得解. 解答:解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE得中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,若CF=m,则BE=2m,BE=2CF;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE得中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,∴DF=3,CF=5,∴=6.点评:本题考查了两点间得距离,中点得定义,准确识图,找出图中各线段之间得关系并准确判断出BE得表示就是解题得关键.7.已知:如图1,M就是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s得速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD得值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= AB.(3)在(2)得条件下,N就是直线AB上一点,且AN﹣BN=MN,求得值.考点: 比较线段得长短.专题: 分类讨论.分析:(1)计算出CM及BD得长,进而可得出答案;(2)根据图形即可直接解答;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB得延长线上时,然后根据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm(2)(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB得延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=点评:本题考查求线段得长短得知识,有一定难度,关键就是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应得数分别为﹣3,0,1,点P为数轴上任意一点,其对应得数为x.(1)如果点P到点M,点N得距离相等,那么x得值就是﹣1 ;(2)数轴上就是否存在点P,使点P到点M,点N得距离之与就是5?若存在,请直接写出x得值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度得速度从点O向左运动时,点M与点N分别以每分钟1个单位长度与每分钟4个单位长度得速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N得距离相等?考点: 一元一次方程得应用;数轴;两点间得距离.分析:(1)根据三点M,O,N对应得数,得出NM得中点为:x=(﹣3+1)÷2进而求出即可;(2)根据P点在N点右侧或在M点左侧分别求出即可;(3)分别根据①当点M与点N在点P同侧时,②当点M与点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应得数分别为﹣3,0,1,点P到点M,点N得距离相等,∴x得值就是﹣1.(2)存在符合题意得点P,此时x=﹣3、5或1、5.(3)设运动t分钟时,点P对应得数就是﹣3t,点M对应得数就是﹣3﹣t,点N对应得数就是1﹣4t.①当点M与点N在点P同侧时,因为PM=PN,所以点M与点N重合,所以﹣3﹣t=1﹣4t,解得,符合题意.②当点M与点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t.因为PM=PN,所以3﹣2t=1﹣t,解得t=2.此时点M对应得数就是﹣5,点N对应得数就是﹣7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1.因为PM=PN,所以2t﹣3=t﹣1,解得t=2.此时点M对应得数就是﹣5,点N对应得数就是﹣7,点M在点N右侧,符合题意.综上所述,三点同时出发,分钟或2分钟时点P到点M,点N得距离相等.故答案为:﹣1.点评:此题主要考查了数轴得应用以及一元一次方程得应用,根据M,N位置得不同进行分类讨论得出就是解题关键.9.如图,已知数轴上点A表示得数为6,B就是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度得速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示得数﹣4 ,点P表示得数6﹣6t 用含t得代数式表示);(2)动点R从点B出发,以每秒4个单位长度得速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP得中点,N为PB得中点.点P在运动得过程中,线段MN得长度就是否发生变化?若变化,请说明理由;若不变,请您画出图形,并求出线段MN得长;考点: 数轴;一元一次方程得应用;两点间得距离.专题: 方程思想.分析:(1)B点表示得数为6﹣10=﹣4;点P表示得数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣4x=10,解方程即可;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B得左侧时,利用中点得定义与线段得与差易求出MN.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点R.(3)线段MN得长度不发生变化,都等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B得左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN得长度不发生变化,其值为5.点评:本题考查了数轴:数轴得三要素(正方向、原点与单位长度).也考查了一元一次方程得应用以及数轴上两点之间得距离.10.如图,已知数轴上点A表示得数为6,B就是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度得速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示得数﹣4 ,点P表示得数6﹣6t (用含t得代数式表示);②M为AP得中点,N为PB得中点.点P在运动得过程中,线段MN得长度就是否发生变化?若变化,请说明理由;若不变,请您画出图形,并求出线段MN得长;(2)动点Q从点A出发,以每秒1个单位长度得速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度得速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶得路程就是多少个单位长度?考点: 一元一次方程得应用;数轴;两点间得距离.专题: 动点型.分析:(1)①设B点表示得数为x,根据数轴上两点间得距离公式建立方程求出其解,再根据数轴上点得运动就可以求出P点得坐标;②分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B得左侧时,利用中点得定义与线段得与差易求出MN;(2)先求出P、R从A、B出发相遇时得时间,再求出P、R相遇时P、Q之间剩余得路程得相遇时间,就可以求出P一共走得时间,由P得速度就可以求出P点行驶得路程.解答:解:(1)设B点表示得数为x,由题意,得6﹣x=10,x=﹣4∴B点表示得数为:﹣4,点P表示得数为:6﹣6t;②线段MN得长度不发生变化,都等于5.理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B得左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN得长度不发生变化,其值为5.(2)由题意得:P、R得相遇时间为:10÷(6+)=s,P、Q剩余得路程为:10﹣(1+)×=,P、Q相遇得时间为:÷(6+1)=s,∴P点走得路程为:6×()=点评:本题考查了数轴及数轴得三要素(正方向、原点与单位长度).一元一次方程得应用以及数轴上两点之间得距离公式得运用,行程问题中得路程=速度×时间得运用.。
完整版)七年级上期末动点问题专题(附答案)
![完整版)七年级上期末动点问题专题(附答案)](https://img.taocdn.com/s3/m/38c7765e571252d380eb6294dd88d0d233d43c32.png)
完整版)七年级上期末动点问题专题(附答案)1.已知数轴上点A对应的数为a,点B对应的数为b,且满足|2b-6|+(a+1)^2=0,定义AB的长度为|a-b|。
1) 求线段AB的长度。
解:由定义可得,AB的长度为|a-b|。
2) 设点P在数轴上的坐标为x,且满足PA-PB=2,求x的值。
解:由题意得,PA-PB=|a-x|-|b-x|=2,分成两种情况讨论:当a>b时,有a-x-b+x=2,即a-b=2,解得x=a-1.当a<b时,有b-x-a+x=2,即b-a=2,解得x=b-1.综上所述,x的取值为a-1或b-1.3) 设M、N分别为PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM-PN|的值不变。
解:由题意得,M、N的坐标分别为[(a+x)/2,0]和[(b+x)/2,0],则① PM÷PN的值不变时,有|a-x|/|b-x|=|a-x0|/|b-x0|,其中x0是PM÷PN的值不变时的一个定值,化简得(a-x0)(b-x)=(b-x0)(a-x),即ax0-bx0=ax-bx0,解得x=(ax0-bx0+bx0)/2=a/2+b/2-x0/2.② |PM-PN|的值不变时,有[(a-x)/2-(b-x)/2]^2=K,其中K 是|PM-PN|的值不变时的一个定值,化简得(x-a+b)^2=4K,解得x=(a+b±2√K)/2.综上所述,当①成立时,x的取值为a/2+b/2-x0/2;当②成立时,x的取值为(a+b±2√K)/2.2.如图1,已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上的动点,其对应的数为x。
1) PA=|x-(-1)|=|x+1|,PB=|x-3|。
2) 若PA+PB=5,则有|x+1|+|x-3|=5,分成四种情况讨论:当x≤-1时,有-(x+1)-(x-3)=5,解得x=-2.当-1<x<3时,有-(x+1)+(x-3)=5,无解。
人教版七年级上册数学期末动点问题压轴题专题训练(含答案)
![人教版七年级上册数学期末动点问题压轴题专题训练(含答案)](https://img.taocdn.com/s3/m/6adcf7ad846a561252d380eb6294dd88d1d23d6e.png)
