快速成型制造技术

合集下载

四种常见快速成型技术

四种常见快速成型技术

四种常见快速成型技术第一种常见快速成型技术:数控加工技术。

数控加工技术是一种机器控制加工技术,利用计算机及其相应的程序控制生产设备,进行机械加工,使得一次处理能完成的で一台以上的机器工具构成的加工中心,部件在台面上面固定,四个或以上的自动工具装在滑轨上, 根据电脑程序指定的加工参数,自动更换、安装选择夹具,分别做加工工作,从而完成制件定位、撬开、冲孔、攻丝、开槽、铰榫等复杂加工工作。

数控加工技术主要采用机械加工加工,适用于大批量生产或多种多样零件快速、高效率、低成本加工,且图纸精度高、表面光洁度高等。

第二种常见快速成型技术:熔融塑料成型技术。

熔融塑料成型技术首先将原料加工成模板,然后将模板放入机器中,当原料温度到达要求时,机器自动把原料按照设定的温度、时间及力度压入模具内,形成冷却后的成型物体。

这种技术利用塑料的特性,具有效率高,成型精度高,成型时根据原料的特性可以做出不同的加工处理,并且具有强度大,防水,耐高低温的特点,适用于各种塑料制品的快速成型。

第三种常见快速成型技术:射出成型技术。

射出成型技术指在机械压力下将原料熔融输送到射出模具成型模块中,随后由冷却系统冷却,完成制件的快速成型。

这种技术主要用于金属铸件、塑料件等的制造,具有造件精度高,尺寸稳定性好,表面光洁,强度高,厚度一致,成型快,节省材料等优点。

第四种常见快速成型技术:热压成型技术。

热压成型技术是把金属或塑料原料置于型模具内,用压力和热量同时共同作用,使金属和塑料原料发生塑性变形而成型的一种快速成型技术。

该技术采用型模具可以实现造型精度高、制件造型美观,制造完后制件可以免去热处理步骤;并且利用该技术进行多余的金属屑的再生,形成复合制件,极大的降低了制件的生产成本。

快速成型技术

快速成型技术
目前快速成型机的数据输入主要有两种途径:一是设计人员利用计算机辅助设计软件 (如 Pro /Engineering , SolidWo rks, IDEAS, M DT, Auto CAD等 ) ,根据产品的要求设计三维模型 , 或将已有产品的二维三视图转换为三维模型; 另一种是对已有的实物进行数字化 , 这些实物可 以是手工模型、工艺品等。这些实物的形体信息可以通过三维数字化仪、 CT和 MRI等手段采集 处理 ,然后通过相应的软件将获得的形体信息等数据转化为快速成型机所能接受的输入数据 。
其在处理速度上都可以很好的满足需求,而且时间跨度不大,有利于实现产品开发的高速闭环反馈。 其二:集成化,快速成型技术使得设计环节和制造环节达到了很好的统一,我们知道在快速 成型的操作过程中,计算机中
的CAD模型数据会通过软件转化的方式,自动生成数控指令,依据数据的转化实现对于部件的合理加工。由此看来设计和 制造之间的鸿沟不再存在,达到了高度的集约化。 其三:适用性,快速成型技术,适翻分层技术制造工艺,将复杂的三维切成二维来处理,极大的简化了加工流程,在不存 在三维刀具的干涉的前提下,高效的处理好复杂的中空结构。无论是从理论上来讲,还是从实践上来讲,其技术的适用性 可以应对任何的复杂构件制造。 其四:可调整性,快速成型技术,即真正意义上的数字化系统,是制造业中的利器,我们操作员仅仅需要合理设置一下相 关的参数和属性, 就可以有针对性的处理好各种产品的样品制造和小批量生产;而且在此过程中,保证了成型过程的柔韧 性。 其五:自动化,快速成型技术,实现了完全的自动化成型,只要操作人员输入相关的参数,在不需要多少干涉的情况下,实 现整个过程的自动运行。
从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及,为新的制造技 术的产生奠定了技术物质基础。

