(完整word版)数学分析数项级数

合集下载

函数项级数一致收敛判别(Word)

函数项级数一致收敛判别(Word)

1.函数项级数定义定义 设(){}nu x 是定义在数集E 上的一个函数列表达式:()()()12......n u x u x u x ++++ x E ∈ (1)称为定义在E 上的函数项级数,简称为函数级数.记作为1()nn ux ∞=∑或()n u x ∑.1()()nn k k S x u x ==∑称为函数项级数(1)的部分和函数列.若0x E ∈函数项级数: ()()()10200......n u x u x u x ++++ (2) 收敛,即部分和001()()nn k k S x u x ==∑,当n →∞时,极限存在,则称级数(1)在点0x 收敛,0x 称为收敛点.级数(1)在D 上的每一点x 与其所对应的数项级数(2)的和()S x 构成一个定义在D 上的函数称为级数(1)的和函数,即lim ()()n n S x S x →∞=.2.函数项级数一致收敛的几种判别法判别法1 (函数项级数一致收敛的定义)设函数级数()1n n u x ∞=∑在区间D 收敛于和函数()S x ,若0,,,N N n N x D ε+∀>∃∈∀>∀∈有:()()()n n S x S x R x ε-=< 则称函数级数()1n n u x ∞=∑在区间D 上一致收敛或一致收于和函数()Sx .例1 证明函数项级数nn x∞=∑在区间 []1,1δδ-+-(其中01δ<<)一致收敛.证明 ∀()0,1x ∈有01()1knnn k x S x x x =-==-∑.1()lim ()1n n S x S x x→∞==-. 11()()()1111nn nn n x x x S x S x R x x x x x-∴-==-==----. 对∀[]1,1x δδ∈-+-,对∀ε>要使不等式(1)()()()1nnn n xS x S x R x xδεδ--==≤<-成立.从而要不等式(1)nδεδ-<解得ln ln(1)n εδδ>-.取ln ln(1)N εδδ⎡⎤=⎢⎥-⎣⎦.于是∀0ε>,存在ln ln(1)N N εδδ+⎡⎤=∈⎢⎥-⎣⎦,∀n N >∀[]1,1x δδ∈-+-有:()()()n n S x S x R x ε-=<成立.所以函数项级数nn x∞=∑在区间[]1,1δδ-+-(其中01δ<<)一致收敛.非一致收敛的定义设函数项级数()1n n u x ∞=∑在区间I 非一致收敛于和函数()S x ,若∀0oε>,∀N N +∈,0,o n N x I ∃>∃∈有:000()()n S x S x ε-≥成立.则称函数项级数()1n n u x ∞=∑在区间I 上非一致收敛或非一致收敛于()S x .例2 证明函数项级数nn x∞=∑在区间 ()1,1-非一致收敛.证明 01ε∃=,∀N N +∈,()00111,1x n ∃=-∈-有: 000000001(1)1()()()(1)11n n n n n S x S x R x n n n --===-≥ 00000111lim(1)(1)1n n n n N n n e n +→∞⎛⎫-=∃∈-≥ ⎪⎝⎭所以,使.即函数项级数0nn x∞=∑在()1,1-非一致收敛.函数项级数一致收敛的几何意义函数项级数()1n n u x ∞=∑在区间I 一致收敛于()S x 的几何意义是,不论给定的以曲线()()S x S x εε+-与为边界的带形区域怎样窄,总存在正整数N (通用的N ),n N ∀>,任意一个部分和()n S x 的图像都位于这个带形区间内(如图1).若函数项级数在某个区间不存在通用的N ,就是非一致收敛.判别法2 (确界判别法)函数项级数()1n n u x ∞=∑在数集D 上一致收敛于()S x 的充要条件:limsup ()limsup ()()0n n n n x Dx DR x S x S x →∞→∞∈∈=-=.证明 (⇒) 已知函数项级数()1n n u x ∞=∑在区间D 一致收敛于()S x .即0,,,N N n N x D ε+∀>∃∈∀>∀∈有: ()()n S x S x ε-<.从而()()sup n x DS x S x ε∈-≤,即limsup ()()0n n x DS x S x →∞∈-=. (⇐)已知limsup ()()0n n x DS x S x →∞∈-=,即0,,,N N n N x Dε+∀>∃∈∀>∀∈有()()sup n x DS x S x ε∈-<.从而x D ∀∈有()()n S x S x ε-<.即函数项级数()1n n u x ∞=∑在区间D 上一致收敛于()S x .例3 证明 函数项级数()()111n x n x n ∞=+++∑在()0,+∞内一致收敛.证明 ()()()111nn k S x x k x k ==+++∑1111n k x kx k =⎛⎫=- ⎪+++⎝⎭∑11111111...122311x x x x x n x n x n x n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪+++++-++++⎝⎭⎝⎭⎝⎭⎝⎭1111x x n =-+++; ()0,x ∈+∞. ()()111lim lim111n n n S x S x x x n x →∞→∞==-=++++. 1lim sup ()()lim sup01n n n x Dx DS x S x x n →∞→∞∈∈∴-==++.所以函数级数()()111n x n x n ∞=+++∑在()0,+∞内一致收敛. 判别法3 (柯西一致收敛准则)函数级数()1n n u x ∞=∑在区间I 一致收敛0,,,,N N n N p N x I ε++⇔∀>∃∈∀>∀∈∀∈有:()()()12...n n n p u x u x u x ε++++++<.证明 必要性()⇒已知函数级数()1n n u x ∞=∑在区间I 一致收敛.设其和函数是()S x ,即0,,,,N N n N p N x I ε++∀>∃∈∀>∀∈∀∈有()()n S x S x ε-<也有()()n p S x S x ε+-<.于是()()()()12()n n n p n p n u x u x u x S x S x +++++++=-()()()()n p n S x S x S x S x +=-+-()()()()2n p n S x S x S x S x εεε+≤-+-<+=.充分性()⇐:已知0,,,,N N n N p N x I ε++∀>∃∈∀>∀∈∀∈,有:()()()()12()n n n p n p n u x u x u x S x S x ε+++++++=-<所以当P →+∞时上述不等式有:()()()n n S x S x R x ε-=≤即函数项级数()1n n u x ∞=∑在区间I 一致收敛.例4 讨论函数项级数111n n n x x n n +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-的一致收敛性. 解 应用柯西一致收敛准则[]1,1x ∀∈-即1,0x ε≤∀>,要使不等式()()12231223n n n n n p n x x x x S x S x n n n n +++++⎛⎫⎛⎫-=-+- ⎪ ⎪++++⎝⎭⎝⎭11n p n p x x n p n p ++-⎛⎫++- ⎪++-⎝⎭11111212n n p n n p x x x x n n n n ++++++=-≤+++++ 112111n n p n ε≤+<<++++ 成立,从不等式21n ε<+解得21n ε>-取21N ε⎡⎤=-⎢⎥⎣⎦于是0,ε∀>21,N ε⎡⎤∃=-⎢⎥⎣⎦[],,1,1n N p N x +∀>∀∈∀∈-,有()()n p n S x S x ε+-<,即函数级数111n n n x x nn +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-一致收敛.在这个例子中我们用确界判别法来也可以判断它的收敛性方法2 122311()()()()...()12231k k n n nn k x x x x x x x S x x kk n n ++=⎛⎫=-=-+-++- ⎪++⎝⎭∑ 11n x x n +=-+.lim ()()n n S x S x x →∞==故[][]11,11,11lim sup ()()lim suplim 011n n n n n x x x S x S x n n +→∞→∞→∞∈-∈--===++. 所以函数级数111n n n x x nn +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-一致收敛. 判别法4 (M 判别法)有函数项级数()1n n u x ∞=∑,I 是区间,若存在收敛的正项级数1,,nn an N ∞+=∀∈∑x I ∀∈,有()n n u x a ≤,则函数级数()1n n u x ∞=∑在区间I 一致收敛.证明 正项级数1nn a∞=∑收敛根据柯西一致收敛准则,即0,,,N N n N ε+∀>∃∈∀>p N +∀∈,有 12n n n p a a a ε+++++<由已知条件,x I ∀∈,有()()()12n n n p u x u x u x ++++++ ()()()12n n n p u x u x u x +++≤+++12n n n p a a a ε+++≤+++<即函数级数()1n n u x ∞=∑在区间I 一致收敛.例5 判断函数项级数1(1)!nn x n ∞=-∑在[],x r r ∈-上是否一致收敛.解∀[],x r r ∈-,有(1)!(1)!n nx r n n ≤--. 令(1)!n n r a n =-,则11(1)!lim lim lim 0!n n n n n n na r n ra n r n ++→∞→∞→∞-===. 所以(1)!n r n -∑是收敛.由M 判别法函数项级数1(1)!nn x n ∞=-∑在[],x r r ∈-上一致收敛.例6 证明4211n xn x ∞++∑在R 一致收敛. 证:x R ∀∈,有()224221210n x n x n x-+=-≥所以24221n x n x ≤+,即242211n x n x ≤+.故242422212111122n x n x n x n n =⋅≤++已知优级级数2112n n ∞=⎛⎫⎪⎝⎭∑收敛,根据M 判别法.函数级数4211n xn x ∞++∑在R 中一致收敛. 注 M 判别法是判别函数项级数一致收敛的很简使得判别法.但是这个方法有很大的局限性,凡能用M 判别法函数项级数必是一致收敛,此函数项级数必然是绝对收敛;如果函数项级数是一致收敛,而非绝对收敛,即条件收敛,那么就不能使用M 判别法.判别法5 (狄利克雷判别法)若级数()()1nnn a x b x ∞=∑满足如下条件:(1)函数列(){}n a x 对每个x I ∈是单调的且在区间I 一致收敛于0. (2)函数级数()1n n b x ∞=∑的部分和函数列(){}n B x 在区间I 一致有界,则函数级数()()1nnn a x b x ∞=∑在I 一致收敛.证明 已知函数列(){}n a x 一致收敛于0即0,N N ε+∀>∃∈,n N ∀>,x I ∀∈有1n a ε+<.又已知函数级数()1n n b x ∞=∑的部分和函数列(){}n B x 在区间I 一致有界。