人教版七年级上册数学期末动点问题压轴题专题训练(1)则B点表示的数为;(1)______,______.(2)若动点P 、Q 分别从点A 、B 处同时向右移动,点P 的速度为(1)当点Q 到达点B 时,点P 对应的数为 ;=a b =(1)当秒时,两点在折线数轴上的和谐距离(2)当点都运动到折线段上时,(1)当动点P 在上时,把点P 到点A 的距离记为,则_______式表示);(2)当动点P 在上时,把点P 到点O 的距离记为,则_______2t =M N 、M N 、O B C --OA AP AP =OB OP OP =(3)若动点P 运动的终点是点C ,动点Q 运动的终点是点A,动点P 、Q 是否同时到达终点,请说明理由;(4)当点Q 在上时,Q 、B 两点在“折线数轴”上相距的长度与P 、O 两点在“折线数轴”上相距的长度相等时,t 的值为__________(直接写出结果).7.如图,数轴上点、、对应的数分别为、、,且、、使得与互为同类项.动点从点出发沿数轴以每秒5个单位的速度向右运动,当点运动到点之后立即以原速沿数轴向左运动,动点从点出发的同时动点从点出发沿数轴以每秒1个单位的速度向右运动.设运动的时间为秒,(1)填空:______,______,点在数轴上所表示的数为______(用含的代数式表示).(2)在整个运动过程中,与何时相遇?(3)若动点从点出发的同时动点也从点出发沿数轴向左运动,运动速度为每秒5个单位长度,是否存在非负数使得在一段时间内为定值,如果不存在,说明理由;如果存在,求出非负数.8.已知式子是关于的二次多项式,且二次项系数为,数轴上,两点所对应的数分别是和.(1)则______,______;,两点之间的距离为______;(2)有一动点从点出发第一次向左运动1个单位长度,然后在新的位置第二次向右运动2个单位长度,再在此位置第三次向左运动3个单位长度…,按照如此规律不断地左右运动,当运动到第2023次时,求点所对应的有理数;(3)若点以每秒3个单位长度的速度向左运动,同时点以每秒5个单位长度的速度向BC A B C a b c a b c 1212a b x y z --35c x y z P A P C P A Q B t =a b =Q t P Q P A M C n nQM PM +n 32(4)625M a x x x =++-+x b A B a b =a b =A B P A P A BAI(1)点A 表示的数为 ;点B 表示的数为 (1)数轴上点表示的数是 ;当点运动到(2)动点从点出发,以每秒2个单位长度的速度沿数轴向左匀速运动,B P Q B(1)a 的值为 ,b 的值为 ,(2)点P 是数轴上A 、C 两点间的一个点,当(1)线段的长为 ,点表示的数为 ;(2)若、、三个动点分别从,,三点同时出发,均沿数轴负方向运动,它们AC B P Q R A B C(1)写出数轴上点A表示的数与(1)点表示的有理数是 ,点表示的有理数是 ,点A C(1)两点之间的距离是 ;(1)点表示的数是_______;,A B B参考答案:。
(完整版)初一上学期动点问题(含答案)
![(完整版)初一上学期动点问题(含答案)](https://img.taocdn.com/s3/m/8cac731f81c758f5f71f676b.png)
初一上学期动点问题练习1。
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数 ,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3=”14”解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2。
已知数轴上有A、B、C三点,分别表示有理数—26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36—t;(2)当16≤t≤24时PQ=t-3(t—16)=-2t+48,当24<t≤28时PQ=3(t-16)—t=2t—48,当28<t≤30时PQ=72—3(t—16)-t=120-4t,当30<t≤36时PQ=t—[72—3(t-16)]=4t-120.3。
完整版)七年级上册数学期末动点问题专题
![完整版)七年级上册数学期末动点问题专题](https://img.taocdn.com/s3/m/449bb836a7c30c22590102020740be1e650eccec.png)
完整版)七年级上册数学期末动点问题专题七年级上期末动点问题专题1.数轴上的动点问题已知数轴上两点A、B对应的数分别为-1和3,数轴上一动点P对应的数为x。
1) 若点P到点A和点B的距离相等,求点P对应的数。
解:由题意得,PA=PB,即 |x-(-1)|=|x-3|,解得x=1.2) 当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A 和点B的距离相等。
解:设P点向左运动t分钟后到达距离O点x的位置,则A点和B点向左运动5t和20t个单位长度后,分别到达距离O 点-5t和3-20t的位置。
由于PA=PB,因此有:x-(-1+1t)|=|x-3-17t|解得t=2,代入得到x=-1+2t=-3.2.射线上的动点问题如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O 匀速运动(点Q运动到点O时停止运动),两点同时出发。
1) 当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度。
解:设Q点向左运动t秒后到达距离O点x的位置,则有:OC-x|=|OP+t|OB-2x|=2|PA-OP-t|AB-3x|=3|PA-OP-t|解得x=10,t=10,因此Q点的运动速度为3cm/s。
2) 若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm。
解:设P点向右运动t秒后到达距离O点y的位置,则有:y|=|x+t-20|y|=|60-x-t|解得t=25,因此P、Q两点相距70cm时,P点向右运动了25秒,Q点向左运动了25秒。
3) 当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF的值。
解:设P点向右运动t秒后到达线段AB上的点E,则有:OE|=|20+t/2|由于AE=40,因此有AP=AE-PE=40-(20+t/2)=60-t/2.又因为OF=FB=30,因此有:OB-AP/EF=2OB/AB-AP/AF=2(20+t)-60/(2OF)=t+1.3.相向而行的动点问题甲、乙物体分别从相距70米的两处同时相向运动。
(完整版)初一上学期动点问题(含答案)
![(完整版)初一上学期动点问题(含答案)](https://img.taocdn.com/s3/m/8cac731f81c758f5f71f676b.png)
初一上学期动点问题练习1。
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数 ,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3=”14”解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2。
已知数轴上有A、B、C三点,分别表示有理数—26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36—t;(2)当16≤t≤24时PQ=t-3(t—16)=-2t+48,当24<t≤28时PQ=3(t-16)—t=2t—48,当28<t≤30时PQ=72—3(t—16)-t=120-4t,当30<t≤36时PQ=t—[72—3(t-16)]=4t-120.3。
七年级动点问题大全
![七年级动点问题大全](https://img.taocdn.com/s3/m/0de5a66fa32d7375a517801b.png)
七年级动点问题大全(一)例1:如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);①求甲、乙两小球到原点的距离相等时经历的时间.例2:如图,有一数轴原点为O,点A所对应的数是-12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)在(2)的条件下,从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6:在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A 点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表- 24,- 10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
七年级上册数学期末动点问题专题
![七年级上册数学期末动点问题专题](https://img.taocdn.com/s3/m/37acb6e5c0c708a1284ac850ad02de80d4d806ac.png)
七年级上册数学期末动点问题专题七年级上期末动点问题专题1、已知数轴上两点A、B对应的数分别为-1、3,数轴上一动点P对应的数为x。
1) 如果点P到点A和点P到点B的距离相等,求点P对应的数。
2) 当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等。
2、如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发。
1) 当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度。
2) 若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm。
3) 当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF的值。
3、甲、乙物体分别从相距70米的两处同时相向运动。
甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米。
1) 甲、乙开始运动后几分钟相遇?2) 如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇?4、如图,线段AB=20cm。
1) 点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,几秒钟后,P、Q两点相遇?2) 已知数轴上A、B两点所表示的数分别为-2和8.a) 求线段AB的长度;b) 若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点),当点P在射线BA上运动时,MN的长度是否发生改变?若不变,请画出图形,并求出线XXX的长度;若改变,请说明理由。