快速成型技术

快速成型技术

知识创造未来
快速成型技术
快速成型技术(Rapid Prototyping,RP)是一种快速制造技术,又称为3D打印技术。

它利用计算机辅助设计(CAD)文件为基础,通过逐层堆积材料以构建三维实体模型。

快速成型技术的原理是将CAD文件切割为一系列薄片,并逐层堆积材料形成实体模型。

常用的堆积方式包括层叠堆积、液体固化和粉末烧结等。

材料可以是塑料、金属、陶瓷等。

快速成型技术具有快速、灵活、低成本等优点。

它可以迅速制造出产品的样品,帮助设计师进行实物验证和功能测试。

同时,快速成型技术也可以用于批量生产少量产品或个性化定制产品。

目前,快速成型技术已广泛应用于各个领域,包括汽车、航空航天、医疗器械、消费品等。

它在产品开发和制造过程中起到了重要的作用,提高了设计效率和产品质量,同时缩短了产品上市时间。

1。

快速成型技术简介

快速成型技术简介

立体光固化成形(SLA)
• 是目前最为成熟和广泛应用的一种快速成型制造 工艺。这种工艺以液态光敏树脂为原材料,在计 算机控制下的紫外激光按预定零件各分层截面的 轮廓轨迹对液态树脂逐点扫描,使被扫描区的树 脂薄层产生光聚合(固化)反应,从而形成零件的 一个薄层截面。完成一个扫描区域的液态光敏树 脂固化层后,工作台下降一个层厚,使固化好的 树脂表面再敷上一层新的液态树脂然后重复扫描、 固化,新固化的一层牢固地粘接在一层上,如此 反复直至完成整个零件的固化成型。
• LOM工艺是将单面涂有热溶胶的纸片通过 加热辊加热粘接在一起,位于上方的激光 切割器按照CAD分层模型所获数据,用激 光束将纸切割成所制零件的内外轮廓,然 后新的一层纸再叠加在上面,通过热压装 置和下面已切割层粘合在一起,激光束再 次切割,如此反复逐层切割、粘合、切 割……直至整个模型制作完成 。
• 是通过将丝状材料如热塑性塑料、蜡或金 属的熔丝从加热的喷嘴挤出,按照零件每 一层的预定轨迹,以固定的速率进行熔体 沉积。每完成一层,工作台下降一个层厚 进行迭加沉积新的一层,如此反复最终实 现零件的沉积成型。
(5)三维印刷法(3DP,Three Dimensional Printing )
• 利用喷墨打印头逐点喷射粘合剂来粘结粉 末材料的方法制造原型。3DP的成型过程与 SLS相似,只是将SLS中的激光变成喷墨打 印机喷射结合剂。
成型过程示意图
• 快速成型工艺的优势:
------使模型或模具的制造时间缩短数倍甚至数十倍,大大缩 短新产品研制周期; ------使复杂模型的直接制造成为可能,提高了制造复杂零件 的能力; ------可以及时发现产品设计的错误,做到早找错、早更改, 避免更改后续工序所造成的大量损失,显著提高新产品 投产的一次成功率; ------使设计、交流和评估更加形象化,使新产品设计、样品 制造、市场定货、生产准备、等工作能并行进行,支持 同步(并行)工程的实施; ------节省了大量的开模费用,成倍降低新产品研发成本。

快速成型技术的工作原理

快速成型技术的工作原理

快速成型技术的工作原理快速成型技术(Rapid Prototyping Technology,RPT),也称为快速制造技术(Rapid Manufacturing Technology,RMT),是指采用计算机辅助设计(CAD)、数控加工(CNC)和分层制造技术(SLM)等手段,快速制作出具有复杂内部结构的三维实物模型或器件的一种先进制造技术。

快速成型技术主要包括三个方面的内容:现代制造方式、CAD技术和快速成型技术。

快速成型技术的工作原理是将设计图或CAD模型转为STL文件,再将STL文件通过计算机化控制系统控制加工设备的动作,并以逐层堆积、覆盖、切割、加压等方式将逐层依次进行制造,直至完成所需产品的加工制造。

其具体工作流程如下:1.设计阶段首先,使用计算机辅助设计(CAD)软件将所需产品的三维模型绘制出来。

CAD绘图是快速成型技术的关键环节,决定了产品的实际制造效果和制造成本,需要使用专业的CAD软件进行设计。

2.模型处理阶段CAD设计完成后,需要进行一系列的模型处理。

主要包括增补模型壳体、提高模型强度、修复模型错误等。

这一阶段的处理对制造成型的质量和效率有直接的影响。

3.数据修复阶段接下来进入数据修复阶段,对CAD绘制过程中的错误进行修复和清理,以确保STL文件的精度和准确性,避免在制造过程中出现数据错乱和失真等问题。

4.切片阶段STL文件经过数据处理后,需要切成非常小的层面,比如0.1mm,这个过程称为切片。

通过这个过程将模型切成多个水平层面形成多个切片。

每层镶嵌在一起就变成了整个模型。

5.加工阶段加工阶段就是将切片依次导入数控加工机中,喷射实现逐层累加和压实,也就是通常所说的“逐层堆叠”过程。

这个过程就是快速成型技术的核心技术。

6.后处理阶段最后的后处理阶段可以将产品进行研磨、喷漆、涂料处理等等。

完成整个产品制造的过程。

总之,快速成型技术极大地缩短了从概念到产品推向市场的时间。

快速成型技术的高效加工和制造过程为设计师提供更好的自由度,可以随意尝试和实验不同的设计方案,以最快的速度推向市场产品。

快速成型制造技术(RPM)