数学分析12.3一般项级数

数学分析12.3一般项级数

第十二章 数项级数2 一般项级数一、交错级数概念:若级数各项符号正负相间,即u 1-u 2+u 3-u 4+…+(-1)n+1u n +…(u n >0, n=1,2,…),则称它为交错级数.定理12.11:(莱布尼茨判别法)若交错级数∑∞=+1n n 1n u (-1)满足:(1)数列{u n }单调递减;(2)∞n lim +→u n =0,则该级数收敛.证:交错级数的部分和数列{S n }的奇数项和偶数项分别为: S 2m-1=u 1-(u 2-u 3)-…-(u 2m-2-u 2m-1),S 2m =(u 1-u 2)+(u 3-u 4)…+(u 2m-1-u 2m ). 由条件(1)知上述两式括号内的数皆非负,从而 数列{S 2m-1}递减,数列{S 2m }递增. 又由条件(2)知0<S 2m-1-S 2m =u 2m →0 (m →∞),从而{[S 2m ,S 2m-1]}形成一个区间套, 由区间套定理,存在唯一的一个数S ,使得∞m lim +→S 2m-1=∞m lim +→S 2m =S.∴数列{S n }收敛,即该交错级数收敛.推论:若交错级数满足莱布尼茨判别法的条件,则该收敛级数的余项估计式为|R n |≤u n+1.二、绝对收敛级数及其性质概念:若级数各项绝对值所组成的级数|u 1|+|u 2|+…+|u n |+…收敛, 则称它为绝对收敛级数. 若级数收敛,但不绝对收敛,则称该级数为条件收敛级数.定理12.12:绝对收敛级数一定收敛.证:若级数|u 1|+|u 2|+…+|u n |+…收敛,由柯西收敛准则知, 对任意ε>0,总存在正数N ,使得对n>N 和任意正整数r ,有 |u n+1|+|u n+2|+…+|u n+r |<ε,∴|u n+1+u n+2+…+u n+r |<ε, ∴u 1+u 2+…+u n +…收敛. 得证!例1:证明:级数∑!n a n收敛.证:∵n1n ∞n u u lim++→=1n alim ∞n ++→=0<1,∴原级数绝对收敛.性质1:级数的重排:正整数列{1,2,…,n,…}到它自身的一一映射 f:n →k(n)称为正整数列的重排,相应地对数列{u n }按映射F:u n →u k(n)所得到的数列{u k(n)}称原数列的重排;同样的,级数∑∞=1n k(n)u 也是级数∑∞=1n nu 的重排. 记v n =u k(n),即∑∞=1n k(n)u =v 1+v 2+…+v n +….定理12.13:若级数∑n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑n v 也绝对收敛,且有相同的和数.证:不妨设∑n u 为正项级数,用S n 表示它的第n 个部分和, 记T m =v 1+v 2+…+v m 表示级数∑n v 的第m 个部分和.∵级数∑n v 是∑n u 的重排,∴对每一个v k 都等于某一ki u (1≤k ≤m).记n=max{i 1,i 2,…i m }, 则对任何m ,都存在n ,使T m ≤S n .由∞n lim +→S n =S 知,对任何正整数m 有T m ≤S, 即∑n v 收敛,其和T ≤S.又级数∑n u 也是∑n v 的重排,∴S ≤T ,推得T=S.若∑n u 为一般级数且绝对收敛,即正项级数∑n u 收敛,同理可推得 级数∑n v 收敛,∴级数∑n v 收敛. 令p n =2u u nn +,q n =2u u nn -;则当u n ≥0时,p n =u n ,q n =u n ;当u n <0时,p n =0,q n =-u n ≥0. 从而有 0≤p n ≤|u n |,0≤q n ≤|u n |,p n +q n =|u n |,p n -q n =u n . 又∑n u 收敛, ∴∑n p ,∑n q 都是正项的收敛级数,且S=∑n u =∑n p -∑n q .同理得:∑n v =∑'n p -∑'n q ,其中∑'n p ,∑'n q 分别是∑n p ,∑n q 的重排. ∴∑n v =∑'n p -∑'n q =∑n p -∑n q =S. 得证!性质2:级数的乘积:由a ∑n u =∑n au 可推得有限项和与级数的乘积:(a 1+a 2+…+a m )∑∞=1n n u =∑∑∞==1n n m1k k u a .继而可推广到无穷级数之间的乘积:设收敛级数∑n u =A, ∑nv=B.将两个级数中每一项所有可能的乘积列表如下:这些乘积u i v j按各种方法排成不同的级数,如按正方形顺序相加,得u1v1+u1v2+u2v2+u2v1+u1v3+u2v3+u3v3+u3v2+u3v1+…,如下表:或按对角线顺序相加,得u1v1+u1v2+u2v1+u1v3+u2v2+u3v1+…,如下表:定理12.14:(柯西定理) 设绝对收敛级数∑n u=A, ∑n v=B,则由它们中每一项所有可能的乘积u i v j按任意顺序排列所得到的级数∑n w绝对收敛,且其和等于AB.证:设级数∑n w,∑n u,∑n v的部分和分别为:S n =|w 1|+|w 2|+…+|w n |,A m =|u 1|+|u 2|+…+|u m |,B m =|v 1|+|v 2|+…+|v m |. 其中w k =kkj i v u (k=1,2,…,n),m=max{i 1,j 1,i 2,j 2,…,i n ,j n },则必有S n ≤A m B m .∵绝对收敛级数∑n u 与∑n v 的部分和数列{A m }和{B m }都有界, ∴{S n }有界,从而级数∑n w 绝对收敛. 利用绝对收敛级数的可重排性, 将绝对收敛级数∑n w 按正方形顺序重排如下: u 1v 1+(u 1v 2+u 2v 2+u 2v 1)+(u 1v 3+u 2v 3+u 3v 3+u 3v 2+u 3v 1)+…, 把每一括号作一项,得新级数:p 1+p 2+p 3+…+p m +…收敛, 且与∑n w 和数相同,其部分和P m =A m B m . 即有∞m lim +→P m =∞m lim +→A m B m =∞m lim +→A m ∞m lim +→B m =AB. 得证!例2:证明:级数1+2r+…+(n+1)r n +…(|r|<1)绝对收敛,并求其和.证:等比级数∑∞=0n n r =1+r+r 2+…+r n +…=r-11(|r|<1),绝对收敛. 将(∑∞=0n n r )2的所有可能的项按对角线顺序相加得:1+(r+r)+(r 2+r 2+ r 2)+…+(r n +…+r n )+… (括号内共有n+1个r n ) =1+2r+…+(n+1)r n +…=2r)-(11. ∴所求级数绝对收敛,其和为2r)-(11.二、阿贝尔判别法和狄利克雷判别法引理:(分部求和公式,也称阿贝尔变换)设εi ,v i (i=1,2,…,n)为两组实数, 若令T k =v 1+v 2+…+v k (k=1,2,…,n),则有如下分部求和公式成立:∑=n1i ii vε=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .证:以v 1=T 1, v k =(T k -T k-1) (k=2,3,…,n)分别乘以εk (k=1,2,…,n),则∑=n1i ii vε=ε1v 1+ε2v 2+…+εn v n =ε1T 1+ε2(T 2-T 1)+…+εn (T n -T n-1)=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .推论:(阿贝尔引理)若(1)ε1, ε2,…, εn 是单调数组;(2)对任一正整数k(1≤k ≤n)有|T k |=|v 1+v 2+…+v k |≤A ,记ε=kmax {|εk |},有∑=n1k k k v ε≤3εA.证:由(1)知ε1-ε2, ε2-ε3, …, εn-1-εn 同号,于是由分部求和公式及(2)有∑=n1k k kv ε=|(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n |≤A|(ε1-ε2)+(ε2-ε3)+…+(εn-1-εn )|+A|εn |=A|(ε1-εn )|+ A|εn | ≤A(|ε1|+2|εn |)≤3εA.定理12.15:(阿贝尔判别法)若{a n }为单调有界数列,且级数∑n b 收敛, 则级数∑n n b a =a 1b 1+a 2b 2+…+a n b n +…收敛.证:由级数∑n b 收敛,依柯西准则,对任给正数ε, 存在正数N, 使 当n>N 时,对一切正整数p ,都有∑++=pn 1n k kb<ε.又数列{a n }单调有界,∴存在正数M ,使|a n |≤M ,根据阿贝尔引理有∑++=pn 1n k k kb a≤3εM. ∴级数∑n n b a 收敛.注:由阿贝尔判别法知,若级数∑n u 收敛,则下述两个级数:(1)∑p nn u (p>0);(2)∑+1n u n 都收敛.定理12.16:(狄利克雷判别法)若数列{a n }单调递减,且∞n lim +→a n =0,又且级数∑n b 的部分和数列有界,则级数∑n n b a 收敛.例3:证明:若数列{a n }单调递减,且∞n lim +→a n =0,则级数∑sinnx a n 和∑cosnx a n 对任何x ∈(0,2π)都收敛.证:2sin 2x (21+∑=n 1k coskx )=sin 2x +2sin 2x cosx+2sin 2x cos2x+…+2sin 2xcosnx= sin 2x +(sin 23x-sin 2x )+…+[sin(n+21)x-sin(n-21)x]=sin(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k coskx =2x 2sinx 21n sin ⎪⎭⎫ ⎝⎛+-21=21sinnxcot 2x +2cosnx -21.又-21cot 2x -1≤21sinnxcot 2x +2cosnx -21≤21cot 2x ,即当x ∈(0,2π)时,∑cosnx 的部分和数列有界,由狄利克雷判别法知级数∑cosnx an收敛.2sin 2x (∑=n 1k sinkx -21cot 2x )=2sin 2x sinx+2sin 2x sin2x+…+2sin 2x sinnx-cos 2x= (cos 2x-cos 23x) +…+[cos(n-21)x-cos(n+21)x]-cos 2x =-cos(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k sinkx =21cot 2x -2x 2sin x 21n cos ⎪⎭⎫ ⎝⎛+=2x 2sinx 21n cos -2x cos ⎪⎭⎫ ⎝⎛+.又- csc 2x =2x sin 1-≤2x 2sin x 21n cos -2x cos ⎪⎭⎫ ⎝⎛+≤2x sin1=csc 2x ,即当x ∈(0,2π)时,∑sinnx 的部分和数列有界,由狄利克雷判别法知级数∑sinnx an收敛.注:作为例3的特例,级数∑n sinnx 和∑ncosnx对一切x ∈(0,2π)都收敛.习题1、下列级数哪些是绝对收敛,条件收敛或发散的:(1)∑!n sinnx ;(2)∑+-1n n )1(n;(3)∑+n1p n n (-1);(4)∑-n 2sin )1(n ;(5)∑⎪⎪⎭⎫ ⎝⎛+n 1n (-1)n ;(6)∑++1n 1)ln(n (-1)n ;(7)n n 13n 1002n )1(∑⎪⎭⎫ ⎝⎛++-;(8)nn x !n ∑⎪⎭⎫ ⎝⎛. 解:(1)∵!n sinnx <2n 1(n>4);又级数∑2n1收敛,∴原级数绝对收敛. (2)∵1n n)1(limn ∞n +-+→=1≠0;∴原级数发散. (3)∵当p ≤0时,n1p n ∞n n(-1)lim++→≠0;∴原级数发散;当p>1时,n1p n n(-1)+≤p n 1;又级数∑p n1(p>1)收敛,∴原级数绝对收敛. 当0<p ≤1时,令u n =n1p n1+,则n1n u u +=1n 1p n 1p 1)(n n++++=1n 1pn1)1n (n 11n++⎪⎭⎫⎝⎛+<1n 1pn 1n n 11n+⎪⎭⎫ ⎝⎛+=p1)n(n 1n 11n⎪⎭⎫ ⎝⎛++,∵np ∞n n 11lim ⎪⎭⎫ ⎝⎛++→=e p>1, 1n 1∞n n lim ++→=1,∴当n 充分大时,npn 11⎪⎭⎫ ⎝⎛+>1n 1n +,即 p n 11⎪⎭⎫ ⎝⎛+>1)n(n 1n+,从而n1n u u +<1,即u n+1<u n ,∴{u n }在n 充分大后单调减. 又∞n lim +→u n =n1p ∞n n1lim++→=0(0<p ≤1),由莱布尼兹判别法知原级数条件收敛.(4)∵n2n2sin)1(limn ∞n -+→=1, 且级数∑n2发散,∴原级数不绝对收敛. 又{n2sin }单调减,且n2sin lim ∞n +→=0,由莱布尼兹判别法知原级数条件收敛. (5)∵级数∑n(-1)n收敛,而级数∑n1发散,∴原级数发散.(6)∵1n 1)ln(n (-1)n ++>1n 1+(n ≥2),且∑+1n 1发散,∴原级数不绝对收敛.又{1n 1)ln(n ++}单调减且1n 1)ln(n lim ∞n +++→=0,∴原级数条件收敛. (7)记u n =n13n 1002n ⎪⎭⎫⎝⎛++,则n ∞n u lim +→=13n 1002n lim ∞n +++→=32,∴原级数绝对收敛. (8)记u n =n n x !n ⎪⎭⎫ ⎝⎛,则n 1n ∞n u u lim ++→=n∞n 1n n x lim ⎪⎭⎫⎝⎛++→=|e x |, ∴当-e<x<e 时,n1n ∞n u u lim++→<1,原级数绝对收敛; 当x ≥e 或x ≤-e 时,n1n ∞n u u lim++→≥1,即当n 充分大时,|u n+1|≥|u n |>0,∴n ∞n u lim +→≠0,∴原级数发散.2、应用阿贝尔判别法或狄利克雷判别法判断下列级数的收敛性:(1)nn n x 1x n (-1)+⋅∑ (x>0); (2)∑a n sinnx, x ∈(0,2π) (a>0); (3)nnxcos )1(2n∑-, x ∈(0,π).解:(1)∵当x>0时,0<n n x 1x +<n n x x =1,且n n1n 1n x 1xx 1x ++++=1n 1n x 1x x ++++; 若0<x ≤1,则1n 1n x 1x x ++++≤1;若x>1,则1n 1n x1x x ++++>1, 即数列{n n x 1x +}单调有界. 又级数∑n(-1)n收敛,由阿贝尔判别法知原级数收敛. (2)∵当a>0时,数列{a n1}单调递减,且∞n lim +→a n 1=0, 又当x ∈(0,2π)时,∑=n1k sinkx ≤csc 2x,即∑sinnx 的部分和数列有界,由狄利克雷判别法知原级数收敛. (3)∵数列{n 1}单调递减,且∞n lim+→n1=0,又当x ∈(0,π), ∑=n1k 2kkx cos (-1)=∑=+n1k k21cos2kx (-1)≤∑=n 1k k 2(-1)+∑=n1k k 2cos2kx (-1)≤21+∑=n1k cos2kx 21.又由2sinx ∑=n 1k cos2kx =4sin(2n+1)x-4sinx ,得∑=n1k cos2kx =2sinx4sinx -1)x 4sin(2n +≤sinx 2+2, 即对任意x ∈(0,π),级数nx cos )1(2n ∑-有界, 根据狄利克雷判别法知原级数收敛.3、设a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0.证明:级数∑+⋯++na a a (-1)n211-n 收敛.证:由a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0知, {na a a n21+⋯++}单调减且趋于0,由莱布尼茨判别法知原级数收敛.4、设p n =2u u nn +,q n =2u u nn -.证明:若∑n u 条件收敛,则级数∑n p 与∑n q 都是发散的. 证:若∑n u 条件收敛,则∑n u 发散, ∴∑n p =∑+2u u nn =∑2u n +∑2u n,发散; ∑n q =∑-2u u nn =∑2u n -∑2u n,发散.5、写出下列级数的乘积:(1)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx ; (2)⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n 0n n!(-1)n!1. 解:(1)当|x|<1时,两个级数均绝对收敛,乘积按对角线一般项为:w n =k-n k-n n1k 1-k 1)xk -(n (-1)·kx +∑==xn-1∑=+n1k k-n 1)k -k(n (-1), 从而有w 2m =x2m-1∑=+2m1k k-2m 1)k -k(2m (-1)=[-2m+…+(-1)m (m 2+m)+2m+…+(-1)m-1(m 2+m)]=0; w 2m+1=x 2m∑+=++12m 1k 1k -2m 2)k -k(2m (-1)=x 2m[∑+=++12m 1k 1k -2m 1)k -k(2m (-1)+∑+=+12m 1k 1k -2m k (-1)]=-x 2m∑+=+12m 1k k-2m 1)k -k(2m (-1)+x2m∑+=+12m 1k 1k -2m k (-1)=- w 2m +x2m∑+=-12m 1k 1k k (-1)=x2m∑+=-12m 1k 1k k (-1)=x 2m(1-2+3-4+…-2m+2m+1)=(m+1) x 2m.∴⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx =∑∞=+0m 2m 1)x (m . (|x|<1).(2)两个级数均绝对收敛,其乘积按对角线一般项为:w 0=1, w n =k)!-(n (-1)·k!1k -n nk ∑==n!1∑=nk k -n k)!-(n k!n!(-1)=n!1)-(1n=0(n=1,2,…) ∴⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n0n n!(-1)n!1=1.注:二项式n 次幂展开式:(1-1)n=∑=nk k -n k)!-(n k!n!(-1).6、证明级数∑∞=0n n n!a 与∑∞=0n n n!b 绝对收敛,且它们的乘积等于∑∞=+0n nn!b)(a .证:n!a 1)!(n a limn 1n ∞n +++→=1n alim ∞n ++→=0,∴∑∞=0n n n!a 绝对收敛. 同理∑∞=0n nn!b 绝对收敛. 按对角线顺序,其乘积各项为:C 0=1=!0b)(a 0+, ……,C n =k)!-(n b k!a k -n n1k k ⋅∑==n!∑=n 0k k -n k k)!-(n k!n!b a =n!b)(a n +. ∴∑∞=0n n n!a ·∑∞=0n n n!b =∑∞=+0n nn!b)(a .7、重排级数∑+-n1)1(1n ,使它成为发散级数. 解:∑+-n 1)1(1n =1-21+31-41+…+n 1)1(1n +-+…=∑∞=1k 1-2k 1-∑∞=1k 2k 1,∑∞=1k 1-2k 1∵∑∞=1k 2k 1和∑∞=1k 1-2k 1是发散的正项级数,∴存在n 1,使u 1=∑=1n 1k 1-2k 1-21>1,又∑∞+=1n k 11-2k 1发散,∴存在n 2>n 1,使u 2=∑+=21n 1n k 1-2k 1-41>21,同理存在n 3>n 2,使u 3=∑+=32n 1n k 1-2k 1-61>31,…,u i+1=∑++=1i i n 1n k 1-2k 1-1)2(i 1+>1i 1+,可得原级数的一个重排∑∞=1i i u . ∵u i >i 1,且∑i 1发散,∴∑∞=1i i u 必发散.8、证明:级数∑-n)1(]n [收敛.证:记A L ={n|[n ]=L}, L=1,2,…,显然A L 中元素n 满足L 2≤n<(L+1)2,且A L 中元素个数为2L+1. 记U L =∑∈-L A n ]n [n )1(,则有u L =∑∈-LA n Ln )1(=(-1)L V L , 其中V L =∑∈L A n n 1,则V L -V L+1=∑=+2L0s 2s L 1-∑+=++1)2(L 0s 2s)1(L 1=∑=++++2Ls 22s])1s)[(L (L 1L 2-1L 2)1(L 12+++-2L 2)1(L 12+++≥∑=+++2L0s 22L]2)1[(L 1L 2-L 2)1(L 22++=222L]2)1[(L L]2)12[(L -1)L 2(L 2+++++=2222L]2)1[(L L)2-1-L 2L -L L 2(2++-+=222L]2)1[(L 1)-3L L (2++->0(当L ≥4时). ∴当L ≥4时, { V L }是单调下降数列. 当n ∈A L 时,21)(L 1+<n 1≤2L 1, ∴21)(L 1L 2++<V L ≤2L 1L 2+,可见∞L lim +→V L =0,从而∑∞=1L L u =∑∞=1L L LV (-1)收敛. 设级数∑∞=-1n ]n [n )1(的部分和为S N ,记级数∑∞=1n n u 的部分和为U M ,则S N =∑=-N1n ]n [n )1(,U M =∑=M1n n u ,任一个S N 均被包含在某相邻两个部分和U M , U M+1之间,即有|S N -U M |≤|U M+1-U M |,由级数∑∞=1n n u 收敛,知∞M lim +→U M+1-U M =0,∴∞N lim +→S N -U M =0,即极限∞N lim +→S N =∞N lim +→U M =∑∞=1n n u 存在,∴级数∑-n)1(]n [收敛.。