5、已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM 上)。
七年级上期末动点问题专题附答案1
![七年级上期末动点问题专题附答案1](https://img.taocdn.com/s3/m/88721619ba68a98271fe910ef12d2af90242a8f3.png)
七年级上期末动点问题专题(附有具体答案)1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6(1)2=0,A、B之间的间隔记作,定义:﹣.(1)求线段的长.(2)设点P在数轴上对应的数x,当﹣2时,求x的值.(3)M、N分别是、的中点,当P挪动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①÷的值不变,②﹣的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1);(用含x的式子表示)(2)在数轴上是否存在点P,使5?若存在,恳求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位的速度从点D向右运动,同时点A以5个单位的速度向左运动,点B以20个单位的速度向右运动,在运动过程中,M、N分别是、的中点,问:的值是否发生改变?请说明理由.3.如图1,直线上有一点P,点M、N分别为线段、的中点,14.(1)若点P在线段上,且8,求线段的长度;(2)若点P在直线上运动,试说明线段的长度及点P在直线上的位置无关;(3)如图2,若点C为线段的中点,点P在线段的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段上一点,C、D两点分别从P、B动身以1、2的速度沿直线向左运动(C在线段上,D在线段上)(1)若C、D运动到任一时刻时,总有2,请说明P点在线段上的位置:(2)在(1)的条件下,Q是直线上一点,且﹣,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停顿运动,D点接着运动(D点在线段上),M、N分别是、的中点,下列结论:①﹣的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,,点C对应的数是200.(1)若300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时动身向左运动,同时动点R从A点动身向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段的中点,点N为线段的中点,多少秒时恰好满意4(不考虑点R及点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时动身向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段的中点,点Q在从是点D运动到点A的过程中,﹣的值是否发生改变?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且12,6,F为的中点.(1)如图1,若2,则,若,及的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中及的数量关系是否仍旧成立?请说明理由.(3)如图3,在(2)的条件下,在线段上,是否存在点D,使得7,且3?若存在,恳求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段上肯定点,C、D两点分别从M、B动身以1、3的速度沿直线向左运动,运动方向如箭头所示(C在线段上,D在线段上)(1)若10,当点C、D运动了2s,求的值.(2)若点C、D运动时,总有3,干脆填空:.(3)在(2)的条件下,N是直线上一点,且﹣,求的值.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上随意一点,其对应的数为x.(1)假如点P到点M,点N的间隔相等,那么x的值是;(2)数轴上是否存在点P,使点P到点M,点N的间隔之和是5?若存在,请干脆写出x的值;若不存在,请说明理由.(3)假如点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时动身,那么几分钟时点P到点M,点N的间隔相等?9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且10.动点P从点A动身,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示);(2)动点R从点B动身,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时动身,问点P运动多少秒时追上点R?(3)若M为的中点,N为的中点.点P在运动的过程中,线段的长度是否发生改变?若改变,请说明理由;若不变,请你画出图形,并求出线段的长;10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且10.动点P从点A动身,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);②M为的中点,N为的中点.点P在运动的过程中,线段的长度是否发生改变?若改变,请说明理由;若不变,请你画出图形,并求出线段的长;(2)动点Q从点A动身,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B动身,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时动身,当点P遇到点R时,马上返回向点Q运动,遇到点Q后则停顿运动.那么点P从开场运动到停顿运动,行驶的路程是多少个单位长度?参考答案及试题解析一.解答题(共10小题)1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6(1)2=0,A、B之间的间隔记作,定义:﹣.(1)求线段的长.(2)设点P在数轴上对应的数x,当﹣2时,求x的值.(3)M、N分别是、的中点,当P挪动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①÷的值不变,②﹣的值不变.考点:一元一次方程的应用;数轴;两点间的间隔.分析:(1)依据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)利用中点性质转化线段之间的倍分关系得出.解答:解:(1)∵|2b﹣6(1)2=0,∴﹣1,3,∴﹣4,即线段的长度为4.(2)当P在点A左侧时,﹣﹣(﹣)=﹣﹣4≠2.当P在点B右侧时,﹣4≠2.∴上述两种状况的点P不存在.当P在A、B之间时,﹣1≤x≤3,∵11,﹣33﹣x,∴﹣2,∴1﹣(3﹣x)=2.∴解得:2;(3)由已知可得出:,,当①÷的值不变时,÷÷.②﹣的值不变成立.故当P在线段上时,()2,当P在延长线上或延长线上时,﹣﹣2.点评:此题主要考察了一元一次方程的应用,浸透了分类探讨的思想,表达了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的状况下敏捷选用它的不同表示方法,有利于解题的简洁性.同时,敏捷运用线段的和、差、倍、分转化线段之间的数量关系也是非常关键的一点.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)1|;﹣3|(用含x的式子表示)(2)在数轴上是否存在点P,使5?若存在,恳求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位的速度从点D向右运动,同时点A以5个单位的速度向左运动,点B以20个单位的速度向右运动,在运动过程中,M、N分别是、的中点,问:的值是否发生改变?请说明理由.考点:一元一次方程的应用;数轴;两点间的间隔.分析:(1)依据数轴上两点之间的间隔求法得出,的长;(2)分三种状况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)依据题意用t表示出,,的长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴1|;﹣3|(用含x的式子表示);故答案为:1|,﹣3|;(2)分三种状况:①当点P在A、B之间时,4,故舍去.②当点P在B点右边时,1,﹣3,∴(1)(x﹣3)=5,∴3.5;③当点P在A点左边时,﹣x﹣1,3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴﹣1.5;(3)的值不发生改变.理由:设运动时间为t分钟.则,51,203,254,61,3t,﹣51﹣(+3t)=2,10,∴122,∴2,∴在运动过程中,M、N分别是、的中点,的值不发生改变.点评:此题主要考察了一元一次方程的应用,依据题意利用分类探讨得出是解题关键.3.如图1,直线上有一点P,点M、N分别为线段、的中点,14.(1)若点P在线段上,且8,求线段的长度;(2)若点P在直线上运动,试说明线段的长度及点P在直线上的位置无关;(3)如图2,若点C为线段的中点,点P在线段的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.考点:两点间的间隔.分析:(1)求出,的长度,即可得出的长度;(2)分三种状况:①点P在之间;②点P在的延长线上;③点P在的延长线上,分别表示出的长度即可作出推断;(3)设,,分别表示出①、②的值,继而可作出推断.解答:解:(1)∵8,点M是中点,∴4,∴﹣6,又∵点N是中点,∴3,∴7.(2)①点P在之间;②点P在的延长线上;③点P在的延长线上,均有7.(3)选择②.设,,①(在改变);(定值).点评:本题考察了两点间的间隔,解答本题留意分类探讨思想的运用,理解线段中点的定义,难度一般.4.如图,P是定长线段上一点,C、D两点分别从P、B动身以1、2的速度沿直线向左运动(C在线段上,D在线段上)(1)若C、D运动到任一时刻时,总有2,请说明P点在线段上的位置:(2)在(1)的条件下,Q是直线上一点,且﹣,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停顿运动,D点接着运动(D点在线段上),M、N分别是、的中点,下列结论:①﹣的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.考点:比拟线段的长短.专题:数形结合.分析:(1)依据C、D的运动速度知2,再由已知条件2求得2,所以点P在线段上的处;(2)由题设画出图示,依据﹣求得;然后求得,从而求得及的关系;(3)当点C停顿运动时,有,从而求得及的数量关系;然后求得以表示的及的值,所以.