快速成型制造技术(RPM)
它是运用分离的办法,把一部分材料(裕量 材料)有序地从基体中分离出去而成形的办法。 例如车、铣、刨、磨及现代的电火花加工、 激光切割、打孔等加工方法均属于去除成形。 去除成形最先实现了数字化控制,是目前的 主要制造成形方式。
绪论 机械制造工艺中的成型技术 2.受迫成形
它是利用材料的可成形性(如塑性等),在特 定外围约束(边界约束或外力约束)下成形的方 法。 铸造、锻压和粉末冶金等均属于受迫成形。受 迫成形多用于毛坯成形和特种材料成形等。
内涵 分 层 增 加 材 料
RPM技术不是使用一 般意义上的模具或刀具, 而是利用光、热、电 等物理手段实现材料的 转移与堆积
RPM的技术原理
RPM技术的原理
RPM技术的不同称谓
实体自由成形制造
MIM
SFF
RPM 制造 技术
LM
DCM
(Solid Freeform Fabrication, SFF) 直接CAD制造(Direct CAD Manufacturing,DCM) 即时制造(Instant Manufacturing,IM) 分层制造(Layered Manufacturing,LM) 材料添加制造(Material
1 立体光刻(SLA) 分层实体制造(LOM) 选择性激光烧结(SLS)
2
3
4
熔融沉积成形(FDM)
RPM技术的应用
快速模具 制造 反求工 程
在RPM技术中 的反求,就是要 在现有实物的基 础上求出三维的 CAD模型。通过 反求工程可以快 速、准确地测 量RPM原型, 找出产品设计中 的不足,重新设 计
快速模具(RT )制造主要用于 制造铸造模具和 塑料模具。 分为:间接制模 和直接制模 .
RPM技术的发展趋势

快速成型制造实训报告册

快速成型制造实训报告册

一、实训背景随着科技的不断发展,制造业正面临着转型升级的关键时期。

快速成型制造技术(Rapid Prototyping Manufacturing,RPM)作为一种新兴的制造技术,具有高效、灵活、精确等优点,在我国制造业中得到了广泛应用。

为了提高学生的实践能力,本实训课程旨在让学生了解快速成型制造技术的基本原理、操作方法及应用领域,培养学生的创新思维和动手能力。

二、实训目的1. 了解快速成型制造技术的基本原理和发展现状;2. 掌握快速成型设备的使用方法和操作技巧;3. 学会快速成型技术的应用,提高学生的创新能力和实践能力;4. 培养学生的团队协作精神和沟通能力。

三、实训内容1. 快速成型制造技术简介(1)快速成型制造技术定义:根据零件的三维模型数据,迅速而精确地制造出该零件的一种先进制造技术。

(2)快速成型制造技术特点:高效、灵活、精确、可重复性好。

(3)快速成型制造技术分类:立体光固化(SLA)、立体印刷(SLS)、熔融沉积建模(FDM)等。

2. 快速成型设备操作(1)SLA设备操作:介绍SLA设备的结构、工作原理、操作步骤及注意事项。

(2)SLS设备操作:介绍SLS设备的结构、工作原理、操作步骤及注意事项。

(3)FDM设备操作:介绍FDM设备的结构、工作原理、操作步骤及注意事项。

3. 快速成型技术应用(1)新产品开发:利用快速成型技术制作产品原型,进行外观、结构及功能验证。

(2)模具制造:利用快速成型技术制作模具,提高模具设计及制造效率。

(3)航空航天:利用快速成型技术制造航空航天零件,提高制造精度和效率。

(4)医疗领域:利用快速成型技术制造医疗模型、手术器械等,提高医疗水平。

4. 快速成型实训项目(1)项目一:SLA设备操作及模型制作(2)项目二:SLS设备操作及模型制作(3)项目三:FDM设备操作及模型制作(4)项目四:快速成型技术在产品开发中的应用四、实训总结通过本次实训,学生们对快速成型制造技术有了全面的认识,掌握了快速成型设备的操作方法,熟悉了快速成型技术的应用领域。

快速成型制造技术

快速成型制造技术
第八章 快速成型制造技术
Rapid Prototyping Manufacturing Technique
一、快速原型技术简介
快速成型(Rapid Prototyping) 是由三维 CAD模型直接驱动的快速制造任意复杂形状 三维实体的总称。 它集成了CAD技术、数控技术、激光技 术和材料技术等现代科技成果,是先进制造 技术的重要组成部分。
立体光固化成型法原理图
二、RP 工艺方法简介
1.光固化法
Stereo Lithography Apparatus——SLA
SLA工艺的优点是精度较高,一 般尺寸精度可控制在0.01mm;表面质 量好;原材料利用率接近100%;能制造 形状特别复杂、精细的零件;设备市场 占有率很高。缺点是需要设计支撑;可 以选择的材料种类有限;制件容易发生 翘曲变形;材料价格较昂贵。 该工艺适合比较复杂的中小型零 件的制作。
(1)成型材料种类多, (1)成型速度快; 成型件强度高; (2)成型设备便宜。 (2)精度高,表面质 量好,易于装 配; (3)无公害,可在办 公室环境下进 行。
缺点
(1)需要支撑结构; (2)成型过程发生物 理和化学变化 ,容易翘曲变 形; (3)原材料有污染; (4)需要固化处理, 且不便进行。
紫外光快速成型机的工作原理
三、SCPS350紫外光快速成型机及制作过程 (1)基本原理
光敏树脂快速成型中激光束按照 数控指令扫描,工作平台容器内液态 光敏树脂逐层固化并粘结在一起。从 最底层开始,逐层固化,生成三维原 形实体。工作台每次下降高度即为分 层厚度,分层越薄,加工出的零件的 精度越高。
激光头 热压辊 涂覆纸
工件
4.分层实体制造
Laminated Object Manufacturing——LOM

