数字信号处理教程 程佩青 课后题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 离散时间信号与系统
2.任意序列x(n)与δ(n)线性卷积都等于序列本身x(n),与δ(n-n 0)卷积x(n- n 0),所以(1)结果为h(n) (3)结果h(n-2) (2
(4)
3 .已知 10,)1()(<<--=-a n u a n h n
,通过直接计算卷积和的办法,试确定
单位抽样响应为 )(n h 的线性移不变系统的阶跃响应。
4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:
)
6
()( )( )n 313
si n()( )()8
73cos(
)( )(πππ
π-==-=n j e n x c A n x b n A n x a
分析:
序列为)cos()(0ψω+=n A n x 或)sin()(0ψω+=n A n x 时,不一定是周期序列,
n
m
m m n n y n - - -∞ = - ⋅ = = ≥ ∑ 2 3
1 2 5 . 0 ) ( 0
1
当 3 4
n m n
m m n n y n 2 2 5 . 0 ) ( 1
⋅ = = - ≤ ∑ -∞ = - 当 a
a a n y n a a a
n y n n h n x n y a n u a n h n u n x m m n
n
m m
n -=
=
->-=
=
-≤=<<--==∑∑--∞
=---∞=--1)(11)(1)
(*)()(1
0,)1()()()(:1
时当时当解
①当=0/2ωπ整数,则周期为0/2ωπ;
②;
为为互素的整数)则周期、(有理数当 , 2 0Q Q P Q
P =ωπ ③当=0/2ωπ无理数 ,则)(n x 不是周期序列。 解:(1)014
2/3
πω=,周期为14 (2)06
2/13
πω=
,周期为6 (2)02/12πωπ=,不是周期的 7.(1)
[][]12121212()()()
()()()[()()]()()()()[()][()]
T x n g n x n T ax n bx n g n ax n bx n g n ax n g n bx n aT x n bT x n =+=+=⨯+⨯=+
所以是线性的
T[x(n-m)]=g(n)x(n-m) y(n-m)=g(n-m)x(n-m) 两者不相等,所以是移变的
y(n)=g(n)x(n) y 和x 括号内相等,所以是因果的。(x 括号内表达式满足小于等于y 括号内表达式,系统是因果的)
│y(n)│=│g(n)x(n)│<=│g(n)││x(n)│x(n)有界,只有在g(n)有界时,y(n)有界,系统才稳定,否则系统不稳定 (3)T[x(n)]=x(n-n0)
线性,移不变,n-n0<=n 即n0>=0时系统是因果的,稳定 (5)线性,移变,因果,非稳定 (7)线性,移不变,非因果,稳定 (8)线性,移变,非因果,稳定 8.
不稳定。
是因果的。
时当解:∴∞⇒++=
∴=<•••∑
∞
-∞
=,11
01|)(| ,0)( , 0 )1(
2
2n n h n h n
稳定。
!!!是因果的。
时,当∴=+++++<++++=+
++=∴=<••••
•••
••∑∞
-∞
=3
8
1
4121111*2*31
1*211121
1101|)(| ,0)(0 )2(n n h n h n 不稳定。
是因果的。
时,当∴∞
⇒+++=∴=<•••∑∞
-∞
=2
10
333
|)(| ,0)(0 )3(n n h n h n
稳定。
是非因果的。
时,当∴=
+++=∴≠<•••--∞
-∞
=∑
2
3333|)(|,0)(0)4(210n n h n h n 系统是稳定的。
系统是因果的。
时,当∴=
+++=∴=<•••∑
∞
-∞
=7103.03.03.0|)(|,0)(0 )5(2
10n n h n h n
系统不稳定。
系统是非因果的。
时,当∴∞
⇒++=∴≠<•••--∞
-∞
=∑
213.03.0|)(|0)(0 )6(n n h n h n
系统稳定。
系统是非因果的。
时,当∴=∴≠<∑∞
-∞=1
|)(|0)(0 )7(n n h n h n
第二章 Z 变换
1. 求以下序列的z 变换,并画出零极点图和收敛域。
(7)
分析:
Z 变换定义
∑∞
-∞
=-=
=n n
z
n x z X n x Z )()()]([,n 的取值是)(n x 的有值范围。
Z 变换的收敛域是满足∞
<=∑∞
-∞
=-M z
n x n n
)(的z 值范围。
解:(1) 由Z 变换的定义可知:
∞
====<<< z a z a z a z a az ,0 1 , 1 1,1 零点为:极点为:即:且 收敛域: 解:(2) 由z 变换的定义可知: n n n z n u z X -∞ -∞=∑=)()2 1 ()( n n n z a z X -∞ -∞ =⋅= ∑)(n n n n n n z a z a -∞ =---∞ =-∑∑+= 1 n n n n n n z a z a -∞ =∞ =∑∑+=0 1) )(1 ()1()1)(1(1111212a z a z a z a az az a z a az az ---= ---= -+-=-) (21)()2(n u n x n ⎪⎭ ⎫ ⎝⎛=) (21)() 2(n u n x n ⎪⎭ ⎫ ⎝⎛=) 1(21)() 3(--⎪⎭ ⎫ ⎝⎛-=n u n x n )1(,1 )() 4(≥=n n n x 为常数) 00(0,) sin()()5(ωω≥=n n n n x 1 0,) ()cos()() 6(0<<+=r n u n Ar n x n Φω)1||()() 1(<=a a n x n