如何用MINITAB进行过程能力分析报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程能力概述
一旦过程处于统计控制状态,并且是连续生产,那么你可能想知道这个过程是否有能力满足规范的限制,生产出好的零件(产品),通过比较过程变差的宽度和规范界限的宽度可以确定过程能力。在评估过程能力之前,过程必须受控。如果过程不受控,你将得到不正确的过程能力值。
.你能通过画能力柱状图和能力图来评估过程能力。这些图形能够帮助你评估数据的分布和检验过程是否受控。你也可以估计包括规范公差与正常过程变差之间比率的能力指数。能力指数或统计指数都是评估过程能力的一种方法,因为它们都没有单位,所以,可以用能力统计表来比较不同过程的能力。
选择能力命令
MINITAB提供了一组不同的能力分析命令,你可以根据数据的性质和分布从中选择命令,你可以对以下情况进行能力分析:
——正态或Weibull概率模式(对于测量数据)
——不同子组之间可能有很强变差的正态数据
——二项式或Poisson概率模式(对于计数数据或属性数据)
当进行能力分析时,选择正确的公式是基本要求,例如,MINITAB提供基于正态或Weibull分布模型上的能力分析工具,使用正态概率模型的命令提供了更完全的统计设置,但是,适用的数据必须近似于正态分布.
例如,利用正态概率模型,能力分析(正态)可以估计预期零件的缺陷PPM 数。这些统计分析建立在两个假设的基础上,1、数据来自于一个稳定的过程,2、数据服从近似的正态分布,类似地,能力分析(Weibull)计算零件的缺陷的PPM值利用的是Weibull分布。在这两个例子中,统计分析正确性依赖于假设分布模型的正确性。
如果数据是歪斜非常严重,那么用正态分布分析将得出与实际的缺陷率相差很大的结果。在这种情况下,把这个数据转化比正态分布更适当的模型,或为数据选择不同的概率模式.用M INITAB,你可以使用Box-Cox能力转化或Weibull概率模型,非正态数据比较了这两种方法.
如果怀疑过程中子组之间有很强的变差来源,可以使用能力分析(组间/组内)或SIXpack能力分析(组间/组内)。除组内数据具有随机误差外,组间还可能有随机变差。明白了子组变差的来源,可以为你提供过程更真实的潜在能力评估。能力分析(组间/组内)或SIXpack能力分析(组间/组内)既计算组内标准偏差也计算组间标准偏差,然后,集中它们来计算总的标准偏差。
MINITAB也提供基于二项式和Poisson概率模型属性数据(计数型)的能力分析,例如,产品可与标准比较分为有缺陷和没有缺陷(用能力分析(二项式))。也可以根据缺陷个数对产品进行分类(用能力分析(Poisson))。
MINITAB的能力分析命令
能力分析(正态)画出单个测量值的能力柱状图,用一条基于过程平均值和标准偏差的正态曲线覆盖在柱状图上,这个图形有助于进行正态假设的视觉评估。这个报告包括了过程能力统计表,既包括组内也包括整体统计。
能力分析(组间/组内)画出了用正态曲线覆盖的单个测量值的能力柱状图。这有助于进行正态假设的视觉评估。用这种分析方法可进行组间\组内有很强变差来源的子组数据的分析,这个报告包括组间/组内和整个过程能力的统计分析能力分析(Weibull分布)
画出基于过程形状和比例的Weibull曲线覆盖单个测量值的能力柱状图,这有助于进行Weibull分布的视觉评估。这个报告也包括了整个过程能力的统计分析
SIXPACK能力分析(正态分布)
连同这个能力统计的子集一起,结合下面的图表深入了解单个的显示值的含义:
——单个数据图,R 或S(离差),以及运行图,可用来检验过程是否受控.
——能力柱状图和正态分布图,可用来检验数据是否服从正态分布.
SIXPACK能力分析(组间/组内)适用于组间有很强变差来源的子组数据, SIXPACK能力分析(组间/组内)连同这个能力统计的子集一起,结合下面的图表深入了解单个的显示值的含义:
——单个极差,离差图和极差和离差图,可用于检验过程受控状态.
——柱状图和正态分布图可用于检验数据的正态分布情况
——能力图显示了与规范比较后的过程变异
SIXPACK能力(Weibull) 在一个显示面上显示了下面的多个图形,和各项能力统计数据:
——一个(或单个数据)图、R(或移动极差)图,以及运行图,通常用于检验过程是否受控。
——能力柱状图和Weibull性能图通常用于检验数据是否服从Weibull分布。——能力图显示了与规范比较过程的可变性。
虽然SIXPACK能力命令提供了比能力分析命令少的统计,但是图形的排列通常用于检验过程是否受控,以及数据是否服从所选择的分布模型。
能力分析(Binomial)适用于数据由总的抽样零件的缺陷数组成时,它画了一个P图,这有助于检验过程是否受控,这个报告还包括缺陷累积率的图形,缺陷百分比的柱状图和缺陷率图。
能力分析(泊松)适用于数据由每个项目的缺陷数构成时,报告画了一个U 图,它有助于检验过程是否受控,报告还包括了累积的平均DPU(每单位缺陷数)的柱状图和缺陷率图。
能力统计分析
过程能力统计是过程能力的数值,用来衡量过程满足标准的能力程度,这些统计量是单个的和没有单位的,所以可以比较不同过程的的能力,能力统计基本上是允许的过程波动(标准界限的范围)与实际过程波动(6δ)的比值。某些统计考虑了过程平均值或目标值。
说明:能力统计使用简单,但是,具有未完全了解的分布特性。总的来说,依靠单个能力统计来评价(表现)一个过程不是好的习惯,
许多业内人士认为1.33是过程能力的最小可接受的值,几乎没有人相信小于1的值是可接受的,小于1的值表明过程变差比规范的公差宽,这里有一些如何使用能力统计的指导方针:
过程能力命令能力统计
能力分析(正态)和能力SIXPACK (正态)
Cp, Cpk, CPU, CPL, and Cpm(如果你指定目标值)——与组内变差有关,Pp, Ppk, PPU, PPL——与整体变差有关
能力分析(组间/组内)和能力SIXPACK (组间/组内)
Cp, Cpk, CPU, CPL, and Cpm(如果你指定一个目标值)——与组内和组间变差有关
Pp, Ppk, PPU, PPL——与整体变差有关