快速成型技术的种类

快速成型技术的种类

快速成型技术的种类
快速成型技术是一种以数字化模型为基础,通过逐层堆积材料,实现快速制造物品的技术。

快速成型技术的种类很多,常见的有以下几种:
1. 光固化快速成型技术:通过紫外线或激光束照射光敏树脂,使其固化成所需形状。

2. 喷墨式快速成型技术:通过喷墨头控制液体喷射,将粉末材料逐层喷涂并加固。

3. 熔融沉积式快速成型技术:将金属丝或粉末熔化,通过火焰或电弧喷射,逐层沉积成型。

4. 熔化层压式快速成型技术:将塑料或金属粉末加热或熔化,通过喷嘴或挤出机,逐层堆叠并加固。

5. 粉末烧结式快速成型技术:将粉末压缩成形,然后通过高温处理或激光束烧结,实现快速成型。

以上是常见的几种快速成型技术,它们各有优劣,可以根据具体需求选择合适的技术。

- 1 -。

快速成型与快速模具制造技术及其应用

快速成型与快速模具制造技术及其应用

1976年,P. L. DiMatteo进一步明确 地提出,这种堆积技术能够用来制 造用普通机加工设备难以加工的曲 面,如螺旋桨、三维凸轮和型腔模 具等。在具体实践中,通过铣床加 工成形沿高度标识的金属层片,然 后通过粘接成叠层状,采用螺栓和 带锥度的销钉进行连接加固,制作 了型腔模,如图所示。
由DiMatteo制作的型腔模叠层模型
第三节 快速成型技术的特点及优越性
❖ 快速成型技术的优越性
◎ 用户受益 用户在产品设计的最初阶段,也能见到产品样品甚至少量产品,这使得用户能及早、 深刻地认识产品,进行必要的测试,并及时提出意见,从而可以在尽可能短的时间 内,以最合理的价格得到性能最符合要求的产品。
第一章 概 论
1 快速成型技术的早期发展 2 快速成型技术的主要方法及分类 3 快速成型技术的特点及优越性 4 快速成型技术的发展趋势
1902年,Carlo Baese在他的美国专利(# 774549)中,提出了用光敏聚合 物制造塑料件的原理,这是现代第一种快速成形技术—“立体平板印 刷术”(StereoLithography)的初始设想。
1940年,Perera提出了在硬纸板上切割轮廓线,然后将这些纸板粘结 成三维地形图的方法。
第一章 概 论
1 快速成型技术的早期发展 2 快速成型技术的主要方法及分类 3 快速成型技术的特点及优越性 4 快速成型技术的发展趋势
第二节 快速成型技术的主要方法及分类
❖ 快速成型过程
快速成型离散和叠加过程
快速成型技术的制造方式是基 于离散堆积原理的累加式成型, 从成型原理上提出了一种全新 的思维模式,即将计算机上设 计的零件三维模型,通过特定 的数据格式存储转换并由专用 软件对其进行分层处理,得到 各层截面的二维轮廓信息,按 照这些轮廓信息自动生成加工 路径,在控制系统的控制下, 选择性地固化光敏树脂或烧结 粉状材料或切割一层层的成型 材料,形成各个截面轮廓薄片, 并逐步顺序叠加成三维实体, 然后进行实体的后处理,形成 原型或零件,如图所示。