数学分析12.3一般项级数

数学分析12.3一般项级数

第十二章 数项级数2 一般项级数一、交错级数概念:若级数各项符号正负相间,即u 1-u 2+u 3-u 4+…+(-1)n+1u n +…(u n >0, n=1,2,…),则称它为交错级数.定理12.11:(莱布尼茨判别法)若交错级数∑∞=+1n n 1n u (-1)满足:(1)数列{u n }单调递减;(2)∞n lim +→u n =0,则该级数收敛.证:交错级数的部分和数列{S n }的奇数项和偶数项分别为: S 2m-1=u 1-(u 2-u 3)-…-(u 2m-2-u 2m-1),S 2m =(u 1-u 2)+(u 3-u 4)…+(u 2m-1-u 2m ). 由条件(1)知上述两式括号内的数皆非负,从而 数列{S 2m-1}递减,数列{S 2m }递增. 又由条件(2)知0<S 2m-1-S 2m =u 2m →0 (m →∞),从而{[S 2m ,S 2m-1]}形成一个区间套, 由区间套定理,存在唯一的一个数S ,使得∞m lim +→S 2m-1=∞m lim +→S 2m =S.∴数列{S n }收敛,即该交错级数收敛.推论:若交错级数满足莱布尼茨判别法的条件,则该收敛级数的余项估计式为|R n |≤u n+1.二、绝对收敛级数及其性质概念:若级数各项绝对值所组成的级数|u 1|+|u 2|+…+|u n |+…收敛, 则称它为绝对收敛级数. 若级数收敛,但不绝对收敛,则称该级数为条件收敛级数.定理12.12:绝对收敛级数一定收敛.证:若级数|u 1|+|u 2|+…+|u n |+…收敛,由柯西收敛准则知, 对任意ε>0,总存在正数N ,使得对n>N 和任意正整数r ,有 |u n+1|+|u n+2|+…+|u n+r |<ε,∴|u n+1+u n+2+…+u n+r |<ε, ∴u 1+u 2+…+u n +…收敛. 得证!例1:证明:级数∑!n a n收敛.证:∵n1n ∞n u u lim++→=1n alim ∞n ++→=0<1,∴原级数绝对收敛.性质1:级数的重排:正整数列{1,2,…,n,…}到它自身的一一映射 f:n →k(n)称为正整数列的重排,相应地对数列{u n }按映射F:u n →u k(n)所得到的数列{u k(n)}称原数列的重排;同样的,级数∑∞=1n k(n)u 也是级数∑∞=1n nu 的重排. 记v n =u k(n),即∑∞=1n k(n)u =v 1+v 2+…+v n +….定理12.13:若级数∑n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑n v 也绝对收敛,且有相同的和数.证:不妨设∑n u 为正项级数,用S n 表示它的第n 个部分和, 记T m =v 1+v 2+…+v m 表示级数∑n v 的第m 个部分和.∵级数∑n v 是∑n u 的重排,∴对每一个v k 都等于某一ki u (1≤k ≤m).记n=max{i 1,i 2,…i m }, 则对任何m ,都存在n ,使T m ≤S n .由∞n lim +→S n =S 知,对任何正整数m 有T m ≤S, 即∑n v 收敛,其和T ≤S.又级数∑n u 也是∑n v 的重排,∴S ≤T ,推得T=S.若∑n u 为一般级数且绝对收敛,即正项级数∑n u 收敛,同理可推得 级数∑n v 收敛,∴级数∑n v 收敛. 令p n =2u u nn +,q n =2u u nn -;则当u n ≥0时,p n =u n ,q n =u n ;当u n <0时,p n =0,q n =-u n ≥0. 从而有 0≤p n ≤|u n |,0≤q n ≤|u n |,p n +q n =|u n |,p n -q n =u n . 又∑n u 收敛, ∴∑n p ,∑n q 都是正项的收敛级数,且S=∑n u =∑n p -∑n q .同理得:∑n v =∑'n p -∑'n q ,其中∑'n p ,∑'n q 分别是∑n p ,∑n q 的重排. ∴∑n v =∑'n p -∑'n q =∑n p -∑n q =S. 得证!性质2:级数的乘积:由a ∑n u =∑n au 可推得有限项和与级数的乘积:(a 1+a 2+…+a m )∑∞=1n n u =∑∑∞==1n n m1k k u a .继而可推广到无穷级数之间的乘积:设收敛级数∑n u =A, ∑nv=B.将两个级数中每一项所有可能的乘积列表如下:这些乘积u i v j按各种方法排成不同的级数,如按正方形顺序相加,得u1v1+u1v2+u2v2+u2v1+u1v3+u2v3+u3v3+u3v2+u3v1+…,如下表:或按对角线顺序相加,得u1v1+u1v2+u2v1+u1v3+u2v2+u3v1+…,如下表:定理12.14:(柯西定理) 设绝对收敛级数∑n u=A, ∑n v=B,则由它们中每一项所有可能的乘积u i v j按任意顺序排列所得到的级数∑n w绝对收敛,且其和等于AB.证:设级数∑n w,∑n u,∑n v的部分和分别为:S n =|w 1|+|w 2|+…+|w n |,A m =|u 1|+|u 2|+…+|u m |,B m =|v 1|+|v 2|+…+|v m |. 其中w k =kkj i v u (k=1,2,…,n),m=max{i 1,j 1,i 2,j 2,…,i n ,j n },则必有S n ≤A m B m .∵绝对收敛级数∑n u 与∑n v 的部分和数列{A m }和{B m }都有界, ∴{S n }有界,从而级数∑n w 绝对收敛. 利用绝对收敛级数的可重排性, 将绝对收敛级数∑n w 按正方形顺序重排如下: u 1v 1+(u 1v 2+u 2v 2+u 2v 1)+(u 1v 3+u 2v 3+u 3v 3+u 3v 2+u 3v 1)+…, 把每一括号作一项,得新级数:p 1+p 2+p 3+…+p m +…收敛, 且与∑n w 和数相同,其部分和P m =A m B m . 即有∞m lim +→P m =∞m lim +→A m B m =∞m lim +→A m ∞m lim +→B m =AB. 得证!例2:证明:级数1+2r+…+(n+1)r n +…(|r|<1)绝对收敛,并求其和.证:等比级数∑∞=0n n r =1+r+r 2+…+r n +…=r-11(|r|<1),绝对收敛. 将(∑∞=0n n r )2的所有可能的项按对角线顺序相加得:1+(r+r)+(r 2+r 2+ r 2)+…+(r n +…+r n )+… (括号内共有n+1个r n ) =1+2r+…+(n+1)r n +…=2r)-(11. ∴所求级数绝对收敛,其和为2r)-(11.二、阿贝尔判别法和狄利克雷判别法引理:(分部求和公式,也称阿贝尔变换)设εi ,v i (i=1,2,…,n)为两组实数, 若令T k =v 1+v 2+…+v k (k=1,2,…,n),则有如下分部求和公式成立:∑=n1i ii vε=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .证:以v 1=T 1, v k =(T k -T k-1) (k=2,3,…,n)分别乘以εk (k=1,2,…,n),则∑=n1i ii vε=ε1v 1+ε2v 2+…+εn v n =ε1T 1+ε2(T 2-T 1)+…+εn (T n -T n-1)=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .推论:(阿贝尔引理)若(1)ε1, ε2,…, εn 是单调数组;(2)对任一正整数k(1≤k ≤n)有|T k |=|v 1+v 2+…+v k |≤A ,记ε=kmax {|εk |},有∑=n1k k k v ε≤3εA.证:由(1)知ε1-ε2, ε2-ε3, …, εn-1-εn 同号,于是由分部求和公式及(2)有∑=n1k k kv ε=|(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n |≤A|(ε1-ε2)+(ε2-ε3)+…+(εn-1-εn )|+A|εn |=A|(ε1-εn )|+ A|εn | ≤A(|ε1|+2|εn |)≤3εA.定理12.15:(阿贝尔判别法)若{a n }为单调有界数列,且级数∑n b 收敛, 则级数∑n n b a =a 1b 1+a 2b 2+…+a n b n +…收敛.证:由级数∑n b 收敛,依柯西准则,对任给正数ε, 存在正数N, 使 当n>N 时,对一切正整数p ,都有∑++=pn 1n k kb<ε.又数列{a n }单调有界,∴存在正数M ,使|a n |≤M ,根据阿贝尔引理有∑++=pn 1n k k kb a≤3εM. ∴级数∑n n b a 收敛.注:由阿贝尔判别法知,若级数∑n u 收敛,则下述两个级数:(1)∑p nn u (p>0);(2)∑+1n u n 都收敛.定理12.16:(狄利克雷判别法)若数列{a n }单调递减,且∞n lim +→a n =0,又且级数∑n b 的部分和数列有界,则级数∑n n b a 收敛.例3:证明:若数列{a n }单调递减,且∞n lim +→a n =0,则级数∑sinnx a n 和∑cosnx a n 对任何x ∈(0,2π)都收敛.证:2sin 2x (21+∑=n 1k coskx )=sin 2x +2sin 2x cosx+2sin 2x cos2x+…+2sin 2xcosnx= sin 2x +(sin 23x-sin 2x )+…+[sin(n+21)x-sin(n-21)x]=sin(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k coskx =2x 2sinx 21n sin ⎪⎭⎫ ⎝⎛+-21=21sinnxcot 2x +2cosnx -21.又-21cot 2x -1≤21sinnxcot 2x +2cosnx -21≤21cot 2x ,即当x ∈(0,2π)时,∑cosnx 的部分和数列有界,由狄利克雷判别法知级数∑cosnx an收敛.2sin 2x (∑=n 1k sinkx -21cot 2x )=2sin 2x sinx+2sin 2x sin2x+…+2sin 2x sinnx-cos 2x= (cos 2x-cos 23x) +…+[cos(n-21)x-cos(n+21)x]-cos 2x =-cos(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k sinkx =21cot 2x -2x 2sin x 21n cos ⎪⎭⎫ ⎝⎛+=2x 2sinx 21n cos -2x cos ⎪⎭⎫ ⎝⎛+.又- csc 2x =2x sin 1-≤2x 2sin x 21n cos -2x cos ⎪⎭⎫ ⎝⎛+≤2x sin1=csc 2x ,即当x ∈(0,2π)时,∑sinnx 的部分和数列有界,由狄利克雷判别法知级数∑sinnx an收敛.注:作为例3的特例,级数∑n sinnx 和∑ncosnx对一切x ∈(0,2π)都收敛.习题1、下列级数哪些是绝对收敛,条件收敛或发散的:(1)∑!n sinnx ;(2)∑+-1n n )1(n;(3)∑+n1p n n (-1);(4)∑-n 2sin )1(n ;(5)∑⎪⎪⎭⎫ ⎝⎛+n 1n (-1)n ;(6)∑++1n 1)ln(n (-1)n ;(7)n n 13n 1002n )1(∑⎪⎭⎫ ⎝⎛++-;(8)nn x !n ∑⎪⎭⎫ ⎝⎛. 解:(1)∵!n sinnx <2n 1(n>4);又级数∑2n1收敛,∴原级数绝对收敛. (2)∵1n n)1(limn ∞n +-+→=1≠0;∴原级数发散. (3)∵当p ≤0时,n1p n ∞n n(-1)lim++→≠0;∴原级数发散;当p>1时,n1p n n(-1)+≤p n 1;又级数∑p n1(p>1)收敛,∴原级数绝对收敛. 当0<p ≤1时,令u n =n1p n1+,则n1n u u +=1n 1p n 1p 1)(n n++++=1n 1pn1)1n (n 11n++⎪⎭⎫⎝⎛+<1n 1pn 1n n 11n+⎪⎭⎫ ⎝⎛+=p1)n(n 1n 11n⎪⎭⎫ ⎝⎛++,∵np ∞n n 11lim ⎪⎭⎫ ⎝⎛++→=e p>1, 1n 1∞n n lim ++→=1,∴当n 充分大时,npn 11⎪⎭⎫ ⎝⎛+>1n 1n +,即 p n 11⎪⎭⎫ ⎝⎛+>1)n(n 1n+,从而n1n u u +<1,即u n+1<u n ,∴{u n }在n 充分大后单调减. 又∞n lim +→u n =n1p ∞n n1lim++→=0(0<p ≤1),由莱布尼兹判别法知原级数条件收敛.(4)∵n2n2sin)1(limn ∞n -+→=1, 且级数∑n2发散,∴原级数不绝对收敛. 又{n2sin }单调减,且n2sin lim ∞n +→=0,由莱布尼兹判别法知原级数条件收敛. (5)∵级数∑n(-1)n收敛,而级数∑n1发散,∴原级数发散.(6)∵1n 1)ln(n (-1)n ++>1n 1+(n ≥2),且∑+1n 1发散,∴原级数不绝对收敛.又{1n 1)ln(n ++}单调减且1n 1)ln(n lim ∞n +++→=0,∴原级数条件收敛. (7)记u n =n13n 1002n ⎪⎭⎫⎝⎛++,则n ∞n u lim +→=13n 1002n lim ∞n +++→=32,∴原级数绝对收敛. (8)记u n =n n x !n ⎪⎭⎫ ⎝⎛,则n 1n ∞n u u lim ++→=n∞n 1n n x lim ⎪⎭⎫⎝⎛++→=|e x |, ∴当-e<x<e 时,n1n ∞n u u lim++→<1,原级数绝对收敛; 当x ≥e 或x ≤-e 时,n1n ∞n u u lim++→≥1,即当n 充分大时,|u n+1|≥|u n |>0,∴n ∞n u lim +→≠0,∴原级数发散.2、应用阿贝尔判别法或狄利克雷判别法判断下列级数的收敛性:(1)nn n x 1x n (-1)+⋅∑ (x>0); (2)∑a n sinnx, x ∈(0,2π) (a>0); (3)nnxcos )1(2n∑-, x ∈(0,π).解:(1)∵当x>0时,0<n n x 1x +<n n x x =1,且n n1n 1n x 1xx 1x ++++=1n 1n x 1x x ++++; 若0<x ≤1,则1n 1n x 1x x ++++≤1;若x>1,则1n 1n x1x x ++++>1, 即数列{n n x 1x +}单调有界. 又级数∑n(-1)n收敛,由阿贝尔判别法知原级数收敛. (2)∵当a>0时,数列{a n1}单调递减,且∞n lim +→a n 1=0, 又当x ∈(0,2π)时,∑=n1k sinkx ≤csc 2x,即∑sinnx 的部分和数列有界,由狄利克雷判别法知原级数收敛. (3)∵数列{n 1}单调递减,且∞n lim+→n1=0,又当x ∈(0,π), ∑=n1k 2kkx cos (-1)=∑=+n1k k21cos2kx (-1)≤∑=n 1k k 2(-1)+∑=n1k k 2cos2kx (-1)≤21+∑=n1k cos2kx 21.又由2sinx ∑=n 1k cos2kx =4sin(2n+1)x-4sinx ,得∑=n1k cos2kx =2sinx4sinx -1)x 4sin(2n +≤sinx 2+2, 即对任意x ∈(0,π),级数nx cos )1(2n ∑-有界, 根据狄利克雷判别法知原级数收敛.3、设a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0.证明:级数∑+⋯++na a a (-1)n211-n 收敛.证:由a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0知, {na a a n21+⋯++}单调减且趋于0,由莱布尼茨判别法知原级数收敛.4、设p n =2u u nn +,q n =2u u nn -.证明:若∑n u 条件收敛,则级数∑n p 与∑n q 都是发散的. 证:若∑n u 条件收敛,则∑n u 发散, ∴∑n p =∑+2u u nn =∑2u n +∑2u n,发散; ∑n q =∑-2u u nn =∑2u n -∑2u n,发散.5、写出下列级数的乘积:(1)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx ; (2)⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n 0n n!(-1)n!1. 解:(1)当|x|<1时,两个级数均绝对收敛,乘积按对角线一般项为:w n =k-n k-n n1k 1-k 1)xk -(n (-1)·kx +∑==xn-1∑=+n1k k-n 1)k -k(n (-1), 从而有w 2m =x2m-1∑=+2m1k k-2m 1)k -k(2m (-1)=[-2m+…+(-1)m (m 2+m)+2m+…+(-1)m-1(m 2+m)]=0; w 2m+1=x 2m∑+=++12m 1k 1k -2m 2)k -k(2m (-1)=x 2m[∑+=++12m 1k 1k -2m 1)k -k(2m (-1)+∑+=+12m 1k 1k -2m k (-1)]=-x 2m∑+=+12m 1k k-2m 1)k -k(2m (-1)+x2m∑+=+12m 1k 1k -2m k (-1)=- w 2m +x2m∑+=-12m 1k 1k k (-1)=x2m∑+=-12m 1k 1k k (-1)=x 2m(1-2+3-4+…-2m+2m+1)=(m+1) x 2m.∴⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx =∑∞=+0m 2m 1)x (m . (|x|<1).(2)两个级数均绝对收敛,其乘积按对角线一般项为:w 0=1, w n =k)!-(n (-1)·k!1k -n nk ∑==n!1∑=nk k -n k)!-(n k!n!(-1)=n!1)-(1n=0(n=1,2,…) ∴⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n0n n!(-1)n!1=1.注:二项式n 次幂展开式:(1-1)n=∑=nk k -n k)!-(n k!n!(-1).6、证明级数∑∞=0n n n!a 与∑∞=0n n n!b 绝对收敛,且它们的乘积等于∑∞=+0n nn!b)(a .证:n!a 1)!(n a limn 1n ∞n +++→=1n alim ∞n ++→=0,∴∑∞=0n n n!a 绝对收敛. 同理∑∞=0n nn!b 绝对收敛. 按对角线顺序,其乘积各项为:C 0=1=!0b)(a 0+, ……,C n =k)!-(n b k!a k -n n1k k ⋅∑==n!∑=n 0k k -n k k)!-(n k!n!b a =n!b)(a n +. ∴∑∞=0n n n!a ·∑∞=0n n n!b =∑∞=+0n nn!b)(a .7、重排级数∑+-n1)1(1n ,使它成为发散级数. 解:∑+-n 1)1(1n =1-21+31-41+…+n 1)1(1n +-+…=∑∞=1k 1-2k 1-∑∞=1k 2k 1,∑∞=1k 1-2k 1∵∑∞=1k 2k 1和∑∞=1k 1-2k 1是发散的正项级数,∴存在n 1,使u 1=∑=1n 1k 1-2k 1-21>1,又∑∞+=1n k 11-2k 1发散,∴存在n 2>n 1,使u 2=∑+=21n 1n k 1-2k 1-41>21,同理存在n 3>n 2,使u 3=∑+=32n 1n k 1-2k 1-61>31,…,u i+1=∑++=1i i n 1n k 1-2k 1-1)2(i 1+>1i 1+,可得原级数的一个重排∑∞=1i i u . ∵u i >i 1,且∑i 1发散,∴∑∞=1i i u 必发散.8、证明:级数∑-n)1(]n [收敛.证:记A L ={n|[n ]=L}, L=1,2,…,显然A L 中元素n 满足L 2≤n<(L+1)2,且A L 中元素个数为2L+1. 记U L =∑∈-L A n ]n [n )1(,则有u L =∑∈-LA n Ln )1(=(-1)L V L , 其中V L =∑∈L A n n 1,则V L -V L+1=∑=+2L0s 2s L 1-∑+=++1)2(L 0s 2s)1(L 1=∑=++++2Ls 22s])1s)[(L (L 1L 2-1L 2)1(L 12+++-2L 2)1(L 12+++≥∑=+++2L0s 22L]2)1[(L 1L 2-L 2)1(L 22++=222L]2)1[(L L]2)12[(L -1)L 2(L 2+++++=2222L]2)1[(L L)2-1-L 2L -L L 2(2++-+=222L]2)1[(L 1)-3L L (2++->0(当L ≥4时). ∴当L ≥4时, { V L }是单调下降数列. 当n ∈A L 时,21)(L 1+<n 1≤2L 1, ∴21)(L 1L 2++<V L ≤2L 1L 2+,可见∞L lim +→V L =0,从而∑∞=1L L u =∑∞=1L L LV (-1)收敛. 设级数∑∞=-1n ]n [n )1(的部分和为S N ,记级数∑∞=1n n u 的部分和为U M ,则S N =∑=-N1n ]n [n )1(,U M =∑=M1n n u ,任一个S N 均被包含在某相邻两个部分和U M , U M+1之间,即有|S N -U M |≤|U M+1-U M |,由级数∑∞=1n n u 收敛,知∞M lim +→U M+1-U M =0,∴∞N lim +→S N -U M =0,即极限∞N lim +→S N =∞N lim +→U M =∑∞=1n n u 存在,∴级数∑-n)1(]n [收敛.。

关于数项级数敛散性的判定(可编辑修改word版)

关于数项级数敛散性的判定(可编辑修改word版)