解答:解:(1)依据C、D的运动速度知:2∵2,∴2(),即2,∴点P在线段上的处;(2)如图:∵﹣,∴;又,∴,∴,∴.当点Q'在的延长线上时'﹣'所以'﹣'=3所以=;(3)②.理由:如图,当点C停顿运动时,有,∴;∴,∵,∴,∴;当点C停顿运动,D点接着运动时,的值不变,所以,.点评:本题考察了比拟线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的状况下敏捷选用它的不同表示方法,有利于解题的简洁性.同时,敏捷运用线段的和、差、倍、分转化线段之间的数量关系也是非常关键的一点.5.如图1,已知数轴上有三点A、B、C,,点C对应的数是200.(1)若300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时动身向左运动,同时动点R从A点动身向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段的中点,点N为线段的中点,多少秒时恰好满意4(不考虑点R及点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时动身向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段的中点,点Q在从是点D运动到点A的过程中,﹣的值是否发生改变?若不变,求其值;若不变,请说明理由.考点:一元一次方程的应用;比拟线段的长短.分析:(1)依据300,,得出600,利用点C对应的数是200,即可得出点A对应的数;(2)假设x秒Q在R右边时,恰好满意4,得出等式方程求出即可;(3)假设经过的时间为y,得出10y,5y,进而得出+5y﹣400,得出﹣﹣y原题得证.解答:解:(1)∵300,,所以600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满意4,∴(10+2)×,[600﹣(5+2)x],∴4,∴(10+2)×=4×[600﹣(5+2)x],解得:60;∴60秒时恰好满意4;(3)设经过的时间为y,则10y,5y,于是点为[0﹣(﹣800)]+10y﹣5800+5y,一半则是,所以点为:+5y﹣400,又200+5y,所以﹣﹣300为定值.点评:此题考察了一元一次方程的应用,依据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上的点,且12,6,F为的中点.(1)如图1,若2,则4,若,及的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中及的数量关系是否仍旧成立?请说明理由.(3)如图3,在(2)的条件下,在线段上,是否存在点D,使得7,且3?若存在,恳求出值;若不存在,请说明理由.考点:两点间的间隔;一元一次方程的应用.分析:(1)先依据﹣求出,再依据中点的定义求出,然后依据﹣代入数据进展计算即可得解;依据、的长度写出数量关系即可;(2)依据中点定义可得2,再依据﹣整理即可得解;(3)设,然后表示出、、、,然后代入2求解得到x的值,再求出、,计算即可得解.解答:解:(1)∵6,2,∴﹣6﹣2=4,∵F为的中点,∴22×4=8,∴﹣12﹣8=4,若,则2m,2;(2)(1)中2仍旧成立.理由如下:∵F为的中点,∴2,∴﹣,=12﹣2,=12﹣2(﹣),=12﹣2(6﹣),=2;(3)存在,3.理由如下:设,则3x,∴2x,6﹣x,7,由(2)知:2,∴7=2(6﹣x),解得,1,∴3,5,∴=6.点评:本题考察了两点间的间隔,中点的定义,精确识图,找出图中各线段之间的关系并精确推断出的表示是解题的关键.7.已知:如图1,M是定长线段上肯定点,C、D两点分别从M、B动身以1、3的速度沿直线向左运动,运动方向如箭头所示(C在线段上,D在线段上)(1)若10,当点C、D运动了2s,求的值.(2)若点C、D运动时,总有3,干脆填空:.(3)在(2)的条件下,N是直线上一点,且﹣,求的值.考点:比拟线段的长短.专题:分类探讨.分析:(1)计算出及的长,进而可得出答案;(2)依据图形即可干脆解答;(3)分两种状况探讨,①当点N在线段上时,②当点N在线段的延长线上时,然后依据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,2,6∵10,2,6∴﹣﹣10﹣2﹣6=2(2)(3)当点N在线段上时,如图∵﹣,又∵﹣∴,∴,即.当点N在线段的延长线上时,如图∵﹣,又∵﹣∴,即.综上所述=点评:本题考察求线段的长短的学问,有肯定难度,关键是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上随意一点,其对应的数为x.(1)假如点P到点M,点N的间隔相等,那么x的值是﹣1;(2)数轴上是否存在点P,使点P到点M,点N的间隔之和是5?若存在,请干脆写出x的值;若不存在,请说明理由.(3)假如点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时动身,那么几分钟时点P到点M,点N的间隔相等?考点:一元一次方程的应用;数轴;两点间的间隔.分析:(1)依据三点M,O,N对应的数,得出的中点为:(﹣3+1)÷2进而求出即可;(2)依据P点在N点右侧或在M点左侧分别求出即可;(3)分别依据①当点M和点N在点P同侧时,②当点M和点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应的数分别为﹣3,0,1,点P到点M,点N的间隔相等,∴x的值是﹣1.(2)存在符合题意的点P,此时﹣3.5或1.5.(3)设运动t分钟时,点P对应的数是﹣3t,点M对应的数是﹣3﹣t,点N对应的数是1﹣4t.①当点M和点N在点P同侧时,因为,所以点M和点N重合,所以﹣3﹣1﹣4t,解得,符合题意.②当点M和点N在点P两侧时,有两种状况.状况1:假如点M在点N左侧,﹣3t﹣(﹣3﹣t)=3﹣2t.(1﹣4t)﹣(﹣3t)=1﹣t.因为,所以3﹣21﹣t,解得2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,不符合题意,舍去.状况2:假如点M在点N右侧,(﹣3t)﹣(1﹣4t)=2t﹣3.﹣3t﹣(1+4t)﹣1.因为,所以2t﹣3﹣1,解得2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,符合题意.综上所述,三点同时动身,分钟或2分钟时点P到点M,点N的间隔相等.故答案为:﹣1.点评:此题主要考察了数轴的应用以及一元一次方程的应用,依据M,N位置的不同进展分类探讨得出是解题关键.9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且10.动点P从点A动身,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4,点P表示的数6﹣6t用含t的代数式表示);(2)动点R从点B动身,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时动身,问点P运动多少秒时追上点R?(3)若M为的中点,N为的中点.点P在运动的过程中,线段的长度是否发生改变?若改变,请说明理由;若不变,请你画出图形,并求出线段的长;考点:数轴;一元一次方程的应用;两点间的间隔.专题:方程思想.分析:(1)B点表示的数为6﹣10=﹣4;点P表示的数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣410,解方程即可;(3)分类探讨:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则6x,4x,∵﹣,∴6x﹣410,解得:5,∴点P运动5秒时,在点C处追上点R.(3)线段的长度不发生改变,都等于5.理由如下:分两种状况:①当点P在点A、B两点之间运动时:()5;②当点P运动到点B的左侧时:﹣﹣(﹣)5,∴综上所述,线段的长度不发生改变,其值为5.点评:本题考察了数轴:数轴的三要素(正方向、原点和单位长度).也考察了一元一次方程的应用以及数轴上两点之间的间隔.10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且10.动点P从点A动身,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数﹣4,点P表示的数6﹣6t(用含t的代数式表示);②M为的中点,N为的中点.点P在运动的过程中,线段的长度是否发生改变?若改变,请说明理由;若不变,请你画出图形,并求出线段的长;(2)动点Q从点A动身,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B动身,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时动身,当点P遇到点R时,马上返回向点Q运动,遇到点Q后则停顿运动.那么点P从开场运动到停顿运动,行驶的路程是多少个单位长度?考点:一元一次方程的应用;数轴;两点间的间隔.专题:动点型.分析:(1)①设B点表示的数为x,依据数轴上两点间的间隔公式建立方程求出其解,再依据数轴上点的运动就可以求出P点的坐标;②分类探讨:当点P在点A、B两点之间运动时;当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出;(2)先求出P、R从A、B动身相遇时的时间,再求出P、R相遇时P、Q之间剩余的路程的相遇时间,就可以求出P一共走的时间,由P的速度就可以求出P点行驶的路程.解答:解:(1)设B点表示的数为x,由题意,得6﹣10,﹣4∴B点表示的数为:﹣4,点P表示的数为:6﹣6t;②线段的长度不发生改变,都等于5.理由如下:分两种状况:当点P在点A、B两点之间运动时:()5;当点P运动到点B的左侧时:﹣﹣(﹣)5,∴综上所述,线段的长度不发生改变,其值为5.(2)由题意得:P、R的相遇时间为:10÷(6+),P、Q剩余的路程为:10﹣(1+)×=,P、Q相遇的时间为:÷(6+1),∴P点走的路程为:6×()=点评:本题考察了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的间隔公式的运用,行程问题中的路程=速度×时间的运用.。
(完整版)初一上学期动点问题(含答案)
![(完整版)初一上学期动点问题(含答案)](https://img.taocdn.com/s3/m/8cac731f81c758f5f71f676b.png)
初一上学期动点问题练习1。