快速成型技术概述

快速成型技术概述

快速成型技术概述
快速成型技术是一种用于生产快速成型零件的制造技术,它能够使用多种不同的材料,在短时间内产生复杂形状的平面或立体物品。

快速成型技术可以大大减少制造时间,提高生产效率,大大降低成本,并提供更多的可能性来实现复杂的设计。

快速成型技术主要有三类:3D打印,热成型和激光熔融成形。

3D打印技术是一种基于数字模型的直接成型技术,用于制造复杂的塑料零件。

它是一种层层堆积的3D打印技术,通过连续堆积多层薄膜的方式在物料上建立3D零件的模型,从而直接制作出3D零件。

热成型技术是用热力加工膜材,使材料形状发生变形,从而制造出所需的三维形状的一种成型技术。

它是一种快速、简单、经济的加工技术,热成型技术用于制造塑料、橡胶、金属、纤维等多种材料的形状。

激光熔融成型技术是一种采用激光技术,将金属粉末逐层熔融成形的成型加工技术。

它通过激光产生高温熔融,从而将金属粉末熔融到形状模具中,形成三维零件。

快速成型技术的种类

快速成型技术的种类

快速成型技术的种类
快速成型技术是一种通过计算机辅助设计和制造的方法,可以快速制造出复杂的三维模型。

这种技术已经被广泛应用于各种领域,包括汽车、医疗、航空航天等。

本文将介绍几种常见的快速成型技术。

1. 光固化技术
光固化技术是一种通过紫外线或激光束将液态光敏树脂固化成固体的方法。

这种技术可以制造出非常精细的模型,适用于制造小型零件和精密零件。

光固化技术的优点是制造速度快,精度高,但成本较高。

2. 熔融沉积技术
熔融沉积技术是一种通过将熔融材料喷射到建模平台上,逐层堆积成三维模型的方法。

这种技术适用于制造大型零件和复杂零件。

熔融沉积技术的优点是制造速度快,成本低,但精度较低。

3. 熔融层压技术
熔融层压技术是一种通过将熔融材料喷射到建模平台上,然后用热压力将其压缩成固体的方法。

这种技术适用于制造大型零件和复杂零件。

熔融层压技术的优点是制造速度快,成本低,精度高。

4. 粉末烧结技术
粉末烧结技术是一种通过将金属或陶瓷粉末喷射到建模平台上,然后用激光束或电子束将其烧结成固体的方法。

这种技术适用于制造金属和陶瓷零件。

粉末烧结技术的优点是制造速度快,成本低,精度高。

快速成型技术已经成为现代制造业中不可或缺的一部分。

随着技术的不断发展,这些技术将会越来越成熟,应用范围也会越来越广泛。

先进制造技术——快速成型技术-PPT

先进制造技术——快速成型技术-PPT
国内的清华大学与北京殷华公司较早地进行了FDM 工艺商品化系统的研制工作,并推出熔融挤压制造设备 MEM250等。
FDM 原理 图
二、特点
优点:
1、采用热熔挤压头专利技术,系统结构原理和操作简 单,且使用无毒的原材料,设备可安装在办公环境中。
2、成型速度快。不需要SLA中的刮板工序。 3、用蜡成型的零件原型,可以直接用于熔模铸造。 4、可以成型任意复杂程度的零件。如复杂的内腔、孔 等。 5、原材料在成型过程中无化学变化,制件的翘曲变形 小。 6、原材料利用率高。 7、支撑去除简单。
快速成形技术
概述:
快速成形技术(Rapid Prototyping,简称RP)20世 纪80年代发展起来的,它综合了机械工程、CAD、 数控技术、激光技术及材料科学技术,可以自动、 直接、快速、精确地将设计思想转变为具有一定功 能的原型或直接制造零件,从而大大缩短产品的研 制周期。因而,被认为是近20来制造领域的一个重 大突破。影响力与数控技术相当。
SLS工艺是利用粉末材料(金属粉末或非金属粉末) 在激光照射下烧结的原理,在计算机控制下层层堆积 成形。
SLS原理图
工作台上均匀铺上一 层很薄(0.1~0.2mm) 的粉末,激光束在计算 机的控制下按照零件分 层轮廓有选择性地进行 烧结,一层完成后再进 行下一层烧结。全部烧 结完成后去掉多余的粉 末,再进行打磨、烘干 等处理便获得零件。
又称熔丝沉积,它是将丝状的热熔性材料加热融化, 通过带有一个微细喷嘴的喷头挤喷出来。喷头沿零件截 面轮廓和填充轨迹运动,挤出的材料迅速固化并与周围 材料粘结,层层堆积而成。
主要适用于模具行业新产品开发和医疗、考古等基 于数字成像技术的三维实体模型制造。
FDM工艺由美国学者Dr.Scott Crump于1988年研制 成功,并由美国Stratasys公司推出商品化的机器。1993 年开发第一台FDM1650机型后,先后推出FDM2000、 FDM3000、FDM8000等。

快速成型技术

快速成型技术

快速成型技术快速成型技术简介快速成型技术(Rapid Prototyping Technology-RPT)属于先进制造技术范畴机械工程学科非传统加工工艺(或称为特种加工)是将CAD、CAM、、激光、精密伺服驱动和新材料等先进技术集成的一种全新制造技术。

它通过叠加成型方法可以自动而迅速地将设计的三维CAD模型转化为具有一定结构和功能的原型或直接制造零件。

与传统的制造方法相比,它具有生产周期短,成本低的优势,并且可以灵活地改变设计方案,实现柔性生产,在新产品的开发中具有广阔的应用前景。

目前世界上投入应用的快速成形的方法有十多种,主要包括立体印刷(SLA-StereoLithgraphy Apparatus)、分层实体制造(LOM-Laminated obxxxxject Manufacturing)、选择性激光烧结(SLS—Selective Laser Sintering)、熔化沉积制造(FDM-Fused Deposition Modeling)、固基光敏液相(SGC-Solid Ground Curing)等方法。

其中选择性激光烧结(SLS)技术具有成型材料选择范围宽、应用领域广的突出优点,得到了迅速发展,正受到越来越多的重视。

SLS方法具有以下的优点:由于粉末具有自支撑作用,不需另外支撑;材料广泛,不仅包括各种塑料材料、蜡和覆膜砂,还可以直接生产金属和陶瓷零件。

且材料可重复使用,利用率高。

快速成型技术工作原理使用CO2 激光器烧结粉末材料(如蜡粉、PS粉、ABS粉、尼龙粉、覆膜陶瓷和金属粉等)。

成型时先在工作台上铺上一层粉末材料激光束在计算机的控制下按照截面轮廓的信息对制件实心部分所在的粉末进行烧结。

一层完成后工作台下降一个层厚再进行下一层的铺粉烧结。

如此循环,最终形成三维产品。

快速成型技术应用选择性激光烧结快速成型(Selective Laser Sintering Rapid Prototyping) 技术(简称SLS技术)由于具有成型材料选择范围宽、应用领域广的突出优点,得到了迅速的发展,正受到越来越多的重视。