n 3 5 n2 353关于数项级数敛散性的判定1、问题的提出数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的.2、熟练掌握并准确应用级数的概念、性质和判定定理2.1 数项级数收敛的定义∞ ∞数项级数∑un 收敛⇔ 数项级数∑u n 的部分和数列{S n }收敛于 S .n =1n =1这样数项级数的敛散性问题就可以转化为部分和数列{S }的极限是否存在的问题的讨论,但由于求数列前 n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少.2.2 数项级数的性质∞ ∞∞( 1) 若级数∑un 与∑vn 都收敛, 则对任意常数 c,d, 级数∑(cun+ dv n ) 亦收敛, 且n =1 n =1n =1∞∞∞ ∞∞∑(cun+ dv n ) = c ∑u n + d ∑v n ;相反的,若级数∑(cu n + dv n ) 收敛,则不能够推出级数∑u n 与n =1 n =1n =1n =1n =1∑vn 都收敛.n =1∞∞∞注:特殊的,对于级数∑un 与∑vn ,当两个级数都收敛时,∑(un± v n ) 必收敛;当其中一个n =1 n =1n =1∞∞收敛,另一个发散时,∑(un± v n ) 一定发散;当两个都发散时, ∑(u n ± v n ) 可能收敛也可能发散.n =1n =1∞1 1 ∞1 1例 1 判定级数∑( n n =1 + n ) 与级数∑( + n ) 的敛散性.n =1∞1∞1∞11解:因为级数∑ nn =1与级数∑ nn =1收敛,故级数∑( nn =1∞1 2 -1 n - 1 n + 1n - 1 n =1 ⎢ ∞∞1∞1∞1 1因为级数∑ n 发散,级数∑ 2n 收敛,故级数∑( n + 2n ) 发散.n =1 n =1 n =1(2) 改变、增加或去掉级数的有限个项不会改变原级数的敛散性.(3) 在收敛级数的项中任意加括号,既不改变级数的敛散性,也不改变它的和.即收敛的级数在不改变各项顺序的情况下,对它的各项任意加括号后,得到的新级数还是收敛的;加括号后得到的新级数发散,那么原级数也是发散的.例 2 判定级数-+ + 1 - 1+ 的敛散性.∞ ⎛11 ⎫ 1 1 2∞ 2 解:先考察级数∑ n =1 ⎝ - ⎪ ,因为u n = - n + 1⎭= n - 1 ,而级数∑ n - 1 发散,由于加括号后得到得新级数发散,则原级数发散.∞∞(4) 级数收敛的必要条件 若级数∑un 收敛,则lim u n = 0 .若lim u n ≠ 0 ,则级数∑u n 发散.n =1n →∞n →∞n =12.3 判定定理2.3.1 级数收敛的柯西准则级 数∑un 收 敛n =1⇔ ∀> 0 , ∃N ∈ N *, 使 得 当 m > N 以 及∀p ∈ N * ,都 有u m +1 + u m +2 + + u m + p < .例 1 用柯西准则判别级数∑ sin 2n 2n的敛散性.证明:由于u m +1 + u m +2 + + u m + p =+ sin 2m +22m +2+ +< 1 2m +1+ 1 2m +2+ + 1 2m + p = 1- 2m 1 < 1 2m + p 2m因此, 对于任意的 > 0 .取 N = ⎡log⎣1 ⎤ 使得当 m > N 及任意的2⎥⎦p ∈ N * ,由上式就有u m +1 + u m +2 + + u m + p < 成立,故由柯西准则可推出原级数收敛.2.3.2 正项级数判别法(1) 正项∑un 收敛⇔ 它的部分和数列{S n }有界.∞ 1 2 + 1 n - 1 n + 1 sin 2m +12m +1 sin 2m + p2m + pn 4(n +1) n 4• nn ∞∞∞∞∞ ∞(2) 比较判别法 如果∑un 和∑vn 是正项级数,若存在某整数N ,对一切 n > N 都有u n ≤ v nn =1n =1∞∞∞∞(i) 若级数∑vn 收敛,则级数∑un 也收敛;(ii )若级数∑un 发散,则级数∑vn 也发散.n =1n =1n =1n =1等比级数和 P-级数的敛散性①等比级数∑ a q n = a + aq + aq 2 + + aq n + ,当 q < 1 时,级数收敛;当 q ≥ 1 时,级数n =1发散.∞1②P -级数∑ p,当 p ≤ 1时,发散;当 p > 1时,收敛.n =1例 2 判别级数∑1解:因为u n =敛.的敛散性.<1 =1n2,而且 P-级数∑1收敛,由比较判别法知该级数收5 n2∞∞u n (3) 比较判别法的极限形式 如果∑un 和∑vn 是正项级数(v n ≠ 0) ,如果lim= l ,则n =1 n =1 n →∞v n∞∞∞(i )当0 < l < +∞ 时,∑un 和∑vn 同时收敛或发散;(ii )当l = 0 时, ∑v n 收敛时,n =1n =1 n =1∞∞∞∑un也收敛;(iii )当l = +∞ 时,∑vn 发散时,∑un 也发散.n =1n =1n =1例 3 判别级数∑(na - 1)(a > 1)的敛散性.解:因为lim 令t = 1 lim a t - 1 = lim a tln a = ln a ,而正项级数∑ 1 发散,由比较原则 n →∞ 1 nn t →0 t t →0 1 n的极限形式知原级数发散.(4) 比式判别法 如果∑u n 为正项级数,且 n =1u n +1u n= ,∞∞(i )若0 < < 1,则∑un 收敛;(ii )若≥ 1, ∑u n 发散.n =1n =1n 4(n + 1)na - 1 1 5∑∞1例 4 判别级数 (n + 1)! 的敛散性.10n解:因为limu n +1= lim (n + 2)! • 10n = lim n + 2= +∞ ,所以由比式判别法知原级数发散. n →∞u nn →∞ 10n +1 (n + 1)! ∞n →∞ 10u n +1(5) 比式判别法的极限形式 如果∑un 为正项级数,且lim=,则n =1n →∞ u n∞∞(i )若< 1,则∑un 收敛;(ii )若> 1或= +∞ 时, ∑u n 发散.n =1n =1例 5 判别级数∑ 解:因为lim u n +1 3n • n ! nn= lim的敛散性.3n +1(n + 1)! • n n = lim 3= 3 > 1 ,所以由比式判别法的极限形n →∞ u nn →∞ (n + 1)n +1 3n n ! n →∞ ⎛1 + ⎝ 1 ⎫ne ⎪ ⎭式知原级数发散.∞∞(6)根式判别法 如果∑un 为正项级数,(i )如果 n u nn =1≤ < 1,则∑u n 收敛;(ii )若 n =1≥ 1 ,则级数∑un 发散.n =1(7) 根式判别法的极限形式 如果∑un 为正项级数,还有lim n u n =,n =1n →∞∞∞(i )当< 1时,则∑un 收敛;(ii )当> 1时,则∑u n 发散.n =1n =1⎛ n ⎫n例 6 判别级数∑ 2n + 1⎪ 的敛散性.⎝解:因为lim ⎭= lim n = 1 < 1,所以由比式判别法极限形式知原级数收敛. n →∞ n →∞ 2n + 1 2 +∞(8) 积分判别法 若 f (x ) 为[1,+∞) 上的非负减函数,那么正项级数∑ f (n ) 与反常积分 ⎰1收敛或同时发散.例 7 判别级数∑n 2 + 1的敛散性.f (x )dx 同时解:设 f (x ) = 1 ,则 f (x ) 在[1,+∞) 上为非负单调递减函数,而 +∞ dx =x 2 + 1故由积分判别法知原级数收敛.⎰11 + x 24∞ n u n n ⎛ n ⎫n ⎝ 2n + 1⎭⎪ n∞∞nn∞∞ ⎛ u n⎫(9) Raabe 判别法 设u n > 0 , R n = n un +1 - 1⎪, n = 1,2, .⎭(i) 若存在 q > 1 及正整数 N ,使得当 n ≥ N 时有 R n ≥ q ,则级数∑un 收敛;n =1(ii )若存在正整数 N ,使得当 n ≥ N 时有 R n ≤ 1,则级数∑un 发散.n =1(10) Raabe 判别法的极限形式 设∑un 是正项级数,且有lim R n = r ,n =1n →∞(i ) 若 r > 1 ,则级数∑un 收敛;n =1(ii ) 若 r < 1,则级数∑un 发散.n =1例 8 判别级数∑ (2n - 1)!! (2n )!! ⋅ 1 的敛散性.2n + 1解:容易验证,因为→ 1(n → ∞)这个级数用比式判别法和根式判别法都失效,这时可以用 Raabe⎛ u n⎫ ⎧(2n + 2)(2n + 3) ⎫ (6n + 5)n 3判别法.此时, R n = n u- 1⎪ = n ⎨ (2n + 2)2 - 1⎬ = (2n + 1)2 → (n → ∞).由 Raabe 判别 2 ⎝ n +1 ⎭ ⎩ ⎭法知原级数收敛.正项级数的判别方法有很多种,下面总结一下这几种方法的选择顺序:①若lim u 易于求的,考察 n →∞lim u n 的值: lim u n ≠ 0 ,则依据级数收敛的必要条件,知级数发散;②若lim u n = 0 ,不能直接判断n →∞n →∞n →∞级数是收敛还是发散,此时用比式判别法或根式判别法,当< 1时,级数收敛;若> 1或= +∞ 时,级数发散;③当= 1时,级数可能收敛也可能发散,此时用比较判别法,找出一个已知敛散性的级数与之比较,然后根据比较判别法或其极限形式判定级数的敛散性,当然,对于一些具体问题,我们应该根据其特点分析,找到更简便的判别方法.2.3.3 一般项级数的判别方法(1) 交错级数判别法∞Leibniz 判别法 若交错级数 ∑(-1)n +1u n =1n( u n > 0 ),满足下述两个条件:(i )数列{u n}单调递减; (ii ) lim u = 0 ,则级数收敛. n →∞∞ ∞ ⎝∞∞n →∞n →∞n →∞注:用 Leibniz 判别法判定u n > u n +1 u 时,可以用以下几种方法:①比值法:考察是否有 u > 1 ;②差值法: 考察是否有 u n - u n +1 > 0 ; ③ 导数法: 即建立一个连续可导的函数f (n ) = u n (n = 1,2, ) ,考察是否有 f '(n ) < 0 .n +1f (x ) , 使例 9 判定级数∑(-1)n =1n -1n + 1 (n + 1) ln (n + 1)的敛散性.n + 1n + 1解:因为此级数为交错级数 ,设u n =(n + 1)ln (n + 1) ,易证lim u n = lim(n + 1)ln (n + 1) = 0 ,下面判定u n > u n +1 ,下面我们用导数的知识判定数列{u n }单调递减.设 f (n ) = u n =(n + 1,则 f '(n ) = (un + 1)ln (n + 1))' = ln (n + 1) - n ,又设 g (n ) = ln (n + 1) - n ,则 g '(n ) = 1 - 1 < 0 ,∴ g (n ) 单 n(n + 1)2 ln 2 (n + 1)n + 1调递减, g (n ) < g (0) ,∴ f '(n ) < 0 , f (n ) 单调递减, u n > u n +1 ,由 Leibniz 判别法,知原级数发散.(2) 绝对收敛∞ ∞若级数∑un 各项绝对值组成的级数∑ un收敛,则原级数绝对收敛.n =1n =1∞∞性质:绝对收敛的级数一定收敛.此定理的逆命题不成立,即:若∑un 收敛,不能判定∑ un 也 n =1n =1收敛.(3) Abel 判别法若{a n }为单调有界数列,且级数∑bn 收敛,则级数∑ a n bn 收敛.∑( )n 1 ⎛ 1 ⎫n( ) 例 10 判定级数- 1 ln (n ) 1 + n ⎪ 4 - arctan n 的收敛性. n =2⎝ ⎭ ∞ ( )n 1⎧⎪⎛1 ⎫n⎫⎪ 解:根据 Leibniz 判别法知级数∑ -1 ln n 收敛.因为⎨ 1 + n ⎪ ⎬ 递增有界,故由 Abel 判别法n ∑( )n 1 ⎛ 1 ⎫ n =2 ⎪⎩⎝ ⎭ ⎪⎭{ } 知级数 - 1 ln (n ) 1 + n ⎪收敛,又因 4 - arctan n 递减有界,再由 Abel 判别法知原级数收敛. n =2⎝ ⎭(4)Dirichlet 判别法若数列{a n }单调递减,且lim a n = 0 ,又级数∑bn 的部分和数列有界,则级数∑ a n bn 收敛.∞ nx 2 -1 ln 1 +⎪ (4n - 2)(4n + 1)⎝ n ⎭(4n - 2)(4n + 1) (- 1 ) ln 1 + n⎛ 1 ⎫ n ⎪ (4n - 2)(4n + 1) ⎝ ⎭ 3n n∞例 11 判定级数∑n =1sin nx , x ∈ (0,2) (> 0)的敛散性.n解: 由于当 x ∈ (0,2)时, 有 ∑ s in kx ≤ 1, 即 ∑∞ sin nx 的部分和数列有界, 而数列 k =1 sin n =1⎧ 1 ⎫(> 0) 单调递减,且lim 1= 0 ,故由 Dirichlet 判别法知,原级数收敛.⎨ ⎬⎩ n ⎭n →∞ n对于交错级数敛散性判定问题,应先判定其是否绝对收敛,即若∑ unn =1收敛,则∑un 收敛;若不n =1是绝对收敛,则根据 Leibniz 判别法,Abel 判别法,Dirichlet 判别法判定其是否条件收敛.3、巧妙判别数项级数敛散性以上介绍了一些判别数项级数敛散性的基本方法,但是在实际的应用中往往需要多种方法结合,且有时还有一定的技巧性,下面结合一些实例列举一些常用的判别方法和技巧.3.1 等价无穷小替换的方法判断级数敛散性∞ ∞应用定理:设∑un 和∑vn 是两个正项级数,且当n → ∞ 时, u n 和 v n 为等价的无穷小量,则n =1n =1∞∞∑un 和∑vn 的敛散性保持一致.n =1n =1证明:由于当 n → ∞ 时, u n 和v n为等价的无穷小量,即lim u n n →∞ v= 1 ≠ 0 ,由比较判别法的极限形 n∞∞式可知级数∑un 和级数∑vn 同时收敛或同时发散.n =1例 1 判定级数∑n =1( )n n =1⎛1 ⎫的敛散性.(- )n⎛ + 1 ⎫ 1 解: 设 u n = 1 ln 1 ⎝ ⎪ ⎭ , 则 u =~ n = 4n 1 4n 2, (n → ∞), 而级数∞1∑ 2收敛,所以原级数绝对收敛.n =13.2 运用常用不等式判断级数的敛散性∞ ∞ ∞ ∞ na n n 2 + ∑ n∞∞⎝∑ 常用的不等式有: ln n < n , ln (1 + x ) < x , e x > 1 + x∞ ⎛ 1n + 1⎫ 例 2 判定级数 - ln n =1 ⎝ ⎪ 的敛散性. n ⎭ 解:此题我们可以利用不等式ln ( 1 + x ) < x ,1n + 1 1 n 1 ⎛1 ⎫ 1 1 有u n = n - ln n = + ln = + ln 1 - ⎪ < - n n + 1 n n + 1 n n + 1 ⎝ ⎭∞ ⎛ 11 ⎫ 因为级数∑ n - n + 1⎪ 收敛,故原级数收敛.n =1 ⎝ ⎭ 3.3 运用平均不等式ab ≤1 (a2 + b 2 )判断级数敛散性2∞ ∞∞应用定理:若级数∑ a 2和级数∑b 2都收敛,则级数∑ a b绝对收敛.nn =1∞a 2nn =1∞b 2n nn =1∞ 1(a 2 + b 2 )证明:已知级数∑n =1n和级数∑n =1n 都收敛,根据级数收敛的性质,则级数∑ 2n n 收敛,由于有不等式 a b ≤1(a 2 + b 2 ),再根据比较判别法,知级数∑ a b∞收敛,所以级数∑ a b 绝对n n2nnn nn =1n nn =1收敛.∑2∑( )nn例 3 设常数> 0 ,级数 n =1 a n 收敛,判断级数- 1n =1 的敛散性.n 2 +∞ 2∞ 1 ∞ ⎛ 2 1 ⎫ 解:因为级数∑ a n 收敛,并且级数∑ n 2 + 1 也收敛,所以级数∑ a n + n2 ⎪ 收敛,n =1 n =11 1 ⎛2 1 ⎫ ⎝ + ⎭∞又因为 = a n n 2 + ≤ 2 a n + n 2 ⎪ ,由比较判别法可知,级数 收 + ⎭敛,故原级数绝对收敛.3.4 拉格朗日微分中值定理判断级数敛散性∞ ⎡ ⎛ 1 ⎫⎛ 1 ⎫⎤应用定理:设 f (x ) 在(0,1)内可导,且其导函数有界,则级数∑ ⎢ fn + k ⎪ - f n + k ⎪⎥ 绝对收 n =1 ⎣ ⎝ 1 ⎭ ⎝ 2 ⎭⎦敛.证明:因为 f (x ) 在(0,1)内可导,且其导函数有界,所以存在 M f '(x ) ≤ M ,于是由拉格朗日中值定理得> 0 ,对于一切 x ∈ (0,1) ,都有a nn 2 + ∞n n ∞lim ln 2 ⎪ u⎛ 1 ⎫ ⎛ 1 ⎫ '⎛ 1 1 ⎫ M (k 2 - k 1 ) f n + k ⎪ - f n + k ⎪ = f() n + k- n + k ⎪ ≤ (n + k )(n + k ) , ⎝ 1 ⎭ ∞ ⎝ 2 ⎭ 1 ⎝ 12 ⎭ ∞ ⎡ ⎛1 1 ⎫ ⎛2 1 ⎫⎤ 由于级数∑ (n + k )(n + k ) 收敛,所以级数∑⎢ f n + k ⎪ - f n + k ⎪⎥ 绝对收敛.n =1 1 2 ∞ ⎛ 1n =1 ⎣ ⎝ 1 ⎫ 1 ⎭ ⎝ 2 ⎭⎦ 例 4 判定级数∑ sin n + 10 - s in n + 1⎪ 的敛散性.n =1 ⎝⎭ 解:设函数 f (x ) = sin 1 ,则 f '(x ) = - 1x x 2⋅ cos 1 ,知 f '(x ) 有界,令 k x 1= 10, k 2 = 1,由于满足 ∞ ⎛ 1 1 ⎫上述定理条件,故级数∑ sin n + 10 - s in n + 1⎪ 收敛.n =1 ⎝ ⎭ 3.5 对数判别法判断级数敛散性∞ln 1u n∞应用定理:若级数∑un 为正项级数,若有> 0 ,使得当 n ≥ n 0 时,n =1ln n ≥ 1 +,则级数∑u nn =1ln 1u n∞收敛,若有 n ≥ n 0 时,ln n ≤ 1 ,则级数∑u n 发散. n =1ln 1u n 1∞ 1证明:如果 n ≥ n 0 时,不等式ln n ≥ 1 +成立,则有u n ≥1+ .由于级数∑ 1+ 收敛,所以 n =11∞ln ∞n由比较判别法知级数∑u n 收敛.同理可证,当不等式 n =1 ln n ≤ 1 成立时,则级数∑u n 发散. n =1∑ a ln n ( > )例 5 判定级数 a n =1 2n1 的敛散性.ln 1 u 2nln a ln n n ln 2 - ln n • ln a n 解:由于 n= ln n = ln n ln n = ln 2 ln n- ln a ,由洛必达法则可知:⎛ n - ln a ⎫ = ln 2 lim x - ln a = ln 2 lim 1 - ln a = +∞ n →+∞⎝ ln n ⎭n →+∞ ln x nn ←∞ 1 x所以,对> 0 ,存在 n 0 ,使得当 n ≥ n 0 时, ln 2 ln n- ln a ≥ 1 +,因而根据以上定理原级数发散.⎭⎦ ∞n n+ O , ∞ 例 7 判别级数的敛散性.⎝ n3.6 泰勒展开式判断级数的敛散性∞ ⎡ ⎛ 1 ⎫n⎤例 6 判别级数∑⎢ e - 1 + n ⎪ ⎥ 的敛散性.n =1 ⎢⎣ ⎝ ⎭ ⎥⎦ n⎛ 1 ⎫⎛ 1 1⎛ 1 ⎫ ⎫⎛ 1 ⎫n ln 1+ ⎪n n n - 2n2 +o n 2 ⎪ ⎪ ⎡ ⎛ 1 ⎛ 1 ⎫⎫⎤解:因为u = e - 1 + ⎪ = e - e ⎝⎭ = e - e ⎝⎝ ⎭ ⎭ ~ e ⎢1 - 1 - + o ⎪⎪⎥n ⎝ n ⎭⎣2n ⎝ n ⎭⎪ ~e (n → ∞).由于级数∑∞e 发散,所以原级数发散.2nn =1 2n3.7 拆项法判断级数的敛散性将级数的一般项运用等价变形、三角基本公式、有理化等方法拆成几项之差也是判别级数收敛的一种常用方法.∑sin (n )2 - n sinn =1 n 2sin (n)2 - n sinsin (n )2sin1 ∞ 1解:因为=n 2n 2∞sin (n )2-,而且n∞ sin≤ 2 ,由于级数∑ 2 收敛,n =1 根据比较判别法知级数∑2n =1收敛;而且∑n =1,当= k时,该级数收敛;当≠ k时,该级数发散.由此可知,当= k时,原级数收敛;当≠ k时,原级数发散.3.8 Gauss 判别法判断级数的敛散性若 a n > 0(n = 1,2, ) ,且 a n a = + n ⎛ 1 ⎫ n1+ ⎪ > 0 ,则级数 ∑ a n 当>1 时收敛;当n +1 ⎝ ⎭ n =1< 1时发散;而当= 1 时,对> 1收敛,对≤ 1发散.∞p (p + 1) (p + n - 1) 1例 8 判别级数∑ n =1( p > 0, q > 0) 的敛散性. n ! n q解:对于这个级数来说,an + 1 ⎛ n + 1⎫q ⎛ p ⎫-1⎛ 1 ⎫q +1 q - p + 1 ⎛ 1 ⎫n = ⎪ = 1 + ⎪ 1 + ⎪ = 1 + + O ⎪ , a n +1 p + n ⎝ n ⎭ ⎝ n ⎭ ⎝ n ⎭ n ⎝ n 2⎭所以它在 q > p 时收敛,在 q ≤ p 时发散.3.9 运用函数判定数项级数的敛散性以前讨论的方法判定级数敛散性都与数列极限紧密联系,这种方法利用函数来研究数项级数.给出了利用函数的导数和极限判别数项级数敛散性的的方法.sin (n )2n 2 n∞∞∞ ∞⎨ f (x ) ∞⎪ 收敛,则 应用定理 2 如果 存在, ⎪ 绝对收敛,则 . 应用定理 4 如果 存在,而且,则 ⎪ 绝对收敛. 由于已知 存在,即 存在,对 满足定理 3 条件,所以⎪ 绝对收敛. ∑ f ⎛ 1 ⎫ lim f (x ) = 0 n =1 ⎝ n⎭∞⎛ 1 ⎫ x →0⎛ 1 ⎫证 明 : 已 知 级 数 ∑ f ⎪ 收 敛 , 有 级 数 收 敛 的 必 要 条 件 得 lim f ⎪ = 0 , 因 而n =1lim f (x ) = lim f ⎛ 1 ⎫= 0 .⎝ n ⎭ x →∞ ⎝ n ⎭⎪x →0n →∞ ⎝ n ⎭∞ ⎛ 1 ⎫例 9 判别级数∑ n e n - 1⎪cos n 的敛散性.n =1 ⎛ 1 ⎫ ⎪ ⎝ ⎭ e x - 1 ⎛ 1 ⎫ 解:由于lim n e n - 1⎪ = lim = 1 ,又由于 limcos 不存在,所以lim f ⎪ 不存在,由定理 1 的n →∞ ⎝ ⎪ x →0 ⎭x →0 2 x →∞ ⎝ n ⎭ 逆否命题可知,级数不收敛.lim f '(x ) ∑ f ⎛ 1 ⎫ lim f '(x ) = 0 x →0 = n =1 ⎝ n ⎭x →0 f (0) = f '(0) = 0 ∑ f ⎛ 1 ⎫ 应用定理 3 如果函数在 x 0 存在二阶导数,且 ,则n ⎪ 绝对收敛. n =1 ⎝ ⎭ lim f ' (x ) lim f (x ) = lim f '(x ) = 0 ∑ f ⎛ 1 ⎫ x →0x →0x →0n =1⎝ n ⎭ 证明:首先作辅助函数G (x ) = ⎧0⎩ x = 0 x ≠ 0考察G (x ),有G (0) = 0G '(0) = limf (x ) = lim f '(x ) = 0 x →0 x x →0G ' (0) = lim G '(x ) - G '(0) = lim f (x ) = lim f ' (x )x →0 xx →0 x x →0 lim f ' (x ) G ' (0) = 0 G (x ) ∑ f ⎛ 1 ⎫ x →0⎡1 - 1 ⎤ 2n =1 ⎝ n ⎭例 10 判别级数∑ ⎢ a n+ an- 2 ⎥ 的敛散性.⎢ n =1 ⎢⎣ 1 ⎥ a n- 1 ⎥⎦⎛ a x + a -x - 2 ⎫22 ln a (a x + a -x - 2)2解:不妨设 f (x ) = ⎝ a x- 1 ⎪ ,则 f '(x ) = ⎭ (a x - 1)3∞ 应用定理 1 若级数x= f ' (x ) =2 l n 2 (- a 3x + 6a 2x - 14a x + 2a -2x - 9a -x + 16)(a x - 1)4求极限得lim f (x ) = 0x →0应用洛必达法则,得lim f x →0'(x ) =8 ln a (2a 2x + 2a -2x - a x + a -x ) 27a 3x - 24a x + 3a x 0lim f x →0' (x )= lim x →0 ln 2 (81a 3x + 96a 2x - 14a x + 32a -2x - 9a -x ) 64a 4x - 81a 3x + 24a 2x - a x= 4 ln 2 a⎡ 1 - 1 ⎤ 2所以lim f ' (x ) 存在,根据定理 4 知级数∑ ⎢ a n + a n- 2 ⎥ 绝对收敛.x →0 ⎢ n =1 ⎢⎣ 1 ⎥ a n - 1 ⎥⎦从以上分析和各例子可以看出,判定数项级数敛散性方法众多,我们应深刻体会各个定义、性质、定理的条件及结论,同时也要善于观察和总结,正确且灵活地使用各定理.∞。

