X射线衍射仪结构与工作原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X射线衍射仪结构与工作原理

1、测角仪的工作原理

测角仪在工作时,X射线从射线管发出,经一系列狭缝后,照射在样品上产生衍射。计数器围绕测角仪的轴在测角仪圆上运动,记录衍射线,其旋转的角度即

2θ,可以从刻度盘上读出。与此同时,样品台也围绕测角仪的轴旋转,转速为计数器转速的1/2。为什么?

为了能增大衍射强度,衍射仪法中采用的是平板式样品,以便使试样被X射线照射的面积较大。这里的关键是一方面试样要满足布拉格方程的反射条件。另一方面还要满足衍射线的聚焦条件,即使整个试样上产生的X衍射线均能被计数器所接收。

在理想的在理想情况下,X射线源、计数器和试样在一个聚焦圆上。且试样是弯曲的,曲率与聚焦圆相同。对于粉末多晶体试样,在任何方位上总会有一些(hkl)晶面满足布拉格方程产生反射,而且反射是向四面八方的,但是,那些平行于试样表面的晶面满足布拉格方程时,产生衍射,且满足入射角=反射角的条件。由平面几何可知,位于同一圆弧上的圆周角相等,所以,位于试样不同部位M,O,N处平行于试样表面的(hkl)晶面,可以把各自的反射线会聚到F点(由于S 是线光源,所以厂点得到的也是线光源)。这样便达到了聚焦的目的。

在测角仪的实际工作中,通常X射线源是固定不动的。计数器并不沿聚焦圆移动,而是沿测角仪圆移动逐个地对衍射线进行测量。因此聚焦圆的半径一直随着2θ角的变化而变化。在这种情况下,为了满足聚焦条件,即相对试样的表面,满足入射角=反射角的条件,必须使试样与计数器转动的角速度保持1:2的速度比。不过,在实际工作中,这种聚焦不是十分精确的。因为,实际工作中所采用的样品不是弧形的而是平面的,并让其与聚焦圆相切,因此实际上只有一个点在聚焦圆上。这样,衍射线并非严格地聚集在F点上,而是有一定的发散。但这对于一般目的而言,尤其是2θ角不大的情况下(2θ角越小,聚焦圆的曲率半径越大,越接近于平面),是可以满足要求的。

2、X射线探测器

衍射仪的X射线探测器为计数管。它是根据X射线光子的计数来探测衍射线是存在与否以及它们的强度。它与检测记录装置一起代替了照相法中底片的作用。其主要作用是将X射线信号变成电信号。探测器的有不同的种类。有使用气体的正比计数器和盖革计数器和固体的闪烁计数器和硅探测器。目前最常用的是闪烁计数器,在要求定量关系较为准确的场合下一般使用正比计数器。盖革计数器现在已经很少用了。

1)正比计数器和盖革计数器

计数管有玻璃的外壳,内充填惰性气体(如氩、氪、氙等)。阴极为一金属圆筒,阳极为共轴的金属丝。为窗口,由云母或铁等低吸收系数材料制成。阴、阳极之间保持一个电位差,对正比计数管,这个电位差为600至900伏。

X射线光子能使气体电离,所产生的电子在电场作用下向阳极加速运动,这些高速的电子足以再使气体电离,而新产生的电子又可引起更多气体电离,于是出现电离过程的连锁反应。在极短时间内,所产生的大量电子便会涌向阳板金属丝,从而出现一个可以探测到的脉冲电流。这样,一个X射线光子的照射就有可能产

生大量离子,这就是气体的放大作用。计数管在单位时间内产生的脉冲数称为计数率,它的大小与单位时间内进入计数管的X射线光子数成正比,亦即与X射线的强度成正比。

正比计数器所绘出的脉冲大小(脉冲的高度)和它所吸收的X射线光子能量成正比。因此,只要在正比计数器的输出电路上加上一个脉高分析器(脉冲幅度分析器),对所接收的脉冲按其高度进行甑别,就可获得只由某一波长X射线产生的脉冲。然后对其进行计数。从而排除其它波长的幅射(如白色X射线、样品的荧光幅射)的影响。正由于这一点,正比计数器测定衍射强度就比较可靠。

正比计数器反应极快,它对两个连续到来的脉冲的分辨时间只需10-6秒。光子计数效率很高,在理想的情况下没有计数损失。正比计数器性能稳定,能量分辨率高,背底脉冲极低。

正比计数器的缺点在于对温度比较敏感,计数管需要高度稳定的电压,又由于雪崩放电所引起电压的瞬时脱落只有几毫优,故需要强大的放大设备。

盖革计数器与正比计数器的结构与原理相似。但它的气体放大倍数很大,输出脉冲的大小与入射X射线的能量无关。对脉冲的分辨率较低,因此具有计数的损失。2)闪烁计数管

闪烁计数管是利用X射线激发某此晶体的荧光效应来探测X射线的。它由首先将接收到的X射线光子转变为可见光光子,再转变为电子,然后形成电脉冲而进行计数的。

它主要由闪烁体和光电倍增管两部分组成。闪烁体是一种在受到X射线光子轰击时能够发出可见光荧光的晶体,最常用的是用铊活化的碘化钠Nal(TI)单晶体。光电倍增管的作用则是将可见光转变为电脉冲。闪烁晶体位于光电倍增器的面上,其外侧用铍箔密封,以挡住外来的可见光,但可让X射线较顺利通过。当闪烁晶体吸收了X射线光子后,即发出闪光(可见的荧光光子),后者投射到光电信增器的光敏阴极上,使之迸出光电子。然后在电场的驱使下,这些电子被加速并轰击光电信增器的第一个倍增极(它相对于阴极具有高出约100V的正电位),并由于次级发射而产生附加电子。在光电信增器中通常有10或11个倍增级,每一个倍增极的正电位均较其前~个高出约100V。于是电子依次经过各个倍增极,、最后在阳板上便可收结到数量极其巨大的电子,从而产生一个电脉冲,其数量级可达几伏。产生的脉冲的数量与入射的X射线光子的数目有关,亦即与X 射线的强度有关。因此它可以用来测量X射线的强度。同时,脉冲的大小与X

射线的能量有关,因此,它也可象正比计数器那样,用一个脉高分析器,对所接收的脉冲按其高度进行甑别。

闪烁计数器的反应很快,其分辨时间达10-8秒。因而在计数率达到10-5次/秒以下时,不会有计数的损失。

闪烁计数器的缺点是背底脉冲高。这是因为即使在没有X射线光电子进入计数管时,仍会产生“无照电流”的脉冲。其来源为光敏阴极因热离子发射而产生的电子。此外,闪烁计数器的价格较贵。晶体易于受潮解而失效。

除了气体探测器和闪烁探测器外,近年来一些高性能衍射仪采用固体探测器和阵列探测器。固体探测器,也称为半导体探测器,采用半导体原理与技术,研制的锂漂移硅Si(Li)或锂漂移锗Ge(Li)固体探测器,固体探测器能量分辨率好,X光子产生的电子数多。固体探测器是单点探测器,也就是说,在某一时候,它只能测定一个方向上的衍射强度。如果要测不止一个方向上的衍射强度,就要作扫描,即要一个点一个点地测,扫描法是比较费时间。现已发展出一些一维的(线

相关文档
最新文档