快速成型制造技术(RPM)

快速成型制造技术(RPM)
Increase Manufacturing, MIM)
IM
PRM技术的特点
仅需改变CAD模型,重 新调整和设置参数即可 生产出不同形状的零件 模型。
•从CAD数模或实体反求获 得的数据到制成原形,一 般仅需要数小时或十几小 时,速度比传统成型加工 方法快的多
高柔性
快速性
自由成型性
设计制造一体 化
快速模具(RT )制造主要用于 制造铸造模具和 塑料模具。 分为:间接制模 和直接制模 .
RPM技术的发展趋势
新工艺与 装备的开 发
新型材料 的研究
成型 材料
成型材料的系 列化标准化
成型工 艺及软 件
第三方软 件的开发
成型精度 的研究
LOGO LOGO

•CAD模型直接驱动, 设计制造高度一体化
• 无需使用模具,夹具
• 能够制造任意复杂原型
精度不如传统加工:数据模型分层处理时不可避免的一些数据丢失外加 分层制造必然产生台阶误差,堆积成形的相变和凝固过程产生的内应 力也会引起翘曲变形,这从根本上决定了RP造型的精度极限
PRM技术的常用工艺
典型快速成型工艺
国际上首台快速成形机于1987年诞生于美 国,是由美国3DSystems公司制造的快速 成形系统SLA-1,采用立体光刻法的快速成 形制造系统(RPMS)。
Step 2
Step 1
RPM技术的原理
快速成形制造技术
名词解释
它是一种基于离散 堆积成形思想的新型 成形技术,是综合利 用CAD技术、数控技 术、激光加工技术和 材料技术实现从零件 设计到三维实体原型 制造一体化的系统技 术
RPM的 工艺 RPM 的特点 RPM原理
PRM技术的发展

第3.5节-快速成型制造技术

第3.5节-快速成型制造技术

叠层制造的基本原理
3.5 快速原型制造技术
表面或 立体模型 生成STL文 件格式 制作原型 的过程: 固化树脂 切割薄片 烧结粉末 材料熔覆 材料喷洒
去除支架
构建支撑( 需要时)
清理表面
固化处理
将模型 分层切片( 需要时)
制成的零件原型
快速原型的加工过程
3.5 快速原型制造技术
快速成型的一般工艺过程原理如下: 1.三维模型的构造。 在 三 维 CAD 设 计 软 件 ( 如 Pro/E 、 UG 、 SolidWorks、SolidEdge等)中获得描述 该零件的CAD文件。
3.5 快速原型制造技术
由于分层,破坏了切片方向CAD模型 表面的连续性,不可避免地丢失了模型的 一些信息,导致零件尺寸及形状误差的产 生。切片层的厚度直接影响零件的表面 粗糙度和整个零件的型面精度。
3.5 快速原型制造技术
分层后所得到的模型轮廓是近似的, 而层层之间的轮廓信息已经丢失,层厚大, 丢失的信息多,导致在成型过程中产生了 型面误差。为提高零件精度,应该考虑更 小的切片层厚度。
3.5 快速原型制造技术
三 快速原型技术的应用领域 1)设计验证 2)功能验证 3)可制造性、可装配性检验 4)非功能性样品制作 5)快速制模技术
3.5 快速原型制造技术
四 成形材料 成形材料是快速原型技术发展的关 键。它影响原型的成形速度、精度和物 理、化学性能,直接影响到原型件的应 用范围和成形工艺设备的选择。新的快 速原型工艺的出现往往与新材料的应用 有关。
3.5 快速原型制造技术
2.三维模型的离散处理。 通过专用的分层程序将三维实体模 型分层(图3-2b),通过一簇平行平面 沿制作方向与CAD模型相截,所得到的截 面交线就是薄层的轮廓信息,而实体信息 是通过一些判别准则来获取的。

几种常见的快速成型技术

几种常见的快速成型技术

几种常见的‎快速成型技‎术一、FDM丝状材料选‎择性熔覆(Fused‎Depos‎i tion‎Model‎i ng)快速原型工‎艺是一种不‎依靠激光作‎为成型能源‎、而将各种丝‎材加热溶化‎的成型方法‎,简称FDM‎。

丝状材料选‎择性熔覆的‎原理室,加热喷头在‎计算机的控‎制下,根据产品零‎件的截面轮‎廓信息,作X-Y平面运动‎。

热塑性丝状‎材料(如直径为1‎.78mm的‎塑料丝)由供丝机构‎送至喷头,并在喷头中‎加热和溶化‎成半液态,然后被挤压‎出来,有选择性的‎涂覆在工作‎台上,快速冷却后‎形成一层大‎约0.127mm‎厚的薄片轮‎廓。