数学分析数项级数课后习题答案

数学分析数项级数课后习题答案

A 一、不定积分部分1.设()f x 具有可微的反函数()1fx -。

设()F x 是()f x 的一个原函数。

试证明()()()111f x dx xf x F f x C ---⎡⎤=-+⎣⎦⎰。

证 在公式右端对x 求导,我们有()(){}()()()()()()()()1111111111.df x df x d xf x F f x C f x x f f x dx dx dx df x df x f x x x f x dx dx----------⎡⎤⎡⎤-+=+-⎣⎦⎣⎦=+-=2. 设()f x 定义在(),a b 上,a c b <<,且有()()()()()()()()1212;;lim ,lim x cx cF x f x a x c F x f x c x b F x A F x B -+→→''=<<=<<==,若()f x 在x c =处连续,试证明()f x 在(),a b 上存在原函数。

证 作函数()F x 如下:()()()12,,,,,.F x a x c F x A x c F x B A c x b <<⎧⎪==⎨⎪-+<<⎩则()F x 在x c =处连续,由()f x 在x c =处连续知,()()lim lim x cx cF x F x -+→→=,故根据导函数的特征,即知()()F c f c '=。

因而()F x 是()f x 在(),a b 上的原函数。

3. 试证明下列命题:(1)(函数方程)设()f x 是(),-∞+∞上的可微函数,且满足()()()2,f x y f x f y xy x y +=++∈(),-∞+∞,则()()20f x x f x '=+;(2)设()f x 在[],a b 上连续,在(),a b 内可微,且()()0f a f b ==。

数学分析之数项级数

数学分析之数项级数
收敛, 但级数 1 1 1 1 却是发散的.
推 论 如 果 加 括 弧 后 所 成 的 级 数 发 散 ,则 原 来 级 数 也 发 散 .
性质4 (级数收敛的必要条件)
当 n无限,它 增的 大u 一 时 n趋般 于 ,即 项 零
级数收敛 ln im un 0.
证 s un 则 u nsn sn 1, n1 ln i u m nln i s m nln i s m n 1 ss0.
当q1时, ln i m qnln i m sn
如果q 1时
收敛 发散
当q1时, snn a 级数发散 当q1时,级a 数 a a a 变 为
ln im sn不存在 级数发散
综上 aqn
当q 1 时,收敛;
n0
当q 1 时,发散.
例2 讨论数项级数
11 1
(* )
1223 n (n 1 )
1 1 1 . m mp m
因此, 对 任 意 0,可 取 N1, 当m>N及任意正
整数 p,由上式可得 u m 1u m 2 u m pm 1,
依 级 数 收 敛 的 柯 西 准 则 , 知 级 数 n 1 2收敛.
1
注 级数 n 1 n ( n 1 ) 的收敛性已由例2的证明过程所
( c u n d v n ) cu n dv n . 根据级数收敛的柯西准则, 级数 un 的收敛与否与
级数前面有限项的取值无关.从而可得到以下定理. 定理12.3 去掉、增加或改变级数的有限项并不改变 级数的敛散性.
性质3 若级数 un收敛,则 un也收敛
n1
nk1
(k1).且其逆亦真.
Chapt 12 数项级数
级数是数学分析三大组成部分之一, 是逼近理论的基础,是研究函数、进行近 似计算的一种有用的工具. 级数理论的主要 内容是研究级数的收敛性以及级数的应用.

数学分析数项级数

数学分析数项级数
傅里叶级数的应用
傅里叶级数在信号处理、图像处理、通信等领域有着广泛的应用。通过傅里叶变换,可 以将信号从时域转换到频域,从而更好地理解和处理信号。
泰勒级数
01
泰勒级数的定义
泰勒级数是无穷级数,用于逼近一个 函数。泰勒级数展开式由多项式和无 穷小量组成,可以用来近似表示任意 函数。
02
泰勒级数的性质
数学分析数项级数
目录
• 数项级数的基本概念 • 数项级数的性质 • 数项级数的求和法 • 数项级数的应用 • 数项级数的扩展
01
数项级数的基本概念
级数的定义
定义
级数是无穷数列的和,表示为Σ,其 中每一项都是正项或负项。
特点
级数中的每一项都是无穷小量,但整 个级数的和可能是有限的或无限的。
级数的分类
泰勒级数具有收敛性、唯一性和可微 性等重要性质。这些性质使得泰勒级 数成为分析函数的有力工具。
03
泰勒级数的应用
泰勒级数在数学分析、物理和工程等 领域有着广泛的应用。通过泰勒展开 ,可以更好地理解和分析函数的性质 ,如求函数的极限、证明不等式等。
感谢您的观看
THANKS
有穷级数
所有项的和是有限的,例如1+2+3+...+100。
无穷级数
所有项的和是无限的,例如1+1/2+1/3+...。
级数的收敛与发散
收敛
级数的和是有限的,即级数 收敛。
发散
级数的和是无限的,即级数 发散。
判定方法
通过比较测试、柯西收敛准 则等判定级数的收敛与发散 。
02
数项级数的性质
收敛级数的性质
数项级数的扩展
幂级数

数学分析级数

数学分析级数

项级数, 且存在某正数 N0 及常数 l,
(i) 若对一切 n N0, 成立不等式
n un l 1,
(9)
则级数 un 收敛;
(ii) 若对一切 n N0, 成立不等式
n un 1,
(10)
则级数 un 发散.
前页 后页 返回
证 由(9)式有un ln , 因为等比级数 l n 当 1 l 1 时收敛, 故由比较原则, 这时级数 un 也收敛, 对
(5)
前页 后页 返回
则级数 un 收敛.
(ii) 若对一切 n N0, 成立不等式
un1 1,
(6)
un
则级数 un发散.
证 (i) 不妨设不等式 (5) 对一切 n 1 成立,于是有
u2 q, u3 q, , un q, .
u1
u2
un1
前页 后页 返回
把前n-1个不等式按项相乘后,得到
u n n
n 1 4n 4
根据推论1,级数收敛.
前页 后页 返回
例7 讨论级数 nxn1( x 0) 的敛散性.
解 因为
un1 un
(n 1)xn nx n1
x
n1 n
x(n
),
根据推论1,当 0 < x <1时级数收敛;当 x>1时级数发
散; 而当 x = 1时, 所考察的级数是 n, 它显然也是
散性做出判断.
例如 对
1 n2

1 n
,
都有
前页 后页 返回
n un 1(n ), 但
1 n2
是收敛的,

1 却是 n
发散的.
若(11)式的极限不存在, 则可根据根式 n un 的上极限

高数第九章数项级数

高数第九章数项级数

n
dx 1 1 1 (1 p1 ) 1 p 1 x p1 n p1
即sn有界,
则P 级数收敛.
当p 1时, 收敛 P 级数 当p 1时, 发散
中央财经大学
数学分析
例 2 证明级数

n 1

1 是发散的. n( n 1)
证明
1 1 , n( n 1) n 1
un1 N , 当n N时, 有 , un
un1 即 un
(n N )
中央财经大学
数学分析
当 1时, 取 1 ,
使r 1,
uN 2 ruN 1 ,
uN m r

uN 3 ruN 2 r 2 uN 1 ,
中央财经大学
1 (1) sin ; n n 1


数学分析
5.比值审敛法(达朗贝尔 D’Alembert 判别法):

n 1

un 1 (常数或 ) n u un 是正项级数,如果 lim n
则 1时级数收敛; 1 时级数发散; 1 时失效.
证明 当为有限数时, 对 0,
n dx 1 设 p 1, 由图可知 p n1 p n x 1 1 1 sn 1 p p p 2 3 n 2 dx n dx o 1 1 p n1 p x x
y
y
1 ( p 1) xp
1
2
3
4
x
中央财经大学
数学分析
1 1
1 而级数 发散, n 1 n 1

级数
n 1

1 发散. n( n 1)

