人教版 选修2-3 第一章 排列与组合 同步教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列与组合辅导教案
学生姓名性别年级学科数学
授课教师上课时间年月日第()次课
共()次课
课时:2课时
教学课题人教版选修2-3 第一章排列与组合同步教案
教学目标知识目标:正确理解和掌握加法原理和乘法原理
能力目标:能准确地应用它们分析和解决一些简单的问题
情感态度价值观:发展学生的思维能力,培养学生分析问题和解决问题的能力
教学重点与难点1.重点:加法原理,乘法原理。

2.难点:加法原理,乘法原理的区分。

教学过程
排列与组合
知识梳理
一、知识网络
二、高考考点
1、两个计数原理的掌握与应用;
2、关于排列与组合的定义的理解;关于排列与组合数公式的掌握;关于组合数两个性质的掌握;
3、运用排列与组合的意义与公式解决简单的应用问题(多为排列与组合的混合问题)
三、知识要点
一.分类计数原理与分步计算原理
1、分类计算原理(加法原理):
完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有N= m1+ m2+…+ m n种不同的方法。

2、分步计数原理(乘法原理):
完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n 步有m n种不同的方法,那么完成这件事共有N= m1× m2×…× m n种不同的方法。

3、认知:上述两个原理都是研究完成一件事有多少种不同方法的计数依据,它们的区别在于,加法原理的要害是分类:将完成一件事的方法分成若干类,并且各类办法以及各类办法中的各种方法相互独立,运用任何一类办法的任何一种方法均可独立完成这件事;乘法原理的要害是分步:将完成一件事分为若干步骤进行,各个步骤不可缺少,只有当各个步骤依次完成后这件事才告完成(在这里,完成某一步的任何一种方法只能完成这一个步骤,而不能独立完成这件事)。

二.排列
1、定义
(1)从n个不同元素中取出m()个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m()个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为 .
2、排列数的公式与性质
(1)排列数的公式: =n(n-1)(n-2)…(n-m+1)=特例:当m=n时, =n!=n(n-1)(n-2)…×3×2×1【规定:0!=1】
(2)排列数的性质:
(Ⅰ) =(排列数上标、下标同时减1(或加1)后与原排列数的联系)
(Ⅱ)(排列数上标加1或下标减1后与原排列数的联系)
(Ⅲ)(分解或合并的依据)
三.组合
1、定义
(1)从n个不同元素中取出个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合
(2)从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示。

2、组合数的公式与性质
(1)组合数公式:(乘积表示)
(阶乘表示)特例:
(2)组合数的主要性质:
(Ⅰ)(上标变换公式)
(Ⅱ)(杨辉恒等式)
认知:上述恒等式左边两组合数的下标相同,而上标为相邻自然数;合二为一后的右边组合数下标等于左边组合数下标加1,而上标取左边两组合数上标的较大者。

3、比较与鉴别
由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

(1)排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。

因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

(2)注意到获得(一个)排列历经“获得(一个)组合”和“对取出元素作全排列”两个步骤,故得排列数与组合数之间的关系:
例题精讲
【题型一、排列的公式计算】
【例1】(1);
(2)若,则n= ;
(3);
【方法技巧】(1)注意到n满足的条件
∴原式==
(2)运用杨辉恒等式,已知等式
(3)根据杨辉恒等式
【题型二、分类计数】
【例2】将字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A.6种 B.9种 C.11种 D.23种
【方法技巧】(采用“分步”方法):完成这件事分三个步骤。

第一步:任取一个数字,按规定填入方格,有3种不同填法;
第二步:取与填入数字的格子编号相同的数字,按规定填入方格,仍有3种不同填法;
第三步:将剩下的两个数字按规定填入两个格子,只有1种填法;
于是,由分步计数原理得到答案
【题型三、先排列后组合】
【例3】某人在打靶时射击8枪,命中4枪,若命中的4枪有且只有3枪是连续命中的,那么该人射击的8枪,按“命中”与“不命中”报告结果,不同的结果有()
A.720种
B.480种
C.24种
D.20种
【方法技巧】按照问题的实际情况理解,未命中的4枪“地位平等”,连续命中的3枪亦“地位平等”。