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数 ,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为-6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q(如图)则AC=5,BC=3,∵AC-BC=AB∴5-3=”14”解得:=7,∴点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:MN=MP-NP= AP-BP=(AP-BP)=AB="7"∴综上所述,线段MN的长度不发生变化,其值为7;2。
已知数轴上有A、B、C三点,分别表示有理数—26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1)PA=t,PC=36—t;(2)当16≤t≤24时PQ=t-3(t—16)=-2t+48,当24<t≤28时PQ=3(t-16)—t=2t—48,当28<t≤30时PQ=72—3(t—16)-t=120-4t,当30<t≤36时PQ=t—[72—3(t-16)]=4t-120.3。
七年级上期末动点问题专题
![七年级上期末动点问题专题](https://img.taocdn.com/s3/m/bf5e09f85ef7ba0d4a733be0.png)
七年级上期末动点问题专题1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN 的值不变,②|PM﹣PN|的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=_________;PB=_________(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C 在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=_________,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=_________AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是_________;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________,点P表示的数_________用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数_________,点P表示的数_________(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?。
七年级上期末动点问题专题(附答案)
![七年级上期末动点问题专题(附答案)](https://img.taocdn.com/s3/m/309f4e69551810a6f4248611.png)
七年级上册期末数学动点问题1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:A B=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA= _________ ;PB= _________ (用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB 上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段R Q的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE= _________ ,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= _________ AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是_________ ;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________ ,点P表示的数_________ 用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数_________ ,点P表示的数_________ (用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析一.解答题(共10小题)1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:A B=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)利用中点性质转化线段之间的倍分关系得出.解答:解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB的长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况的点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=PA,PN=PB,当①PM÷PN的值不变时,PM÷PN=PA÷PB.②|PM﹣PN|的值不变成立.故当P在线段AB上时,PM+PN=(PA+PB)=AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=|PA﹣PB|=|AB|=2.点评:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA= |x+1| ;PB= |x﹣3| (用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据数轴上两点之间的距离求法得出PA,PB的长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)根据题意用t表示出AB,OP,MN的长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴PA=|x+1|;PB=|x﹣3|(用含x的式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3.5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1.5;(3)的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AB=OA+OB=25t+4,AP=OA+OP=6t+1,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别是AP、OB的中点,的值不发生变化.点评:此题主要考查了一元一次方程的应用,根据题意利用分类讨论得出是解题关键.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.考点:两点间的距离.分析:(1)求出MP,NP的长度,即可得出MN的长度;(2)分三种情况:①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,分别表示出MN的长度即可作出判断;(3)设AC=BC=x,PB=y,分别表示出①、②的值,继而可作出判断.解答:解:(1)∵AP=8,点M是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).点评:本题考查了两点间的距离,解答本题注意分类讨论思想的运用,理解线段中点的定义,难度一般.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB 上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.考点:比较线段的长短.专题:数形结合.分析:(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以.解答:解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以=;(3)②.理由:如图,当点C停止运动时,有,∴;∴,∵,∴,∴;当点C停止运动,D点继续运动时,MN的值不变,所以,.点评:本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段R Q的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.考点:一元一次方程的应用;比较线段的长短.分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应的数是200,即可得出点A对应的数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过的时间为y,得出PE=10y,QD=5y,进而得出+5y﹣400=y,得出﹣AM=﹣y原题得证.解答:解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.点评:此题考查了一元一次方程的应用,根据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE= 4 ,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.考点:两点间的距离;一元一次方程的应用.分析:(1)先根据EF=CE﹣CF求出EF,再根据中点的定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可得解;根据BE、CF的长度写出数量关系即可;(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x的值,再求出DF、CF,计算即可得解.解答:解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE的中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,若CF=m,则BE=2m,BE=2CF;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE的中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,∴DF=3,CF=5,∴=6.点评:本题考查了两点间的距离,中点的定义,准确识图,找出图中各线段之间的关系并准确判断出BE的表示是解题的关键.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM= AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.