《数学分析》第十二章 数项级数

《数学分析》第十二章 数项级数

第十二章 数项级数 ( 1 4 时 )§1 级数的收敛性( 3 时 )一. 概念:1.级数:级数,无穷级数;通项 (一般项, 第n 项), 前n 项部分和等概念 (与中学的有关概念联系).级数常简记为∑nu.2. 级数的敛散性与和:介绍从有限和入手, 引出无限和的极限思想.以在中学学过的无穷等比级数为蓝本, 定义敛散性、级数的和、余和以及求和等概念 . 例1 讨论几何级数∑∞=0n nq的敛散性.解 当1||<q 时, ) ( , 11110∞→-→--==∑=n q q q q S n nk kn . 级数收敛;当1||>q 时, , =n S 级数发散 ;当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, ()n n S )1(121-+=, ) (∞→n , 级数发散 . 综上, 几何级数∑∞=0n n q 当且仅当 1||<q 时收敛, 且和为q-11( 注意n 从0开始 ). 例2 讨论级数∑∞=+1)1(1n n n 的敛散性. 解 用链锁消去法求. 例3 讨论级数∑∞=12n n n的敛散性. 解 设 ∑=-+-++++==nk n n k n n n k S 11322212322212, =n S 211432221 232221++-++++n n nn ,1322212121212121+-++++=-=n n n n n n S S S12211211211→--⎪⎭⎫ ⎝⎛-=+n n n , ) (∞→n .⇒ n S →2, ) (∞→n .因此, 该级数收敛. 例4 讨论级数∑∞=-1352n n n的敛散性. 解52, 5252352⋅>⇒=>-n S n n n n n →∞+, ) (∞→n . 级数发散.3. 级数与数列的关系:⑴设∑nu对应部分和数列{n S }, 则∑nu收敛 ⇔ {n S }收敛;⑵对每个数列{n x },对应级数∑∞=--+211)(n n nx xx ,对该级数,有n S =n x .于是,数列{n x }收敛⇔级数 ∑∞=--+211)(n n nx xx 收敛.可见,级数与数列是同一问题的两种不同形式. 4. 级数与无穷积分的关系:⑴⎰∑⎰+∞∞=+==111)(n n nf dx x f ∑∞=1n nu, 其中 ⎰+=1n nn f u . 无穷积分可化为级数;⑵对每个级数, 定义函数 , 2 , 1 , 1 , )(=+<≤=n n x n u x f n , 易见有∑∞=1n nu=⎰+∞1)(dx x f . 即级数可化为无穷积分.综上所述,级数和无穷积分可以互化,它们有平行的理论和结果.可以用其中的一个研究另一个.二 级数收敛的充要条件 —— Cauchy 准则 :把部分和数列{n S }收敛的Cauchy 准则翻译成级数的语言,就得到级数收敛的Cauchy 准则.Th1 ( Cauchy 准则 )∑nu收敛⇔N n N >∀∃>∀ , , 0ε和∈∀p N ⇒ε | |21<++++++p n n n u u u .由该定理可见,去掉或添加上或改变(包括交换次序) 级数的有限项, 不会影响级数的敛散性. 但在收敛时, 级数的和将改变.去掉前 k 项的级数表为∑∞+=1k n nu或∑∞=+1n kn u.推论 (级数收敛的必要条件)∑nu收敛⇒ 0lim =∞→n n u .例5 证明2-p 级数∑∞=121n n 收敛 . 证 显然满足收敛的必要条件.令 21nu n =, 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++pk pk p n n n n p n n k n k n k n u u u 11221 ,111))(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 |∑=+pk kn u1|不失真地放大成只含n 而不含p 的式子,令其小于ε,确定N . 例6 判断级数∑∞=11sinn nn 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要条件)例7 证明调和级数∑∞=11n n发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n nn ln 1 1211 )1ln(+<+++<+ . 即得+∞→n S ,) (∞→n . )注: 此例为0→n u 但级数发散的例子.三. 收敛级数的基本性质:(均给出证明)性质1∑nu收敛,a 为常数⇒∑nau收敛,且有∑nau=a∑nu(收敛级数满足分配律)性质2∑nu和∑nv收敛⇒)(n nv u±∑收敛,且有)(n n v u ±∑=∑n u ±∑nv.问题:∑nu、∑nv、)(n nv u±∑三者之间敛散性的关系.性质3 若级数∑nu收敛, 则任意加括号后所得级数也收敛, 且和不变.(收敛数列满足结合律)例8 考查级数 ∑∞=+-11)1 (n n 从开头每两项加括号后所得级数的敛散性. 该例的结果说明什么问题 ?Ex [1]P 5—7 1 — 7.§2 正项级数( 3 时 )一. 正项级数判敛的一般原则 :1.正项级数: n n S u , 0>↗; 任意加括号不影响敛散性.2. 基本定理: Th 1 设0≥n u .则级数∑nu收敛⇔)1(0=n S .且当∑nu发散时,有+∞→n S ,) (∞→n . ( 证 )正项级数敛散性的记法 . 3. 正项级数判敛的比较原则: Th 2 设∑nu和∑nv是两个正项级数, 且N n N >∃ , 时有n n v u ≤, 则 ⅰ> ∑nv <∞+ , ⇒ ∑nu<∞+ ;ⅱ>∑nu=∞+, ⇒∑nv=∞+ . ( ⅱ> 是ⅰ>的逆否命题 )例1 考查级数∑∞=+-1211n n n 的敛散性 .解 有 , 2 11 012222nn n n n <+-⇒>+- 例2 设)1( 0π><<q q p . 判断级数∑∞=+111sin n n n q p 的敛散性.推论1 (比较原则的极限形式) 设∑n u 和∑n v 是两个正项级数且l v u nnn =∞→lim,则ⅰ> 当∞+<< 0l 时,∑nu和∑nv共敛散 ; ⅱ> 当0=l 时 ,∑nv<∞+⇒∑nu<∞+ ;ⅲ> 当+∞=l 时,∑nv=∞+⇒∑nu=∞+ . ( 证 )推论2 设∑nu和∑nv 是两个正项级数,若n u =)(0n v ,特别地,若 n u ~n v ,) (∞→n , 则∑nu<∞+⇔∑nv=∞+.例3 判断下列级数的敛散性:⑴∑∞=-121n n n ; ( n n -21~ n 21) ; ⑵ ∑∞=11sin n n ; ⑶ ∑∞=+12) 11 ln(n n .二 正项级数判敛法:1.比值法:亦称为 D ’alembert 判别法.用几何级数作为比较对象,有下列所谓比值法. Th 3 设∑nu为正项级数, 且0 N ∃ 及 0 , ) 10 ( N n q q ><<时ⅰ> 若11<≤+q u u nn ⇒∑n u <∞+; ⅱ> 若11≥+nn u u ⇒∑n u =∞+ . 证 ⅰ> 不妨设 1≥n 时就有11<≤+q u u nn 成立, 有, , , , 12312q u u q u u q u u n n ≤≤≤- 依次相乘⇒11-≤n n q u u , 即 11-≤n n qu u . 由 10<<q , 得∑<nq∞+⇒∑n u <∞+.ⅱ> 可见}{n u 往后递增⇒ , 0→/n u ) (∞→n . 推论 (比值法的极限形式) 设∑n u 为正项级数, 且 q u u nn n =+∞→1lim. 则ⅰ> 当q <1⇒∑nu<∞+; ⅱ>当q >1或q =∞+⇒∑nu=∞+. ( 证 )注: ⑴倘用比值法判得∑nu=∞+, 则有 , 0→/n u ) (∞→n .⑵检比法适用于n u 和1+n u 有相同因子的级数, 特别是n u 中含有因子!n 者. 例4 判断级数 ()()+-+⋅⋅-+⋅⋅++⋅⋅⋅⋅+⋅⋅+)1(41951)1(32852951852515212n n的敛散性. 解 1 434132lim lim1<=++=∞→+∞→n n u u n nn n ⇒∑+∞<.例5 讨论级数∑>-)0( 1x nx n 的敛散性.解 因为) ( , 1)1(11∞→→+⋅+=-+n x n n x nxx n u u n n n n . 因此, 当10<<x 时,∑+∞<; 1>x 时, ∑+∞=; 1=x 时, 级数成为∑n , 发散.例6 判断级数∑+nn n n !21的敛散性 .注: 对正项级数∑n u ,若仅有11<+nn u u ,其敛散性不能确定. 例如对级数∑n 1和∑21n,均有 11<+nn u u ,但前者发散, 后者收敛.Ex [1]P 16 1⑴―⑺, 2⑴⑵⑷⑸,3,4,12⑴⑷;2. 根值法 ( Cauchy 判别法 ): 也是以几何级数作为比较的对象建立的判别法.Th 4 设∑nu为正项级数,且 0 N ∃ 及 0>l , 当 0N n >时,ⅰ> 若 1 <≤l u n n ⇒∑nu<∞+;ⅱ> 若1 ≥n n u ⇒∑nu =∞+. ( 此时有 , 0→/n u ) (∞→n .) ( 证 ) 推论 (根值法的极限形式) 设∑nu为正项级数,且 l u n n n =∞→lim . 则ⅰ> 当1 <l 时⇒∑nu<∞+; ⅱ> 当1 >l 时⇒∑nu=∞+ . ( 证 )注: 根值法适用于通项中含有与n 有关的指数者.根值法优于比值法. (参阅[1]P 12)例7 研究级数 ∑-+nn2) 1 (3的敛散性 .解 1212)1(3l i m l i m <=-+=∞→∞→nnn n nn u ⇒∑+∞<. 例8 判断级数∑⎪⎭⎫⎝⎛+21n n n 和∑⎪⎭⎫⎝⎛+21n n n 的敛散性 .解 前者通项不趋于零 , 后者用根值法判得其收敛 . 3. 积分判别法:Th 5 设在区间) , 1 [∞+上函数0)(≥x f 且↘. 则正项级数∑)(n f 与积分⎰+∞1)(dx x f 共敛散.证 对] , 1[ , 1 A R f A ∈>∀ 且 ⎰-=-≤≤nn n n f dx x f n f 1, 3 , 2 , )1()()(⇒⎰∑∑∑=-===-≤≤mmn m n mn n f n f dx x f n f 12112, )()1()()( . 例9 讨论 -p 级数∑∞=11n pn的敛散性. 解 考虑函数>=p xx f p ,1)(0时)(x f 在区间 ) , 1 [∞+上非负递减. 积分⎰+∞1)(dxx f当1>p 时收敛, 10≤<p 时发散⇒级数∑∞=11n pn当1>p 时收敛,当10≤<p 时发散,当0≤p 时,01→/pn , 级数发散. 综上,-p 级数∑∞=11n pn当且仅当1>p 时收敛. 例10 讨论下列级数的敛散性:⑴ ∑∞=2) ln ( 1n p n n ; ⑵ ∑∞=3)ln ln ( ) ln ( 1n pn n n .Ex [1]P 16 1⑻,2⑶⑹,5,6,8⑴―⑶,11;§3 一般项级数 ( 4 时 )一. 交错级数: 交错级数, Leibniz 型级数.Th 1 ( Leibniz ) Leibniz 型级数必收敛,且余和的符号与余和首项相同, 并有1 ||+≤n n u r . 证 (证明部分和序列 } {n S 的两个子列} {2n S 和} {12+n S 收敛于同一极限. 为此先证明} {2n S 递增有界. ))()()()(22122124321)1(2++-+-+-++-+-=n n n n n u u u u u u u u S ≥ n n n S u u u u u u 22124321)()()(=-++-+-- ⇒n S 2↗; 又 1212223212)()(u u u u u u u S n n n n ≤------=-- , 即数列} {2n S 有界. 由单调有界原理, 数列} {2n S 收敛 . 设 )( , 2∞→→n s S n .)( , 12212∞→→+=++n s u S S n n n . ⇒s S n n =∞→lim .由证明数列} {2n S 有界性可见 , ∑∞=+≤-≤111)1 (0n n n u u . 余和∑∞=++-nm m m u 12)1(亦为型级数 ⇒余和n r 与1+n u 同号, 且1 ||+≤n n u r .例1 判别级数∑∞=>-1)0( ) 1 (n nnx n x 的敛散性.解 当10≤<x 时, 由Leibniz 判别法⇒∑收敛;当1>x 时, 通项0→/,∑发散.二. 绝对收敛级数及其性质:1. 绝对收敛和条件收敛: 以Leibniz 级数为例, 先说明收敛⇒/ 绝对收敛.Th 2 ( 绝对收敛与收敛的关系 ) ∑∞+< ||na, ⇒∑na收敛.证 ( 用Cauchy 准则 ).注: 一般项级数判敛时, 先应判其是否绝对收敛. 例2 判断例1中的级数绝对或条件收敛性 . 2. 绝对收敛级数可重排性: ⑴ 同号项级数:对级数∑∞=1n nu,令⎩⎨⎧≤>=+=. 0 , 0 , 0 , 2||n n n n n n u u u u u v ⎩⎨⎧≥<-=-= . 0 , 0 ,0 , 2||n n n n n n u u u u u w 则有 ⅰ>∑nv和∑nw均为正项级数 , 且有|| 0n n u v ≤≤和|| 0n n u w ≤≤;ⅱ> n n n w v u +=|| , n n n w v u -= . ⑵ 同号项级数的性质: Th 3 ⅰ> 若∑||nu +∞< , 则∑n v +∞< ,∑n w +∞< .ⅱ> 若∑nu条件收敛 , 则∑nv+∞= ,∑nw+∞= .证 ⅰ> 由|| 0n n u v ≤≤和|| 0n n u w ≤≤, ⅰ> 成立 .ⅱ> 反设不真 , 即∑nv和∑nw中至少有一个收敛 , 不妨设∑nv+∞< .由 n u = n v n w - , n w =n v n u - 以及 ∑nv+∞<和∑n u 收敛 ⇒∑n w +∞<.而n n n w v u +=||⇒∑||nu+∞<, 与∑n u 条件收敛矛盾 .⑶ 绝对收敛级数的可重排性: 更序级数的概念. Th 4 设∑'nu 是∑nu的一个更序. 若∑||nu+∞<,则||∑'nu +∞<,且∑'n u =∑n u . 证 ⅰ> 若n u 0≥,则∑'nu 和∑nu是正项级数,且它们的部分和可以互相控制.于是,∑nu+∞< ⇒∑'nu +∞<, 且和相等. ⅱ> 对于一般的n u , ∑nu=∑nv ∑-nw⇒∑'nu = ∑'nv ∑'-nw .正项级数∑'nv 和∑'n w 分别是正项级数∑nv和∑nw的更序. 由∑||nu+∞<, 据Th 1 ,∑nv和∑nw收敛. 由上述ⅰ>所证,有∑'nv +∞<,∑'nw +∞<, 且有∑nv =∑'nv , ∑n w ∑n u =∑'n w ⇒∑nu =∑'nu .由该定理可见, 绝对收敛级数满足加法交换律.是否只有绝对收敛级数才满足加法交换律呢 ? 回答是肯定的 . Th 5 ( Riemann ) 若级数∑nu条件收敛, 则对任意实数s ( 甚至是∞± ),存在级数∑nu的更序∑'nu , 使得∑'nu =s .证 以Leibniz 级数∑∞=+-111) 1 (n n n为样本, 对照给出该定理的证明. 关于无穷和的交换律, 有如下结果: ⅰ> 若仅交换了级数∑nu的有限项,∑nu的敛散性及和都不变.ⅱ> 设∑'nu 是的一个更序. 若N ∈∃K , 使 nu在∑'nu 中的项数不超过K n +,106则∑'n u 和∑n u 共敛散, 且收敛时和相等 .三. 级数乘积简介:1. 级数乘积: 级数乘积, Cauchy 积. [1] P 20—22.2.级数乘积的Cauchy 定理:Th 6 ( Cauchy ) 设∑||n u +∞<, ||∑n v +∞<, 并设∑n u =U , ∑n v =V . 则 它们以任何方式排列的乘积级数也绝对收敛, 且乘积级数的和为UV . ( 证略 ) 例3 几何级数1 || ,1112<+++++=-r r r r rn 是绝对收敛的. 将()2∑n r 按Cauchy 乘积排列, 得到 +++++++++++=++个12222)()()(1)1(1n n n n r r r r r r r r r ++++++=n r n r r )1(3212 .Ex [1] P 24—25 1⑴—⑻ ⑽,4; 31(总Ex ) 2,3,4⑴⑵;四. 型如∑n n b a 的级数判敛法:1.Abel 判别法:引理1 (分部求和公式,或称Abel 变换)设i a 和i b m i ≤≤1)为两组实数.记) (1 ,1m k b B k i i k ≤≤=∑=. 则∑∑=-=++-=m i m i m m i i i i i B a B a a b a 1111)(.证 注意到 1--=i i i B B b , 有∑∑==-+-=m i m i i i ii i b a B B a b a 12111)()()()(123312211--++-+-+=m m m B B a B B a B B a B a107 m m m m m B a B a a B a a B a a +-++-+-=--11232121)()()() )( ( . )(111111∑∑-=+-=+--=+-=m i i i i m m m m m i i i i B a a B a B a B a a. 分部求和公式是离散情况下的分部积分公式. 事实上,⎰⎰⎰=⎪⎪⎭⎫ ⎝⎛=b a ba x a dt t g d x f dx x g x f )()()()( ⎰⎰⎰⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=b a x a b a x a x df dt t g dt t g x f )()()()(⎰⎰⎰⎪⎭⎫ ⎝⎛-=b a b ax a x df dt t g dt t g b f )()()()(. 可见Abel 变换式中的i B 相当于上式中的⎰x a dt t g )(, 而差i i a a -+1相当于)(x df , 和式相当于积分. 引理 2 ( Abel )设i a 、i b 和i B 如引理1 .若i a 单调 , 又对m i ≤≤1,有M B i ≤||,则||1∑=mi i i b a ) ||2|| (1m a a M +≤.证 不妨设i a ↘.||1∑=m i i i ba ∑-=++-≤111||||||m i m m i i i B a B a a ) ||2|| ( ||)(1111m m i m i i a a M a a a M +≤⎥⎦⎤⎢⎣⎡+-≤∑-=+. 推论 设i a , 0≥i a ↘,(m i ≤≤1 ). i b 和i B 如引理1. 则有||1∑=m i i i ba 1Ma ≤.( 参引理2证明 ) Th 7 (Abel 判别法)设ⅰ> 级数∑n b 收敛,ⅱ> 数列}{n a 单调有界.则级数∑n n b a 收敛. 证 (用Cauchy 收敛准则,利用Abel 引理估计尾项)设K a n ≤||, 由∑n b 收敛 ⇒对N n N >∃>∀ , , 0ε时 , 对N ∈∀p , 有108 ε | |21<++++++p n n n b b b .于是当N n >时对p ∀有()εεK a a b a p n n pn n k k k 3 ||2|| 11≤+≤++++=∑.由Cauchy 收敛准则 ⇒∑n n b a 收敛.2. Dirichlet 判别法:Th 8 ( Dirichlet)设ⅰ> 级数∑n b 的部分和有界, ⅱ> 数列}{n a 单调趋于零. 则级数∑n n b a 收敛.证 设∑==n i n n bB 1, 则M B n ||≤ ⇒对p n , ∀, 有M B B b b b n p n p n n n 2 ||||21≤-=+++++++ .不妨设n a ↘0 ⇒对εε<⇒>∀∃>∀|| , , , 0n a N n N . 此时就有εM a a M b a P n n pn n k k k 6|)|2|(|2 11<+≤++++=∑.由Cauchy 收敛准则,∑n n b a 收敛. 取n a ↘0,∑n b ∑+-=1) 1(n ,由Dirichlet 判别法, 得交错级数∑+-n n a 1) 1(收敛 . 可见Leibniz 判别法是Dirichlet 判别法的特例.由Dirichlet 判别法可导出 Abel 判别法. 事实上, 由数列}{n a 单调有界 ⇒}{n a 收敛, 设) ( , ∞→→n a a n .考虑级数∑∑+-n n n b a b a a )(,a a n -单调趋于零,n B 有界 ⇒级数∑-n n b a a )(收敛,又级数∑n b a 收敛⇒级数∑∑+-n n n b a b a a )(收敛.109 例4 设n a ↘0.证明级数∑nx a n sin 和∑nx a n cos 对)2 , 0(π∈∀x 收敛.证 ++⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+∑= 2s i n 23s i n 2s i n c o s 212s i n 21x x x kx x n k x n x n x n ) 21sin() 21 sin() 21 sin(+=⎥⎦⎤⎢⎣⎡--++, ) 2 , 0 (π∈x 时,02sin ≠x ⇒∑=+=+nk x x n kx 12sin 2) 21 sin(cos 21. 可见) 2 , 0 (π∈x 时, 级数∑kx cos 的部分和有界. 由Dirichlet 判别法推得级数∑nx a n cos 收敛 . 同理可得级数数∑nx a n sin 收敛 .Ex [1]P 24 — 25 2, 3.。

《数学分析》课件 (完整版)

《数学分析》课件 (完整版)
第十一章 广义积分
§1 无穷限广义积分
定积分的两个限制
积分区间的有界性 被积函数的有界性 实践中,我们却经常要打破这两个限制。如:关于级数收敛的Cauchy积分判别法;概率统计中,随机变量的空间通常是无限的;第二宇宙速度;物理中的 函数;量子运动;‥‥‥
无穷限积分的定义
设函数 在 有定义,在任意有限区间 上可积。若 存在,则称之为 在 上的广义积分,记为 此时亦称积分 收敛;若 不存在,则称积分 发散。
P.S. 为一符号,表示的是一无穷积分;而当它收敛时,还有第二重意义,可用来表示其积分值。
1. 2. 当 , 均收敛时,定义 显然, 的值与 的选取无关。
类似地,我们可以给出其它无穷积分的定义:
特别地,我们若可利用Taylor公式,求得

时 收敛, 时 发散, 时,只能于 时推得 收敛。
Question
我们将参照物取为幂函数 ,而有了上述的比较判别法;那么,将参照物取为指数函数 ,结果又如何呢? 无穷限的广义积分有着与级数非常类似的比较判别法,都是通过估计其求和的对象大小或收敛于0的速度而判断本身的敛散性;而且,我们还有Cauchy积分判别法,使某些级数的收敛与某些无穷限积分的收敛等价了起来。那么,是否可以将关于级数中结论推广至无穷限积分中来呢?某些结论不能推广的原因是什么呢?
1. 结合律
对于收敛级数,可任意加括号,即
2. 交换律
仅仅对于绝对收敛的级数,交换律成立 而对于条件收敛的级数,是靠正负抵消才可求和的,故重排后结果将任意。可见,绝对收敛才是真正的和。
定理 10.19 若级数 绝对收敛,其和为 ,设 为 的任意重排,则 亦绝对收敛,且和仍为
第十章 数项级数
§5 无穷级数与代数运算 有限和中的运算律,如结合律,交换律,分配律,在无穷和中均不成立。具体地,我们有下面的一些结论。

