振动测量原理 ppt课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A zz0 1m m 1 n
1
(5.7)
(n//n)242
Varc12 tg(( // nn))22
(5.8)
其幅频特性曲线和相频特性曲线分别如图5-6和图
5-5所示。
图 5.6由载体运动引起的速度响应图
5.7由载体运动引起的加速度响应
(3)z01相对于载体的振动加速度,此时相当于测振仪 处于加速度计的工作状态下。此时幅频特性和相 频特性分别为:
振动测量原理
5.1 振动和振动测量系统 5.2 振动参量的测量 5.3 机械阻抗测量 5.4 振动信号的频谱分析
振动是工程技术和日常生活中常见的物理 现象,在大多数情况下,振动是有害的,它对 仪器设备的精度,寿命和可靠性都会产生影响。 当然,振动也有可以被利用的一面,如输送、 清洗、磨削、监测等。
作在过谐振区。 对于加速度计来说,其工作条件为<<1,即
工作在亚谐振区。 对于速度计来说频特性和相频特性都有 较大的影响。
对位移计和加速度计而言,当取值在0.6~0.8 范围内时,幅频特性曲线有最宽广而平坦的曲线 段,此时,相频特性曲线在很宽的范围内也几乎 是直线。
Adzz01m m 1[1(/(n)2/] 2n)2 (2/ n)2 (5.5)
d
arctg2(/n) 1(/n)2
(5.6)
其幅频特性曲线曲线如图5.4所示。
图5.4 由载体运动引起的位移响应
(2)z01相对于载体振动速度 ,此时相当于测振仪处于
速度计的工作状态下。此时幅频特性和相频特性
分别为:
名称
原理
优缺点及应用
电测法
将被测对象的振动量转换 成电量,然后用电量测试 仪器进行测量
灵敏度高,频率范围及动态、线性范围 宽,便于分析和遥测,但易受电磁场干 扰。是目前最广泛采用的方法
机械法
利用杠杆原理将振动量放 大后直接记录下来
抗干扰能力强,频率范围及动态、线性 范围窄、测试时会给工件加上一定的负 荷,影响测试结果,用于低频大振幅振 动及扭振的测量
设载体的运作为谐振动,即:
则式(5.3)可写成:
z1(t)z1msint,
m dd 2z20t1 cdd0z1 tk0z1 m 2z1msin t(5.4)
考虑这样几种情形下的响应特性:
(1)z01相对于载体的振动位移z1 ,此时相当于
测振仪处于位移计工作状态下。此时幅频特性 和相频特性分别为:
机械振动
确定性的 的
周期的
非周期的
随机的
平稳的
非平稳的
简谐振 动
复杂周期振 动
准周期振 动
瞬态和冲 各态历经 非各 态 历
击
的
经
振动测量原理
5.1.2 振动测量系统
1.振动测量方法分类 振动测量方法按振动信号转换的方式可分为
电测法、机械法和光学法。
其简单原理和优缺点见表5.1。
表5.1 振动测量方法分类
一定的统计规律性。可分为平稳随机振动和非 平稳随机振动。平稳随机振动又包括各态历经 的平稳随机振动和非各态历经的平稳随机振动。
一般来说,仪器设备的振动信号中既包含 有确定性的振动,又包含有随机振动,但对于 一个线性振动系统来说,振动信号可用谱分析 技术化作许多谐振动的叠加。因此简谐振动是 最基本也是最简单的振动。
光学法
利用光杠杆原理、读数显 微镜、光波干涉原理,激 光多普勒效应等进行测量
不受电磁场干扰,测量精度高,适于对 质量小及不易安装传感器的试件作非接 触测量。在精密测量和传感器、测振仪 标定中用得较多
2. 电测法振动测量系统
干扰
激振
系统
测振传感器
中间变换电 路
信号发生器 功放
振动分析仪器
显示记录
反馈控制
对于速度计而言,则是阻尼比越大,可测量 的频率范围越宽,因此,在选用速度计测量振动 速度的响应时,往往使其在很大的过阻尼状态下 工作。
振动测量原理
表5.3 部分常用的激振设备
拾振部分是振动测量仪器的最基本部分, 它的性能往往决定了整个仪器或系统的性能。
根据线性系统的叠加原理,振动的响应是 振动系统拾振部分对各个谐振动响应的叠加。
在许多情况下,例如惯性式测振传感器, 振动系统的振动是由载体的运动所引起的。如 图5.3所示。设载体的绝对位移为z1,质量块m 的绝对位移为z0则质量块的运动方程为:
确定性振动可分为周期性振动和非周期性振动。 周期性振动包括简谐振动和复杂周期振动。非周 期性振动包括准周期振动和瞬态振动。准周期振 动由一些不同频率的简谐振动合成,在这些不同 频率的简谐分量中,总会有一个分量与另一个分 量的频率之比值为无理数,因而是非周期振动。
随机振动是一种非确定性振动,它只服从
m d d 2z20 tcd(z0 dzt1)k(z0z1)0(5.1)
m d 2z0 dt 2
m
z。 c k
(z0z1)kcddt(z0z1)
图5.3 由载体运动引起的振动响应
质量块m相对于载体的相对位移为:
z01z0 z1
(5.2)
则上式可改写成:
mdd 2z20t1 cdd0z1 tk0z1 md d2z21t(5.3)
图5.2 振动测量系统的一般组成框图
由于振动的复杂性,加上测量现场复杂, 在用电测法进行振动量测量时,其测量系统是 多种多样的。图5.2所示为用电测法测振时系统 的一般组成框图。由图可见,一个一般的振动 测量系统通常由激振、拾振、中间变换电路、 振动分析仪器及显示记录装置等环节所组成。
下面分别就这些组成环节作一简单介绍。 (1) 测振传感器
Aazz01m m 1[1(/1 )2/] 2n2(2 /n)2 (5.9)
aarc1t2g(// nn)2
(5.10)
其幅频特性曲线和相频特性曲线分别如图5.7和
图5.5所示。
从图5.4~图5.7可以看出: ① 测振仪在不同工作状态下,其有效工作区域是不
相同的。 在位移计状态下,其工作条件为>>1,即工
无论是利用振动还是防止振动,都必须 确定其量值。
随着现代工业和现代科学技术的发展, 对各种仪器设备提出了低振级和低噪声的要求, 以及对主要生产过程或重要设备进行监测、诊 断,对工作环境进行控制等等。这些都离不开 振动的测量。
5.1 振动和振动测量系统
5.1.1 振动信号分类
振动信号按时间历程的分类如图5.1所示,即 将振动分为确定性振动和随机振动两大类。