考点:比较线段的长短.专题:分类讨论.分析:(1)计算出CM及BD的长,进而可得出答案;(2)根据图形即可直接解答;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm(2)(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=点评:本题考查求线段的长短的知识,有一定难度,关键是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是﹣1 ;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据三点M,O,N对应的数,得出NM的中点为:x=(﹣3+1)÷2进而求出即可;(2)根据P点在N点右侧或在M点左侧分别求出即可;(3)分别根据①当点M和点N在点P同侧时,②当点M和点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应的数分别为﹣3,0,1,点P到点M,点N的距离相等,∴x的值是﹣1.(2)存在符合题意的点P,此时x=﹣3.5或1.5.(3)设运动t分钟时,点P对应的数是﹣3t,点M对应的数是﹣3﹣t,点N对应的数是1﹣4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以﹣3﹣t=1﹣4t,解得,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t.因为PM=PN,所以3﹣2t=1﹣t,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1.因为PM=PN,所以2t﹣3=t﹣1,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,符合题意.综上所述,三点同时出发,分钟或2分钟时点P到点M,点N的距离相等.故答案为:﹣1.点评:此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4 ,点P表示的数6﹣6t 用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;考点:数轴;一元一次方程的应用;两点间的距离.专题:方程思想.分析:(1)B点表示的数为6﹣10=﹣4;点P表示的数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣4x=10,解方程即可;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点R.(3)线段MN的长度不发生变化,都等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.点评:本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数﹣4 ,点P表示的数6﹣6t (用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?考点:一元一次方程的应用;数轴;两点间的距离.专题:动点型.分析:(1)①设B点表示的数为x,根据数轴上两点间的距离公式建立方程求出其解,再根据数轴上点的运动就可以求出P点的坐标;②分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN;(2)先求出P、R从A、B出发相遇时的时间,再求出P、R相遇时P、Q之间剩余的路程的相遇时间,就可以求出P一共走的时间,由P的速度就可以求出P点行驶的路程.解答:解:(1)设B点表示的数为x,由题意,得6﹣x=10,x=﹣4∴B点表示的数为:﹣4,点P表示的数为:6﹣6t;②线段MN的长度不发生变化,都等于5.理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.(2)由题意得:P、R的相遇时间为:10÷(6+)=s,P、Q剩余的路程为:10﹣(1+)×=,P、Q相遇的时间为:÷(6+1)=s,∴P点走的路程为:6×()=点评:本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.。
【学期】七年级上期末动点问题专题附答案
![【学期】七年级上期末动点问题专题附答案](https://img.taocdn.com/s3/m/b2bff9dfb4daa58da1114a89.png)
【关键字】学期七年级上学期期末动点问题专题1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN 的值不变,②|PM﹣PN|的值不变.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=_________;PB=_________(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以/s、/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动就任一时刻时,总有PD=,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=_________,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以/s、/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=,直接填空:AM=_________AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是_________;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数_________,点P表示的数_________用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数_________,点P表示的数_________(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案与试题解析一.解答题(共10小题)1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)2=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.(1)求线段AB的长.(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN 的值不变,②|PM﹣PN|的值不变.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据非负数的和为0,各项都为0;(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;(3)利用中点性质转化线段之间的倍分关系得出.解答:解:(1)∵|2b﹣6|+(a+1)2=0,∴a=﹣1,b=3,∴AB=|a﹣b|=4,即线段AB的长度为4.(2)当P在点A左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2.当P在点B右侧时,|PA|﹣|PB|=|AB|=4≠2.∴上述两种情况的点P不存在.当P在A、B之间时,﹣1≤x≤3,∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x,∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2.∴解得:x=2;(3)由已知可得出:PM=PA,PN=PB,当①PM÷PN的值不变时,PM÷PN=PA÷PB.②|PM﹣PN|的值不变成立.故当P在线段AB上时,PM+PN=(PA+PB)=AB=2,当P在AB延长线上或BA延长线上时,|PM﹣PN|=|PA﹣PB|=|AB|=2.点评:此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.(1)PA=|x+1|;PB=|x﹣3|(用含x的式子表示)(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据数轴上两点之间的距离求法得出PA,PB的长;(2)分三种情况:①当点P在A、B之间时,②当点P在B点右边时,③当点P在A点左边时,分别求出即可;(3)根据题意用t表示出AB,OP,MN的长,进而求出答案.解答:解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x,∴PA=|x+1|;PB=|x﹣3|(用含x的式子表示);故答案为:|x+1|,|x﹣3|;(2)分三种情况:①当点P在A、B之间时,PA+PB=4,故舍去.②当点P在B点右边时,PA=x+1,PB=x﹣3,∴(x+1)(x﹣3)=5,∴x=3.5;③当点P在A点左边时,PA=﹣x﹣1,PB=3﹣x,∴(﹣x﹣1)+(3﹣x)=5,∴x=﹣1.5;(3)的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+1,OB=20t+3,AB=OA+OB=25t+4,AP=OA+OP=6t+1,AM=AP=+3t,OM=OA﹣AM=5t+1﹣(+3t)=2t+,ON=OB=10t+,∴MN=OM+ON=12t+2,∴==2,∴在运动过程中,M、N分别是AP、OB的中点,的值不发生变化.点评:此题主要考查了一元一次方程的应用,根据题意利用分类讨论得出是解题关键.3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,AB=14.(1)若点P在线段AB上,且AP=8,求线段MN的长度;(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关;(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.考点:两点间的距离.分析:(1)求出MP,NP的长度,即可得出MN的长度;(2)分三种情况:①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,分别表示出MN的长度即可作出判断;(3)设AC=BC=x,PB=y,分别表示出①、②的值,继而可作出判断.解答:解:(1)∵AP=8,点M是AP中点,∴MP=AP=4,∴BP=AB﹣AP=6,又∵点N是PB中点,∴PN=PB=3,∴MN=MP+PN=7.(2)①点P在AB之间;②点P在AB的延长线上;③点P在BA的延长线上,均有MN=AB=7.(3)选择②.