(完整版)关于数项级数敛散性的判定

(完整版)关于数项级数敛散性的判定

关于数项级数敛散性的判定1、问题的提出数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的.2、熟练掌握并准确应用级数的概念、性质和判定定理2.1数项级数收敛的定义数项级数∑∞=1n nu收敛⇔数项级数∑∞=1n nu的部分和数列{}n S 收敛于S .这样数项级数的敛散性问题就可以转化为部分和数列{}n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少.2.2数项级数的性质(1)若级数∑∞=1n nu与∑∞=1n nv都收敛,则对任意常数c,d, 级数∑∞=+1)(n n ndv cu亦收敛,且∑∑∑∞=∞=∞=+=+111)(n n n n n n nv d u c dv cu;相反的,若级数∑∞=+1)(n n n dv cu 收敛,则不能够推出级数∑∞=1n n u 与∑∞=1n nv都收敛.注:特殊的,对于级数∑∞=1n nu与∑∞=1n nv,当两个级数都收敛时,∑∞=±1)(n n nv u必收敛;当其中一个收敛,另一个发散时,∑∞=±1)(n n nv u一定发散;当两个都发散时,∑∞=±1)(n n n v u 可能收敛也可能发散.例1 判定级数∑∞=+1)5131(n n n 与级数∑∞=+1)211(n n n的敛散性.解:因为级数∑∞=131n n 与级数∑∞=151n n 收敛,故级数∑∞=+1)5131(n n n 收敛.因为级数∑∞=11n n 发散,级数∑∞=121n n 收敛,故级数∑∞=+1)211(n n n发散.(2)改变、增加或去掉级数的有限个项不会改变原级数的敛散性.(3)在收敛级数的项中任意加括号,既不改变级数的敛散性,也不改变它的和.即收敛的级数在不改变各项顺序的情况下,对它的各项任意加括号后,得到的新级数还是收敛的;加括号后得到的新级数发散,那么原级数也是发散的.例2 判定级数++--+++1111121-1-21n n 的敛散性.解:先考察级数∑∞=⎪⎪⎭⎫⎝⎛+--11111n n n ,因为121111-=+--=n n n u n ,而级数∑∞=-112n n 发散,由于加括号后得到得新级数发散,则原级数发散. (4)级数收敛的必要条件 若级数∑∞=1n nu收敛,则0lim =∞→n n u .若0lim ≠∞→n n u ,则级数∑∞=1n nu发散.2.3判定定理2.3.1级数收敛的柯西准则级数∑∞=1n nu收敛⇔0>∀ε,*NN ∈∃,使得当m N >以及*Np ∈∀,都有ε<++++++p m m m u u u 21.例1 用柯西准则判别级数∑nn22sin 的敛散性. 证明:由于pm p m m m m m pm m m u u u ++++++++++++=+++22sin 22sin 22sin 221121mp m m p m m m 21212121212121<-=+++<++++ 因此,对于任意的0>ε.取⎥⎦⎤⎢⎣⎡=ε1log 2N 使得当N m >及任意的*∈N p ,由上式就有ε<++++++p m m m u u u 21成立,故由柯西准则可推出原级数收敛. 2.3.2正项级数判别法(1)正项∑∞=1n nu收敛⇔它的部分和数列{}n S 有界.(2)比较判别法 如果∑∞=1n nu和∑∞=1n nv是正项级数,若存在某整数N ,对一切N n >都有n n v u ≤(i)若级数∑∞=1n nv收敛,则级数∑∞=1n nu也收敛;(ii )若级数∑∞=1n nu发散,则级数∑∞=1n nv也发散.等比级数和P-级数的敛散性 ①等比级数∑∞=+++++=12n nn aq aq aq a aq ,当1<q 时,级数收敛;当1≥q 时,级数发散.②P-级数∑∞=11n p n ,当1≤p 时,发散;当1>p 时,收敛. 例2 判别级数()∑∞+114n n 的敛散性.解:因为()25441111nnn n n u n =•<+=,而且P-级数∑∞251n收敛,由比较判别法知该级数收敛.(3)比较判别法的极限形式 如果∑∞=1n n u 和∑∞=1n n v 是正项级数)0(≠n v ,如果l v u nnn =∞→lim,则(i )当+∞<<l 0时,∑∞=1n nu和∑∞=1n nv同时收敛或发散;(ii )当0=l 时,∑∞=1n nv收敛时,∑∞=1n nu也收敛;(iii )当+∞=l 时,∑∞=1n nv发散时,∑∞=1n nu也发散.例3 判别级数()()∑>-11a a n的敛散性.解:因为a a a t a n t na t t t t nn ln 1ln lim 1lim 111lim00==-=-→→∞→令,而正项级数∑n1发散,由比较原则的极限形式知原级数发散. (4)比式判别法 如果∑∞=1n n u 为正项级数,且ρ=+nn u u 1, (i )若10<<ρ,则∑∞=1n nu收敛;(ii )若1≥ρ,∑∞=1n nu发散.例4判别级数()∑+nn 10!1的敛散性.解:因为()()+∞=+=+•+=∞→+∞→+∞→102lim !11010!2lim lim 11n n n u u n n n n nn n ,所以由比式判别法知原级数发散.(5)比式判别法的极限形式 如果∑∞=1n n u 为正项级数,且ρ=+∞→nn n u u 1lim,则(i )若1<ρ,则∑∞=1n nu收敛;(ii )若1>ρ或+∞=ρ时,∑∞=1n nu发散.例5 判别级数∑•nn n n !3的敛散性.解:因为()()13113lim !31!13lim lim 111>=⎪⎭⎫ ⎝⎛+=•++=∞→++∞→+∞→e n n n n n u u n n n n n n n nn n ,所以由比式判别法的极限形式知原级数发散. (6)根式判别法 如果∑∞=1n nu为正项级数,(i )如果1<≤ρn n u ,则∑∞=1n n u 收敛;(ii )若1≥n n u ,则级数∑∞=1n nu发散.(7)根式判别法的极限形式 如果∑∞=1n nu为正项级数,还有ρ=∞→n n n u lim ,(i )当1<ρ时,则∑∞=1n nu收敛;(ii )当1>ρ时,则∑∞=1n nu发散.例6 判别级数∑⎪⎭⎫⎝⎛+nn n 12的敛散性.解:因为12112lim 12lim <=+=⎪⎭⎫⎝⎛+∞→∞→n n n n n n nn ,所以由比式判别法极限形式知原级数收敛. (8)积分判别法 若)(x f 为),1[+∞上的非负减函数,那么正项级数∑)(n f 与反常积分⎰+∞1)(dx x f 同时收敛或同时发散.例7 判别级数∑+112n 的敛散性.解:设()112+=x x f ,则()x f 在),1[+∞上为非负单调递减函数,而⎰+∞=+1241πxdx 故由积分判别法知原级数收敛.(9)Raabe 判别法 设0>n u , ,2,1,11=⎪⎪⎭⎫⎝⎛-=+n u u n R n nn .(i)若存在1>q 及正整数N ,使得当N n ≥时有q R ≥n ,则级数∑∞=1n nu收敛;(ii )若存在正整数N ,使得当N n ≥时有1≤n R ,则级数∑∞=1n nu发散.(10) Raabe 判别法的极限形式 设∑∞=1n nu是正项级数,且有r R n n =∞→lim ,(i )若1>r ,则级数∑∞=1n nu收敛;(ii )若1<r ,则级数∑∞=1n nu发散.例8 判别级数()()∑∞+⋅-121!!2!!12n n n 的敛散性. 解:容易验证,因为()∞→→n 1ρ这个级数用比式判别法和根式判别法都失效,这时可以用Raabe判别法.此时,()()()()()()∞→→++=⎭⎬⎫⎩⎨⎧-+++=⎪⎪⎭⎫⎝⎛-=+n n n n n n n n u u n R n n n 23125612232221221.由Raabe 判别法知原级数收敛.正项级数的判别方法有很多种,下面总结一下这几种方法的选择顺序:①若n n u ∞→lim 易于求的,考察n n u ∞→lim 的值:0lim ≠∞→n n u ,则依据级数收敛的必要条件,知级数发散;②若0lim =∞→n n u ,不能直接判断级数是收敛还是发散,此时用比式判别法或根式判别法,当1<ρ时,级数收敛;若1>ρ或+∞=ρ时,级数发散;③当1=ρ时,级数可能收敛也可能发散,此时用比较判别法,找出一个已知敛散性的级数与之比较,然后根据比较判别法或其极限形式判定级数的敛散性,当然,对于一些具体问题,我们应该根据其特点分析,找到更简便的判别方法.2.3.3一般项级数的判别方法(1)交错级数判别法Leibniz 判别法 若交错级数n n n u 11)1(+∞=-∑(0>n u ),满足下述两个条件:(i )数列{}n u 单调递减;(ii )0lim =∞→n n u ,则级数收敛.注:用Leibniz 判别法判定1+>n n u u 时,可以用以下几种方法:①比值法:考察是否有11>+n nu u ;②差值法:考察是否有01>-+n n u u ;③导数法:即建立一个连续可导的函数)(x f ,使),2,1()( ==n u n f n ,考察是否有0)(<'n f .例9 判定级数()∑∞=-+++-111ln )1(1)1(n n n n n 的敛散性.解:因为此级数为交错级数 ,设()()1ln 11+++=n n n u n ,易证()()01ln 11limlim =+++=∞→∞→n n n u n n n ,下面判定1+>n n u u ,下面我们用导数的知识判定数列{}n u 单调递减.设()()1ln 11)(+++==n n n u n f n ,则()()()()()1ln 11ln 22++-+='='n n nn u n f n ,又设()()n n n g -+=1ln ,则()0111<-+='n n g ,()n g ∴单调递减,()()0g n g < ,()0<'∴n f ,()n f 单调递减,1+>n n u u ,由Leibniz 判别法,知原级数发散.(2)绝对收敛 若级数∑∞=1n nu各项绝对值组成的级数∑∞=1n nu收敛,则原级数绝对收敛.性质:绝对收敛的级数一定收敛.此定理的逆命题不成立,即:若∑∞=1n nu收敛,不能判定∑∞=1n nu也收敛.(3)Abel 判别法若{}n a 为单调有界数列,且级数∑nb收敛,则级数∑nn ba 收敛.例10 判定级数()()()∑∞=-⎪⎭⎫ ⎝⎛+-2arctan 411ln 11n nnn n n 的收敛性.解:根据Leibniz 判别法知级数()∑∞=2ln 11-n nn 收敛.因为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11递增有界,故由Abel 判别法知级数()()∑∞=⎪⎭⎫⎝⎛+-211ln 11n nnn n 收敛,又因{}n arctan 4-递减有界,再由Abel 判别法知原级数收敛.(4)Dirichlet 判别法若数列{}n a 单调递减,且0lim =∞→n n a ,又级数∑nb的部分和数列有界,则级数∑nn ba 收敛.例11 判定级数()πα2,0,sin 1∈∑∞=x nnxn ()0>α的敛散性. 解:由于当()π2,0∈x 时,有2sin 1sin 1x kx k ≤∑∞=,即∑∞=1sin n nx 的部分和数列有界,而数列()01>⎭⎬⎫⎩⎨⎧ααn 单调递减,且01lim =∞→αn n ,故由Dirichlet 判别法知,原级数收敛. 对于交错级数敛散性判定问题,应先判定其是否绝对收敛,即若∑∞=1n nu收敛,则∑∞=1n nu收敛;若不是绝对收敛,则根据Leibniz 判别法,Abel 判别法,Dirichlet 判别法判定其是否条件收敛.3、巧妙判别数项级数敛散性以上介绍了一些判别数项级数敛散性的基本方法,但是在实际的应用中往往需要多种方法结合,且有时还有一定的技巧性,下面结合一些实例列举一些常用的判别方法和技巧.3.1等价无穷小替换的方法判断级数敛散性应用定理:设∑∞=1n nu和∑∞=1n nv是两个正项级数,且当∞→n 时,n u 和n v 为等价的无穷小量,则∑∞=1n nu和∑∞=1n nv的敛散性保持一致.证明:由于当∞→n 时,n u 和n v 为等价的无穷小量,即01lim≠=∞→nnn v u ,由比较判别法的极限形式可知级数∑∞=1n nu和级数∑∞=1n nv同时收敛或同时发散.例1 判定级数()()()∑∞=+-⎪⎭⎫⎝⎛+1142411ln 1-n n n n n 的敛散性. 解:设()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n ,则()()()142411ln 1+-⎪⎭⎫⎝⎛+-=n n n u n n~()∞→=n n n n ,41412,而级数∑∞=1231n n 收敛,所以原级数绝对收敛. 3.2运用常用不等式判断级数的敛散性常用的不等式有:n n <ln , ()x x <+1ln , x e x+>1例2 判定级数∑∞=⎪⎭⎫ ⎝⎛+-11ln 1n n n n 的敛散性. 解:此题我们可以利用不等式()x x <+1ln , 有111111ln 11ln 11ln 1+-<⎪⎭⎫ ⎝⎛+-+=++=+-=n n n n n n n n n n u n 因为级数∑∞=⎪⎭⎫⎝⎛+-1111n n n 收敛,故原级数收敛. 3.3运用平均不等式()2221b a ab +≤判断级数敛散性 应用定理:若级数∑∞=12n na和级数∑∞=12n nb都收敛,则级数∑∞=1n nn ba 绝对收敛.证明:已知级数∑∞=12n na 和级数∑∞=12n nb 都收敛,根据级数收敛的性质,则级数()∑∞+2221nn b a 收敛,由于有不等式()2221n n n n b a b a +≤,再根据比较判别法,知级数∑∞=1n n n b a 收敛,所以级数∑∞=1n n n b a 绝对收敛.例3 设常数0>λ,级数∑∞=12n n a 收敛,判断级数()∑∞=+-121n n nn a λ的敛散性.解:因为级数∑∞=12n na 收敛,并且级数∑∞=+1211n n 也收敛,所以级数∑∞⎪⎭⎫ ⎝⎛++λ221n a n 收敛,又因为⎪⎭⎫⎝⎛++≤+=+λλλ22221211n a n a n a n nn ,由比较判别法可知,级数∑∞+λ2n a n 收敛,故原级数绝对收敛.3.4拉格朗日微分中值定理判断级数敛散性应用定理:设()x f 在()1,0内可导,且其导函数有界,则级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛.证明:因为()x f 在()1,0内可导,且其导函数有界,所以存在0>M ,对于一切()1,0∈x ,都有()M x f ≤',于是由拉格朗日中值定理得()()()()211221211111k n k n k k M kn k n f kn f k n f ++-≤⎪⎪⎭⎫ ⎝⎛+-+'=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ξ,由于级数()()∑∞=++1211n k n k n 收敛,所以级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛+12111n kn f k n f 绝对收敛. 例4 判定级数∑∞=⎪⎭⎫ ⎝⎛+-+111s 101sin n n in n 的敛散性. 解:设函数()x x f 1sin=,则()x xx f 1cos 12⋅-=',知()x f '有界,令1,1021==k k ,由于满足上述定理条件,故级数∑∞=⎪⎭⎫⎝⎛+-+111s 101sin n n in n 收敛. 3.5对数判别法判断级数敛散性应用定理:若级数∑∞=1n n u 为正项级数,若有0>α,使得当0n n ≥时,α+≥1ln 1lnn u n,则级数∑∞=1n nu 收敛,若有0n n ≥时,1ln 1ln≤n u n,则级数∑∞=1n n u 发散. 证明:如果0n n ≥时,不等式α+≥1ln 1lnn u n 成立,则有α+≥11n u n .由于级数∑∞=+111n nα收敛,所以由比较判别法知级数∑∞=1n n u 收敛.同理可证,当不等式1ln 1ln≤n u n成立时,则级数∑∞=1n n u 发散. 例5 判定级数()∑∞=>1ln 12n n na a 的敛散性.解:由于a nn n a n n n a n u nn n ln ln 2ln ln ln ln 2ln ln 2ln ln 1ln ln -=•-==, 由洛必达法则可知:+∞=-=-=⎪⎭⎫⎝⎛-∞←+∞→+∞→a xa x x a n n n n n ln 11lim 2ln ln ln lim 2ln ln ln 2ln lim所以,对0>α,存在0n ,使得当0n n ≥时,α+≥-1ln ln 2ln a nn,因而根据以上定理原级数发散.3.6 泰勒展开式判断级数的敛散性例6 判别级数∑∞=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-111n n n e 的敛散性.解:因为⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-=-=⎪⎭⎫ ⎝⎛+-=22121111ln 11n o n n n n n n n e e e e n e u ~⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--n o ne 12111 ~()∞→n n e 2.由于级数∑∞=12n ne 发散,所以原级数发散. 3.7拆项法判断级数的敛散性将级数的一般项运用等价变形、三角基本公式、有理化等方法拆成几项之差也是判别级数收敛的一种常用方法.例7 判别级数()∑∞=-122sin sin n n n n αα的敛散性. 解:因为()()n sin -sin sin sin 2222ααααn n n n n =-,而且()2221sin n n n ≤α,由于级数∑∞=121n n收敛,根据比较判别法知级数()∑∞=122sin n n n α收敛;而且∑∞=1sin n n α,当παk =时,该级数收敛;当παk ≠时,该级数发散.由此可知,当παk =时,原级数收敛;当παk ≠时,原级数发散.3.8 Gauss 判别法判断级数的敛散性若() ,2,10=>n a n ,且⎪⎭⎫⎝⎛++=++εμλ111n O n a a n n ,0>ε,则级数∑∞=1n n a 当1>λ时收敛;当1<λ时发散;而当1=λ时,对1>μ收敛,对1≤μ发散.例8 判别级数()()∑∞=>>-++1)0,0(1!11n qq p nn n p p p 的敛散性. 解:对于这个级数来说,⎪⎭⎫⎝⎛++-+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+++=+-+211111111111n O n p q n n p n n n p n a a q q n n , 所以它在p q >时收敛,在p q ≤时发散.3.9运用函数判定数项级数的敛散性以前讨论的方法判定级数敛散性都与数列极限紧密联系,这种方法利用函数来研究数项级数.给出了利用函数的导数和极限判别数项级数敛散性的的方法.应用定理1 若级数∑∞=⎪⎭⎫⎝⎛11n n f 收敛,则()0lim 0=→x f x证明:已知级数∑∞=⎪⎭⎫ ⎝⎛11n n f 收敛,有级数收敛的必要条件得01lim =⎪⎭⎫⎝⎛∞→n f x ,因而()01lim lim 0=⎪⎭⎫⎝⎛=∞→→n f x f n x . 例9 判别级数∑∞=⎪⎪⎭⎫ ⎝⎛-11cos 1n n n e n π的敛散性. 解:由于11lim 1lim 01=-=⎪⎪⎭⎫ ⎝⎛-→∞→x e e n xx nn ,又由于 2cos lim 0π→x 不存在,所以⎪⎭⎫⎝⎛∞→n f x 1lim 不存在,由定理1的逆否命题可知,级数不收敛. 应用定理2 如果()x f x '→0lim 存在,∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛,则()0lim 0='→x f x .应用定理3 如果函数在0=x 存在二阶导数,且()()000='=f f ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 应用定理4 如果()x f x ''→0lim 存在,而且()()0lim lim 0='=→→x f x f x x ,则∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛. 证明:首先作辅助函数 ⎩⎨⎧≠==0)(00)(x x f x x G考察()x G ,有()00=G ()()()0lim lim 000='=='→→x f xx f G x x()()()()()x f xx f x G x G G x x x ''=='-'=''→→→000lim lim 0lim0 由于已知()x f x ''→0lim 存在,即()00=''G 存在,对()x G 满足定理3条件,所以∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛.例10 判别级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 的敛散性.解:不妨设()212⎪⎪⎭⎫ ⎝⎛--+=-x x x a a a x f ,则()()()3212ln 2--+='-x x x a a a a x f()()()4223211692146ln 2-+-+-+-=''--xx x x x x aa a a a a x f求极限得()0lim 0=→x f x应用洛必达法则,得()()03242722ln 8lim 3220=+-+-+='--→x x x xx x x x a a a a a a a a x f ()()a aa a a a a a a a x f x x x x x x x x x x x 2234223200ln 4248164932149681ln lim lim =-+--+-+=''--→→ 所以()x f x ''→0lim 存在,根据定理4知级数2111112∑∞=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+n n nn a a a 绝对收敛.从以上分析和各例子可以看出,判定数项级数敛散性方法众多,我们应深刻体会各个定义、性质、定理的条件及结论,同时也要善于观察和总结,正确且灵活地使用各定理.。