一层截面成‎型完成后工‎作台下降一‎定高度,再进行下一‎层的熔覆,好像一层层‎"画出"截面轮廓,如此循环,最终形成三‎维产品零件‎。

这种工艺方‎法同样有多‎种材料选用‎,如ABS塑‎料、浇铸用蜡、人造橡胶等‎。

这种工艺干‎净,易于操作,不产生垃圾‎,小型系统可‎用于办公环‎境,没有产生毒‎气和化学污‎染的危险。

但仍需对整‎个截面进行‎扫描涂覆,成型时间长‎。

适合于产品‎设计的概念‎建模以及产‎品的形状及‎功能测试。

由于甲基丙‎烯酸ABS‎(MABS)材料具有较‎好的化学稳‎定性,可采用加码‎射线消毒,特别适用于‎医用。

但成型精度‎相对较低,不适合于制‎作结构过分‎复杂的零件‎。

FDM快速‎原型技术的‎优点是:1、制造系统可‎用于办公环‎境,没有毒气或‎化学物质的‎危险。

2、工艺干净、简单、易于材作且‎不产生垃圾‎。

3、可快速构建‎瓶状或中空‎零件。

4、原材料以卷‎轴丝的形式‎提供,易于搬运和‎快速更换。

5、原材料费用‎低,一般零件均‎低于20美‎元。

6、可选用多种‎材料,如可染色的‎A BS和医‎用ABS、PC、PPSF等‎。

FDM快速‎原型技术的‎缺点是:1、精度相对国‎外SLA工‎艺较低,最高精度0‎.127mm‎。

2、速度较慢。

二、SLA光敏树脂选‎择性固化是‎采用立体雕‎刻(Stere‎o lith‎o grap‎h y)原理的一种‎工艺,简称SLA‎,也是最早出‎现的、技术最成熟‎和应用最广‎泛的快速原‎型技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

快速成型制造技术
特种加工技术是先进制造技术的重要组成部分,是衡量一个国家制造技术水平和能力的重要标志,在我国的许多关键制造业中发挥着不可替代的作用。

采用特种加工技术可以加工特殊材料,且加工中无切削力,能够进行微细加工及复杂的空间曲面成形,所以能够解决航空航天、军工、汽车、模具、冶金、机械等工业中的关键技术难题,从而逐步形成新兴的特种加工行业。

特种加工技术主要包括电加工技术、高能束流加工技术、快速成型制造技术等,其中以快速成型制造技术对现代制造业的影响最为重大。

快速成型制造技术(Rapid Prototyping Manufac?turing,RPM),就是根据零件的三维模型数据,迅速而精确地制造出该零件。

它是在20世纪80年代后期发展起来的,被认为是最近20年来制造领域的一次重大突破,是目前先进制造领域研究的热点之一。

快速成型制造技术是集CAD技术、数控技术、激光加工、新材料科学、机械电子工程等多学科、多技术为一体的新技术。

传统的零件制造过程往往需要车、钳、铣、磨等多种机加工设备和各种夹具、刀具、模具,制造成本高,周期长,对于一个比较复杂的零件,其加工周期甚至以月计,很难适应低成本、高效率的加工要求。

快速成型制造技术能够适应这种要求,是现代制造技术的一次重大变革。

快速成型产品随着CAD建模和光、机、电一体化技术的发展,快速成型技术的工艺方法发展很快。

目前已有光固法(SLA)、层叠法(LOM)、激光选区烧结法(SLS)、熔融沉积法(FDM)、掩模固化法(SGC)、三维印刷法(TDP)、喷粒法(BPM)等10余种。

1、光固化立体造型(Stereolithography,SLA)
该技术以光敏树脂为原料,将计算机控制下的紫外激光,以预定零件各分层截面的轮廓为轨迹,对液态树脂逐点扫描,由点到线到面,使被扫描区的树脂薄层产生聚合反应,从而形成零件的一个薄层截面。

当一层固化完毕,升降工作台移动一个层片厚度的距离,在原先固化好的树脂表面再覆盖一层新的液态脂以便进行新一层扫描固化。

新固化的一层牢固地粘合在前一层上,如此重复直到整个零件原型制造完毕,其工作原理如图l所示。

SLA法是第一个投入商业应用的RPM技术,其方法特点是精度高、表面质量好、原材料利用率将近100%,可以制造形状特别复杂、外观特别精细的零件。

2、层片叠加制造(Laminated Object Manufacturing,LOM)
层片叠加制造工艺是将单面涂有热溶胶的箔材(涂覆纸涂有粘接剂覆层的纸、涂覆陶瓷箔、金属箔等)通过热辊加热粘接在一起,位于上方的激光器按照CAD分层模型所获数据,用激光束将箔材切割成所制零件的内外轮廓,然后新的1层箔材再叠加在上面,通过热压装置和下面已切割层粘合在一起,激光束再次切割,这样反复逐层切割一粘合一切割,直至整个零件模型制作完成。

3、选择性激光烧结(Selected Laser Sintering,SLS)
以激光器为能量源,通过红外激光束使塑料、蜡、陶瓷和金属(或复合物)的粉末材料均匀地烧结在加工平面上旧J。