设AC=BC=x,PB=y,①==(在变化);(定值).点评:本题考查了两点间的距离,解答本题注意分类讨论思想的运用,理解线段中点的定义,难度一般.4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C 在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.考点:比较线段的长短.专题:数形结合.分析:(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ﹣BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB的关系;(3)当点C停止运动时,有,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN 的值,所以.解答:解:(1)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处;(2)如图:∵AQ﹣BQ=PQ,∴AQ=PQ+BQ;又AQ=AP+PQ,∴AP=BQ,∴,∴.当点Q'在AB的延长线上时AQ'﹣AP=PQ'所以AQ'﹣BQ'=3PQ=AB所以=;(3)②.理由:如图,当点C停止运动时,有,∴;∴,∵,∴,∴;当点C停止运动,D点继续运动时,MN的值不变,所以,.点评:本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.(1)若BC=300,求点A对应的数;(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.考点:一元一次方程的应用;比较线段的长短.分析:(1)根据BC=300,AB=AC,得出AC=600,利用点C对应的数是200,即可得出点A对应的数;(2)假设x秒Q在R右边时,恰好满足MR=4RN,得出等式方程求出即可;(3)假设经过的时间为y,得出PE=10y,QD=5y,进而得出+5y﹣400=y,得出﹣AM=﹣y原题得证.解答:解:(1)∵BC=300,AB=,所以AC=600,C点对应200,∴A点对应的数为:200﹣600=﹣400;(2)设x秒时,Q在R右边时,恰好满足MR=4RN,∴MR=(10+2)×,RN=[600﹣(5+2)x],∴MR=4RN,∴(10+2)×=4×[600﹣(5+2)x],解得:x=60;∴60秒时恰好满足MR=4RN;(3)设经过的时间为y,则PE=10y,QD=5y,于是PQ点为[0﹣(﹣800)]+10y﹣5y=800+5y,一半则是,所以AM点为:+5y﹣400=y,又QC=200+5y,所以﹣AM=﹣y=300为定值.点评:此题考查了一元一次方程的应用,根据已知得出各线段之间的关系等量关系是解题关键,此题阅读量较大应细心分析.6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点.(1)如图1,若CF=2,则BE=4,若CF=m,BE与CF的数量关系是(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由.(3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出值;若不存在,请说明理由.考点:两点间的距离;一元一次方程的应用.分析:(1)先根据EF=CE﹣CF求出EF,再根据中点的定义求出AE,然后根据BE=AB﹣AE代入数据进行计算即可得解;根据BE、CF的长度写出数量关系即可;(2)根据中点定义可得AE=2EF,再根据BE=AB﹣AE整理即可得解;(3)设DE=x,然后表示出DF、EF、CF、BE,然后代入BE=2CF求解得到x的值,再求出DF、CF,计算即可得解.解答:解:(1)∵CE=6,CF=2,∴EF=CE﹣CF=6﹣2=4,∵F为AE的中点,∴AE=2EF=2×4=8,∴BE=AB﹣AE=12﹣8=4,若CF=m,则BE=2m,BE=2CF;(2)(1)中BE=2CF仍然成立.理由如下:∵F为AE的中点,∴AE=2EF,∴BE=AB﹣AE,=12﹣2EF,=12﹣2(CE﹣CF),=12﹣2(6﹣CF),=2CF;(3)存在,DF=3.理由如下:设DE=x,则DF=3x,∴EF=2x,CF=6﹣x,BE=x+7,由(2)知:BE=2CF,∴x+7=2(6﹣x),解得,x=1,∴DF=3,CF=5,∴=6.点评:本题考查了两点间的距离,中点的定义,准确识图,找出图中各线段之间的关系并准确判断出BE的表示是解题的关键.7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=AB.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.考点:比较线段的长短.专题:分类讨论.分析:(1)计算出CM及BD的长,进而可得出答案;(2)根据图形即可直接解答;(3)分两种情况讨论,①当点N在线段AB上时,②当点N在线段AB的延长线上时,然后根据数量关系即可求解.解答:解:(1)当点C、D运动了2s时,CM=2cm,BD=6cm∵AB=10cm,CM=2cm,BD=6cm∴AC+MD=AB﹣CM﹣BD=10﹣2﹣6=2cm(2)(3)当点N在线段AB上时,如图∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=AB,∴MN=AB,即.当点N在线段AB的延长线上时,如图∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB,即.综上所述=点评:本题考查求线段的长短的知识,有一定难度,关键是细心阅读题目,理清题意后再解答.8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是﹣1;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?考点:一元一次方程的应用;数轴;两点间的距离.分析:(1)根据三点M,O,N对应的数,得出NM的中点为:x=(﹣3+1)÷2进而求出即可;(2)根据P点在N点右侧或在M点左侧分别求出即可;(3)分别根据①当点M和点N在点P同侧时,②当点M和点N在点P两侧时求出即可.解答:解:(1)∵M,O,N对应的数分别为﹣3,0,1,点P到点M,点N的距离相等,∴x的值是﹣1.(2)存在符合题意的点P,此时x=﹣3.5或1.5.(3)设运动t分钟时,点P对应的数是﹣3t,点M对应的数是﹣3﹣t,点N对应的数是1﹣4t.①当点M和点N在点P同侧时,因为PM=PN,所以点M和点N重合,所以﹣3﹣t=1﹣4t,解得,符合题意.②当点M和点N在点P两侧时,有两种情况.情况1:如果点M在点N左侧,PM=﹣3t﹣(﹣3﹣t)=3﹣2t.PN=(1﹣4t)﹣(﹣3t)=1﹣t.因为PM=PN,所以3﹣2t=1﹣t,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,不符合题意,舍去.情况2:如果点M在点N右侧,PM=(﹣3t)﹣(1﹣4t)=2t﹣3.PN=﹣3t﹣(1+4t)=t﹣1.因为PM=PN,所以2t﹣3=t﹣1,解得t=2.此时点M对应的数是﹣5,点N对应的数是﹣7,点M在点N右侧,符合题意.综上所述,三点同时出发,分钟或2分钟时点P到点M,点N的距离相等.故答案为:﹣1.点评:此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数﹣4,点P表示的数6﹣6t用含t的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;考点:数轴;一元一次方程的应用;两点间的距离.专题:方程思想.分析:(1)B点表示的数为6﹣10=﹣4;点P表示的数为6﹣6t;(2)点P运动x秒时,在点C处追上点R,然后建立方程6x﹣4x=10,解方程即可;(3)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.解答:解:(1)答案为﹣4,6﹣6t;(2)设点P运动x秒时,在点C处追上点R(如图)则AC=6x,BC=4x,∵AC﹣BC=AB,∴6x﹣4x=10,解得:x=5,∴点P运动5秒时,在点C处追上点R.(3)线段MN的长度不发生变化,都等于5.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;②当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.点评:本题考查了数轴:数轴的三要素(正方向、原点和单位长度).也考查了一元一次方程的应用以及数轴上两点之间的距离.10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数﹣4,点P表示的数6﹣6t(用含t的代数式表示);②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?考点:一元一次方程的应用;数轴;两点间的距离.专题:动点型.分析:(1)①设B点表示的数为x,根据数轴上两点间的距离公式建立方程求出其解,再根据数轴上点的运动就可以求出P点的坐标;②分类讨论:当点P在点A、B两点之间运动时;当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN;(2)先求出P、R从A、B出发相遇时的时间,再求出P、R相遇时P、Q之间剩余的路程的相遇时间,就可以求出P一共走的时间,由P的速度就可以求出P点行驶的路程.解答:解:(1)设B点表示的数为x,由题意,得6﹣x=10,x=﹣4∴B点表示的数为:﹣4,点P表示的数为:6﹣6t;②线段MN的长度不发生变化,都等于5.理由如下:分两种情况:当点P在点A、B两点之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5;当点P运动到点B的左侧时:MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=5,∴综上所述,线段MN的长度不发生变化,其值为5.(2)由题意得:P、R的相遇时间为:10÷(6+)=s,P、Q剩余的路程为:10﹣(1+)×=,P、Q相遇的时间为:÷(6+1)=s,∴P点走的路程为:6×()=点评:本题考查了数轴及数轴的三要素(正方向、原点和单位长度).一元一次方程的应用以及数轴上两点之间的距离公式的运用,行程问题中的路程=速度×时间的运用.此文档是由网络收集并进行重新排版整理.word可编辑版本!。
人教版七年级数学上册期末动点问题压轴题专题练习-带答案
![人教版七年级数学上册期末动点问题压轴题专题练习-带答案](https://img.taocdn.com/s3/m/48c2b54f773231126edb6f1aff00bed5b9f37302.png)