因此,第一步排法只有一种,第二步的排法种数也不再乘以。

解决此类“相同元素”的排列问题,切忌照搬计算相同元素的排列种数的方法。

【题型四、先分堆后分配】
【例4】(1)从5双不同的袜子中任取4只,则至少有2只袜子配成一双的可能取法种数是多少?
(2)设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子,将五个小球放入五个盒子中(每个盒子中放一个小球),则至少有两个小球和盒子编号相同的放法有多少种?
(3)将四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共多少种?
(4)某产品共有4只次品和6只正品,每只产品均不相同,现在每次取出一只产品测试,直到4只次品全部测出为止,则最后一只次品恰好在第五次测试时被发现的不同情况有多少种?
【方法技巧】(1)满足取法的有两类(2)符合条件的放法分为三类(3)设计分三步完成:第一步,取定三个空盒(或取走一个空盒)
第二步,将4个小球分为3堆,一堆2个,另外两堆各一个
第三步,将分好的3堆小球放入取定的3个空盒中
(4)分两步完成:
第一步,安排第五次测试,由于第五次测试测出的是次品。

第二步,安排前4次测试,则在前四次测试中测出3只次品和1只正品。

巩固训练
1. 用数字0,1,2,3,4,5组成无重复数字4位数,其中,必含数字2和3,并且2和3不相邻的四位数有多少个?
2.将字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A.6种 B.9种 C.11种 D.23种
3.用红、黄、绿3种颜色的纸做了3套卡片,每套卡片有写上A、B、C、D、E字母的卡片各一张,若从这15张卡片中,每次取出5张,则字母不同,且3种颜色齐全的取法有多少种?
课后作业
【基础巩固】
1、过三棱柱任意两个顶点的直线共15条,其中异面直线有()
A、18对
B、24对
C、30对
D、36对
2、不共面的四个定点到平面α的距离都相等,这样的平面共有()
A、3个
B、4个
C、6个
D、7个
3、北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为()
A、 B、 C、 D、
4、从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市各一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有()
A、300种
B、240种
C、114种
D、96种
5、4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分,若4位同学的总分为0,则这四位同学不同的得分情况的种数是()
A、48
B、36
C、24
D、18
6、四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()
A、96
B、48
C、24
D、0
7、在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有()个。

8、用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有()个(用数字作答)。

9、从集合{O、P、Q、R、S}与{0、1、2、3、4、5、6、7、8、9}中各任取2个元素排成一排(字母与数字均不能重复)。

每排中字母O、Q和数字0至多只出现一个的不同排法种数是()
【能力提升】
1.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两
个格子颜色不同,则不同的涂色方法共有 种(用数字作答).
2.某校开设9门课程供学生选修,其中,,A B C 三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有 种不同选修方案。

(用数值作答)
3.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种 C .720种 D .480种
4.图3是某汽车维修公司的维修点分布图,公司在年初分配给A、B、C、D四个维修点的某种配件各50件,在使用前发现需将A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行,那么完成上述调整,最少的调动件次(n个配件从一个维修点调整到相邻维修点的调动件次为n)
A. 15
B. 16
C. 17
D. 18
5.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答)
6.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种
7.安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有 210 种.(用数字作答)
8.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )
(A )288个 (B )240个 (C )144个 (D )126个
9.某校要求每位学生从7门课程中选修4门,其中甲乙两门课程不能都选,则不同的选课方案有____25_____种.(以数字作答)
10.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种.(用数字作答)
11.将数字1,2,3,4,5,6拼成一列,记第i 个数为i (i 126)a =,
,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法有 种(用数字作答).。

相关文档
最新文档