激光束在计算机的控制下,通过扫描器以一定的速度和能量密度按分层面的二维数据扫描。

激光束扫描之处,粉末烧结成一定厚度的实体片层,未扫描的地方仍然保持松散的粉末状。

根据物体截层厚度而升降工作台,铺粉滚筒再次将粉末铺平后,开始新一层的扫描。

如此反复,直至扫描完所有层面。

去掉多余粉末,经打磨、烘干等处理后获得零件。

4、熔融沉积造型(Fused Deposition Modeling,FDM)
将CAD模型分为一层层极薄的截面,生成控制FDM喷嘴移动轨迹的二维几何信息。

FDM 加热头把热熔性材料(ABS、尼龙、蜡等材料)加热到临界半流动状态,在计算机控制下,喷嘴头沿CAD确定的二维几何信息运动轨迹挤出半流动的材料,沉积固化成精确的零件薄层,通过垂直升降系统降下新形成层,进行固化。

这样层层堆积粘结,自下而上形成一个零件的三维实体。

上述4种RPM方法,都有一个共同几何物理基础:分层制造原理。

从几何上讲,将任意
复杂的三维实体沿某一确定方向用平行的截面去依次截取厚度为8的制造单元,可获得若干个层面,将这些厚度为8的单元叠加起来又可形成原来的三维实体,这样就将三维问题转化为二维问题,既降低了处理的难度,又不受零件复杂程度的限制。

RPM的总体目标是在CAD 技术的支持下,快速完成复杂形状零件的制造,其主要技术特征是:直接用CAD软件驱动,无需针对不同零件准备工装夹具;零件制造全过程快速完成;不受复杂三维形状所限制的工艺方法的影响。

快速成型制造流程
1、三维CAD造型
利用各种三维CAD软件进行几何造型,得到零件的三维CAD数学模型,是快速成型技术的重要组成部分,也是制造过程的第一步。

三维造型方式主要有实体造型和表面造型,目前许多CAD软件在系统中加入一些专用模块,将三维造型结果进行离散化,生成面片模型文件或层片模型文件。

2、反求工程
物理形态的零件是快速成型技术体系中零件几何信息的另一个重要来源。

几何实体同样包含了零件的几何信息,但这些信息必须通过反求工程进行数字化,方可进行下一步的处理。

反求工程要对零件表面进行数字化处理,提取零件的表面三维数据。

主要的技术手段有三坐标测量仪、三维激光数字化仪、工业CT和自动断层扫描仪等。

通过三维数字化设备得到的数据往往是一些散乱的无序点或线的集合,还必须对其三维重构得到三维CAD模型,或者层片模型等。

3、数据转换
三维CAD造型或反求工程得到的数据必须进行大量处理,才能用于控制RPM成型设备制造零件。

数据处理的主要过程包括表面离散化,生成STL文件或CFL文件,分层处理生成SLC,CLI,HPGL等层片文件,根据工艺要求进行填充处理,对数据进行检验和修正并转换为数控代码。

4、原型制造
原型制造即利用快速成型设备将原材料堆积成为三维物理实体。

材料、设备、工艺是快速原型制造中密切相关的3个基本方面。

成型材料是快速成型技术发展的关键。

它影响零件的成型速度、精度和性能,直接影响到零件的应用范围和成型工艺设备的选择。

5、物性转换
通过快速成型系统制造的零件,其力学、物理性能往往不能直接满足要求,仍然需要进一步的处理,即对其物理性质进行转换。

该环节是RPM实际应用的一个重要环节,包括精密铸造、金属喷涂制模、硅胶模铸造、快速EDM电极、陶瓷型精密铸造等多项配套制造技术,这些技术与RPM技术相结合,形成快速铸造、快速模具制造等新技术。

快速成型应用RPM技术即可用于产品的概念设计、功能测试等方面,又可直接用于工件设计、模具设计和制造等领域,RPM技术在汽车、电子、家电、医疗、航空航天、工艺品制作以及玩具等行业有着广泛的应用。

1、产品设计评估与功能测验为提高设计质量,缩短试制周期,RPM系统可在几小时或几天内将图纸或CAD 模型转变成看得见、摸得着的实体模型。

根据设计原型进行设计评估和功能验证,迅速地取得用户对设计的反馈信息。

同时也有利于产品制造者加深对产品的理解,合理地确定生产方式、工艺流程和费用。

与传统模型制造相比,快速成型方法不仅速度快、精度高,而且能够随时通过CAD进行修改与再验证,使设计更完善。

2、快速模具制造
以RPM生成的实体模型作为模芯或模套,结合精铸、粉末烧结或电极研磨等技术可以快速制造出产品所需要的功能模具,其制造周期一般为传统的数控切削方法的1/5~1/10。

模具的几何复杂程度越高,这种效益愈显著。

3、医学上的仿生制造
医学上的CT技术与RPM技术结合可复制人体骨骼结构或器官形状,整容、重大手术方案预演,以及进行假肢设计和制造。

4、艺术品的制造
艺术品和建筑装饰品是根据设计者的灵感,构思设计出来的,采用RPM可使艺术家的创作、制造一体化,为艺术家提供最佳的设计环境和成型条件。

快速成型制造开创了一个崭新的设计、制造概念。

它以相对低的成本,可修改性强的特点,独到的工艺过程,为提高产品的设计质量,降低成本,缩短设计、制造周期,使产品尽快地推向市场提供了方法,对于复杂形状的零件则更为有利。

快速成型制造技术作为一种先进制造技术将在21世纪的制造业中占据重要的地位.。

相关文档
最新文档