人教版七年级数学上册期末动点问题压轴题专题练习-带答案学校:___________班级:___________姓名:___________考号:___________1.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足︱a+3︱+︱c-5 ︱=0(1)a=,b=,c=.(2)如果点P表示的数为x,当P点到B、C两点的距离之和为8时,x=(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B 和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。
2.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b-3)2=0.(1)则a=,b=;并将这两个数在数轴上所对应的点A,B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离和为11,若点C的数轴上所对应的数为x,求x的值;(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.3.已知数轴上有A,B两点,分别代表-40,20,两只电子蚂蚁甲、乙分别从A,B两点同时出发,其中甲以1个单位长度/秒的速度向右运动,到达点B处时运动停止.乙以4个单位长度/秒的速度向左运动.(1)A,B两点间的距离为个单位长度;乙到达A点时一共运动了秒.(2)甲、乙在数轴上运动,经过多少秒相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲、乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.4.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a、c满足|a+2|+(c−6)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得点A与点C重合,则数轴上折痕所表示的数为,点B与数表示的点重合,原点与数表示的点重合;(3)动点P、Q同时从原点出发,点P向负半轴运动,点Q向正半轴运动,点Q的速度是点P 速度的3倍,2秒钟后,点P到达点A.①点P的速度是每秒▲ 个单位长度,点Q的速度是每秒▲ 个单位长度;②经过几秒钟,点P与点Q相距12个单位长度.5.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,可以看到终点表示的数是-2.已知点A,B是数轴上的点,完成下列各题.(1)若点A表示数-2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B6.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b−3|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动:同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒)①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.7.如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为3,BC=2,AB=6.(1)则点A对应的数是、点B对应的数是;(2)动点P、Q分别同时从A、C出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M在线段AP上,且AM=MP,N在线段CQ上,且CN=14CQ,设运动时间为t(t>0).①求点M、N对应的数(用含t的式子表示);②猜想MQ的长度是否与t无关为定值,若为定值请求出该定值,若不为定值请说明理由;③探究t为何值时,OM=2BN.8.数轴上点A表示的有理数为20,点B表示的有理数为﹣10,点P从点A出发以每秒5个单位长度的速度在数轴上往左运动,到达点B后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A停止,设运动时间为t(单位:秒).(1)当t=5时,点P表示的有理数为.(2)在点P往左运动的过程中,点P表示的有理数为(用含t的代数式表示).(3)当点P与原点距离5个单位长度时,t的值为.9.如图,A、B分别为数轴上的两点,A点对应的数为−20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?10.在数轴上,如果A点表示的数记为a,点B表示的数记为b,则A、B两点间的距离可以记作|a-b|或|b-a|,我们把数轴上两点的距离,用两点的大写字母表示,如:点A与点B之间的距离表示为AB.如图,在数轴上,点A,O,B表示的数为-10,0,12.(1)直接写出结果,OA=,AB=.(2)设点P在数轴上对应的数为x.①若点P为线段AB的中点,则x=.②若点P为线段AB上的一个动点,则|x+10|+|x-12|的化简结果是.(3)动点M从A出发,以每秒2个单位的速度沿数轴在A,B之间向右运动,同时动点N从B 出发,以每秒4个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得OM=ON?若存在,请直接写出t值;若不存在,请说明理由.11.如图.数轴上A.B两点对应的有理数分别为-10和20.点P从点O出发.以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从点A出发,以每秒2个单位长度的速发沿数轴正方向运动.设运动时间为t秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上期末动点问题专题
1、已知数轴上两点A、B对应的数分别为-1、3,数轴上一动点P对应的数为x.
(1)若点P到点A,点B的距离相等,求点P对应的数;
(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A,点B的距离相等.
2、如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.
(1)当PA=2PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度.
(2)若点Q运动速度为3cm/s,经过多长时间P、Q两点相距70cm.
(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求OB-AP/EF的值.
①
3、甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米.
(1)甲、乙开始运动后几分钟相遇?
(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇?
4、如图,线段AB=20cm.
(1)点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B点向A点以3厘米/秒运动,几秒钟后,P、Q两点相遇?
如图,已知数轴上A、B两点所表示的数分别为-2和8.
(1)求线段AB的长;
(2)若P为射线BA上的一点(点P不与A、B两点重合,M为PA的中点,N为PB的中点,当点P在射线BA上运动时;MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.
②
③
5.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)
(1)若AB=10cm ,当点C 、D 运动了2s ,求AC+MD 的值.
(2)若点C 、D 运动时,总有MD=3AC ,直接填空:
AM=________ AB .
(3)在(2)的条件下,N 是直线AB 上一点,且AN -BN=MN ,求 MNAB 的值.
6.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm/s 、2cm/s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)
(1)若C 、D 运动到任一时刻时,总有PD=2AC ,请说明P 点在线段AB 上的位置:
(2)在(1)的条件下,Q 是直线AB 上一点,且AQ -BQ=PQ ,求 PQAB 的值.
(3)在(1)的条件下,若C 、D 运动5秒后,恰好有 CD=12AB ,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM -PN 的值不变;① MNAB 的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.
7、已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m-2n|=-(6-n)2.
(1)求线段AB、CD的长;
(2)M、N分别为线段AC、BD的中点,若BC=4,求MN;
(3)当CD运动到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:① PA-PBPC 是定值;① PA+PBPC是定值,请选择正确的一个并加以证明.
8、如图,已知数轴上A、B两点所表示的数分别为-2和8.
(1)求线段AB的长;
(2)若P为射线BA上的一点(点P不与A、B两点重合),M为PA的中点,N为PB的中点,当点P 在射线BA上运动时,线段MN的长度是否发生改变?若不变,请你画出图形,并求出线段MN的长;若改变,请说明理由.
(3)若有理数a、b、c在数轴上的位置如图所示:
且d=|a+b|-|-2-b|-|a-2c|-5,试求7(d+2c)2+2(d+2c)-5(d+2c)2-3(d+2c)的值.
④
⑤ 9、在长方形ABCD 中,AB=CD=10cm 、BC=AD=8cm ,动点P 从A 点出发,沿A①B①C①D 路线运动到D 停止;动点Q 从D 出发,沿D①C①B①A 路线运动到A 停止;若P 、Q 同时出发,点P 速度为1cm∕s ,点Q 速度为2cm∕s ,6s 后P 、Q 同时改变速度,点P 速度变为2cm∕s ,点Q 速度变为1cm∕s .
(1)问P 点出发几秒后,P 、Q 两点相遇?
(2)当Q 点出发几秒时,点P 点Q 在运动路线上相距的路程为25cm ?
10、如图,点C 是线段AB 的中点,点D 、E 分别是线段AC 、CB 的中点.
(1)若线段AB=10cm ,求线段AC 和线段DE 的长度;
(2)若线段AB=a ,求线段DE 的长度.
(3)若甲、乙两点分别从点A 、D 同时出发,沿AB 方向向右运动,若甲、乙两点同时到达B 点,请你写出一组符合条件的甲、乙两点运动的速度.。