数学分析12.2正项级数

数学分析12.2正项级数

第十二章 数项级数2 正项级数一、正项级数收敛的一般判别原则概念:若数项级数各项的符号都相同,则称它为同号级数. 各项都是正数组成的同号级数称为正项级数.定理12.5:正项级数∑n u 收敛的充要条件是:部分和数列{S n }有界,即存在某正数M ,对一切正整数n ,有S n <M.证:∵u i >0(i=1,2,…),∴{S n }递增. 根据数列的单调有界定理,得证.定理12.6:(比较原则)设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n>N ,都有:u n ≤v n 则: (1)若级数∑n v 收敛,则级数∑n u 也收敛; (2)若级数∑n u 发散,则级数∑n v 也发散. 证:由改变级数的有限项不影响其收敛性, 不妨设对一切正整数,u n ≤v n 都成立.以S ’n 和S ”n 分别记级数∑n u 和∑n v 的部分和,则对一切正整数n , 有S ’n ≤S ”n .(1)若∑n v 收敛,则∞n lim +→S ”n 存在,记为S ,则S ’n ≤S ,即{S ’n }有界,∴∑n u 也收敛.(2)若级数∑n v 收敛,由(1)知级数∑n u 收敛,矛盾!得证.例1:考察∑+1n -n 12的收敛性.解:当n ≥2时,1n -n 12+<1)-n (n 1.∵正项级数∑-1)n(n 1收敛,∴∑+1n -n 12也收敛.推论:设∑n u =u 1+u 2+…+u n +…与∑n v =v 1+v 2+…+v n +… 是两个正项级数,若nn∞n v u lim+→=l. 则 (1)当0<l<+∞时,同时收敛或同时发散; (2)当l=0且级数∑n v 收敛时,级数∑n u 也收敛; (3)当l=+∞且级数∑n v 发散时,级数∑n u 也发散.证:(1)当0<l<+∞时,对任意正数ε(ε<l),存在某正数N ,当n>N 时, 恒有l -nnv u <ε,即(l-ε)v n <u n <(l+ε)v n . 显然, 若∑n v 收敛,则∑n ε)v +(l 收敛,∴∑n u 也收敛; 若∑n v 发散,则∑-n ε)v (l 发散,∴∑n u 也发散.(2)当l=0时,由u n <(l+ε)v n =εv n ,可知∑n v 收敛时,∑n u 也收敛. (3)当l=+∞时,任给正数M ,存在相应的正数N ,当n>N 时,都有nnv u >M ,即u n >Mv n ,由比较原则知:若∑n v 发散时,∑n u 也发散.例2:证明:级数∑n -21n 收敛.证:∵nn ∞n 21n -21lim+→=n ∞n 2n 11lim -+→=1, 又等比级数∑n21收敛,∴级数∑n -21n 也收敛.例3:证明:级数∑n 1sin =sin1+sin 21+…+sin n1+…发散. 证:∵n1n 1sinlim∞n +→=1,又调和级数∑n 1发散,∴级数∑n 1sin 也发散.二、比式判别法和根式判别法定理12.7:(达朗贝尔判别法,或称比式判别法)设∑n u 为正项级数,且存在某正整数N 0及常数q(0<q<1). (1)若对一切n> N 0,不等式n1n u u +≤q 成立,则级数∑n u 收敛; (2)若对一切n> N 0,不等式n1n u u +≥1成立,则级数∑n u 发散. 证:(1)不妨设不等式n1n u u +≤q 对一切n ≥1都成立,于是有 12u u ≤q, 23u u ≤q,…, n 1n u u +≤q, .... 把前n-1个不等式的左右各相乘得 12u u .23u u .. (1)-n n u u ≤q n-1,即u n ≤u 1q n-1. ∵等比级数∑1-n q (0<q<1)收敛,∴级数∑n u 也收敛. (2)由对一切n> N 0,不等式n1n u u +≥1成立,∴有u n+1≥u n ≥0N u ,可知∞n lim +→u n ≠0,∴级数∑n u 发散.推论1:(比式判别法极限形式)若∑n u 为正项级数,且n1n ∞n u u lim++→=q ,则 (1)当q<1时,级数∑n u 收敛; (2)当q>1或q=+∞时,级数∑n u 发散. 证:∵n 1n ∞n u u lim++→=q ,∴对取定的正数ε=21|1-q|,存在正数N , 当n>N 时,都有q-ε<n1n u u +<q+ε. (1)当q<1时,n 1n u u +<q+ε=21(1-q)<1,∴级数∑n u 收敛. (2)当q>1时,n 1n u u +>q-ε=21(1+q)>1,∴级数∑n u 发散; 当q=+∞时,存在N ,当n>N 时,有n1n u u +>1,∴级数∑n u 发散.例4:证明:级数12+5152⨯⨯+951852⨯⨯⨯⨯+…+)]1n (41[951)]1n (32[852-+⋯⨯⨯-+⋯⨯⨯+…收敛.证:∵n 1n ∞n u u lim++→=n 41n 32lim ∞n +++→=43<1,∴该级数收敛.例5:讨论级数∑1-n nx (x>0)的敛散性. 解:当x=1时,级数∑n 发散. 又n 1n ∞n u u lim++→=nx)1n (lim ∞n ++→=x. ∴当0<x<1时,该级数收敛;当x ≥1时,该级数发散;推论2:设∑n u 为正项级数,则 (1)若n1n ∞n u u lim++→=q<1,则级数∑n u 收敛; (2)若n1n ∞n u u lim ++→=q>1,则级数∑n u 发散.例6:讨论级数1+b+bc+b 2c+b 2c 2+…+b m c m-1+b m c m +…的敛散性,0<b<c.解:∵n 1n u u +=⎩⎨⎧为偶数为奇数n c n b . ∴n1n ∞n u u lim ++→=c, n 1n ∞n u u lim ++→=b. ∴当c<1时,该级数收敛;当b>1时,该级数发散; 当c<1<b 时,无法判定.定理12.8:(柯西判别法,或称根式判别法)设∑n u 为正项级数,且存在某正数N 0及正常数l ,则(1)若对一切n>N 0,不等式n n u ≤l<1成立,则级数∑n u 收敛; (2)若对一切n>N 0,不等式n n u ≥1成立,则级数∑n u 发散. 证:(1)∵n n u ≤l<1,∴u n ≤l n ,又等比级数∑n l 当0<l<1时收敛, 由比较原则知∑n u 也收敛.(2)∵n n u ≥1,∴u n ≥1n =1, ∴∞n lim +→u n ≠0,∴级数∑n u 发散.推论1:(根式判别法极限形式)设∑n u 为正项级数,且n n ∞n u lim +→=l ,则 (1)当l<1时,级数∑n u 收敛;(2)当l>1时,级数∑n u 发散.证:∵n n ∞n u lim +→=l ,∴当取ε<|1-l|时,存在某正数N ,对一切n>N , 有l-ε<n n u <l+ε. 根据定理12.8得证.例7:研究级数∑+nn2)(-12的敛散性.解:∵n n ∞n u lim +→=nnn ∞n 2)(-12lim ++→=21<1,∴该级数收敛.推论2:设∑n u 为正项级数,且n n ∞n u lim +→=l ,则当 (1)当l<1时,级数∑n u 收敛;(2)当l>1时,级数∑n u 发散.例8:讨论级数b+c+b 2+c 2+…+b m +c m +…的敛散性,0<b<c<1.解:∵n n u =⎪⎩⎪⎨⎧-为偶数为奇数n cn b 2m m12m m . ∴n n∞n u lim +→=2m m ∞n c lim +→=c <1, ∴该级数收敛.注:根式判别法较比式判别法更有效,所以优先使用根式判别法.例9:讨论级数∑∞=+1n n2nx1x 的敛散性,其中x>0. 解:∵nn 2∞n x 1lim ++→=max{1,x 2},∴n n ∞n u lim +→=nn 2n∞n x 1x lim ++→=}x max {1,x 2=⎩⎨⎧==≠<1x 11x 1. ∴当x ≠1时,该级数收敛;当x=1时,该级数发散.例10:判别下列级数的敛散性:(1)∑∞=1n 2!n)2()(n!;(2)∑∞=⎪⎭⎫⎝⎛+1n n2n 12n .解:(1)∵n1n ∞n u u lim ++→=1)2)(2n n 2(1)(n lim 2∞n ++++→=41<1,∴该级数收敛. (2)∵n n ∞n u lim+→=n12n lim n2∞n ++→=21<1,∴该级数收敛.三、积分判别法定理12.9:设f 为[1,+∞)上非负减函数,那么正项级数∑f(n)与反常积分⎰+∞1f(x )dx 同时收敛或同时发散.证:∵f 在[1,+∞)上非负减,∴对任何正数A ,f 在[1,A]上可积,从而 有f(n)≤⎰n1-n f(x )dx ≤f(n-1), n=2,3,…. 依次相加可得:∑=m2n f(n)≤⎰m1f(x )dx ≤∑=m 2n 1)-f(n =∑=1-m 1n f(n).若反常积分收敛,则有S m =∑=m1n f(n)≤f(1)+⎰m 1f(x )dx ≤f(1)+⎰+∞1f(x )dx ,根据定理12.5知,级数∑f(n)收敛.若级数∑f(n)收敛,则有⎰m1f(x )dx ≤S m-1≤∑f(n)=S. 又f 在[1,+∞)上非负减,∴对任何正数A ,都有 0≤⎰A1f(x )dx ≤S n <S, n ≤A ≤n+1. ∴⎰+∞1f(x )dx 收敛.用反证法或同理可证:正项级数∑f(n)与反常积分⎰+∞1f(x )dx 同时发散.例11:讨论p 级数∑p n1的敛散性. 解:当p<0时,p∞n n 1lim+→≠0,∴级数∑p n 1的发散. 当p>0时,f(x)=p x1为[1,+∞)上非负减函数,又当0<p ≤1时,⎰+∞1px 1dx 发散,∴级数∑p n 1也发散; 当p>1时,⎰+∞1p x 1dx 收敛,∴级数∑p n1也收敛.例12:讨论下列级数的敛散性:(1)∑∞=2n p lnn)(n 1;(2)∑∞=3n plnlnn)(lnn)(n 1. 解:(1)∵⎰+∞2p lnn)(n 1dx=⎰+∞2p lnn)(1dlnn=⎰+∞ln2p u1du. ∴当p ≤1时,原级数发散;当p>1时,原级数收敛. (2)∵⎰+∞3plnlnn)(lnn)(n 1dx=⎰+∞3p lnlnn)(lnn 1dlnn=⎰+∞ln3p u(lnu)1du. 由(1)可知: ∴当p ≤1时,原级数发散;当p>1时,原级数收敛.四、拉贝判别法定理12.10:(拉贝判别法)设∑n u 为正项级数,且存在某正整数N 0及数常r, 则:(1)若对一切n>N 0, 不等式n ⎪⎪⎭⎫⎝⎛-+n 1n u u 1≥r>1成立,则级数∑n u 收敛; (2)若对一切n>N 0, 不等式n ⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1≤1成立,则级数∑n u 发散. 证:(1)由n ⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1≥r>1可得n 1n u u +<1-nr,取p 使1<p<r ,则 由nr n 1-1-1lim p∞n ⎪⎭⎫⎝⎛+→=()rx x -1-1lim p0x →=rp <1知:存在正数N ,使对任意n>N ,有n r >p n 1-1-1⎪⎭⎫ ⎝⎛. ∴n n u 1u +<1-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛p n 1-1-1=p n 1-1-1⎪⎭⎫ ⎝⎛=pn 1-n ⎪⎭⎫⎝⎛. 于是当n>N 时,就有u n+1=N N 1N 1-n n n 1n u u u u u u u ⋅⋅⋯⋅⋅++≤pn 1-n ⎪⎭⎫ ⎝⎛p1-n 2-n ⎪⎭⎫ ⎝⎛…Npu N 1-N ⋅⎪⎭⎫ ⎝⎛=u N (N-1)p ·p n 1. ∵p>1,∴∑p n1收敛,∴原级数收敛. (2)由n ⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1≤1可得n1n u u +≥1-n 1=n 1-n ,于是 u n+1=2231-n n n 1n u u u u u u u ⋅⋅⋯⋅⋅+>2u 211-n 2-n n 1-n ⋅⋅⋯⋅⋅=u 2·n1. ∵调和级数∑n1发散,∴原级数发散.推论:(拉贝判别法的极限形式)设∑n u 为正项级数,且极限⎪⎪⎭⎫⎝⎛-++→n 1n ∞n u u 1n lim =r 存在,则 (1)当r>1时,级数∑n u 收敛;(2)当r<1时,级数∑n u 发散.例13:讨论级数:∑⎥⎦⎤⎢⎣⎡⋯⋅⋯⋅s(2n)421)-(2n 31当s=1,2,3时的敛散性. 解:n1n ∞n u u lim++→=s∞n (2n)421)-(2n 312)(2n 421)(2n 31lim ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋯⋅⋯⋅+⋯⋅+⋯⋅+→=s ∞n 22n 12n lim ⎪⎭⎫ ⎝⎛+++→=1,无法判别. 当s=1时,⎪⎪⎭⎫⎝⎛-++→n 1n ∞n u u 1n lim =⎪⎭⎫ ⎝⎛++-+→22n 12n 1n lim ∞n =22n n lim ∞n ++→=21<1,∴发散; 当s=2时,⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛++-222n 12n 1n =4n 84n 3n4n 22+++<1,∴发散;当s=3时,⎪⎪⎭⎫⎝⎛-++→n 1n ∞n u u 1n lim =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++-+→3∞n 22n 12n 1n lim=8n 42n 248n n 7n 1812n lim 2323∞n ++++++→=23>1,∴收敛.习题1、应用比较原则判别下列级数的敛散性: (1)∑+22a n 1;(2)∑n n3πsin 2;(3)∑+2n11;(4)∑n )n (ln 1; (5)∑⎪⎭⎫ ⎝⎛-n 1cos 1;(6)∑n nn 1;(7)∑-)1a (n (a>1);(8)∑∞=2n n ln )n (ln 1;(9)∑-+)2a 1a (nn(a>0);(10)∑n12nsinn1.解:(1)∵0≤22a n 1+≤2n 1,又级数∑2n 1收敛,∴原级数收敛. (2)∵0<n n 3πsin 2<n32π⎪⎭⎫ ⎝⎛,又等比级数∑⎪⎭⎫⎝⎛n32收敛,∴原级数收敛.(3)∵2n 11+>1n 1+,又级数∑+1n 1发散,∴原级数发散. (4)∵0<n )n (ln 1<n 21 (n>e 2),又级数∑∞=2n n21收敛,∴原级数收敛. (5)∵0≤n 1cos 1-=2sin 22n 1<22n 1,又级数∑22n1收敛,∴原级数收敛. (6)∵n nn 1>2n 1,又级数∑2n1发散,∴原级数发散. (7)∵1a n ->n a ,又当a>1时,n∞n a lim +→=1≠0,∴级数∑n a 发散, ∴原级数发散. (8)∵0≤n ln )n (ln 1=ln(lnn)n 1<2n 1 (n>2e e ),又级数∑2n 1收敛,∴原级数收敛.(9)∵2nn∞n n 12a1a lim-++→=2t t 0t t2a 1a lim-+→=(lna)2>0, 又级数∑2n 1收敛,∴原级数收敛. (10)∵2n12nsin∞n n 1n 1lim +→=2tsint 20t t tlim ⋅→=1>0,又级数∑2n 1收敛,∴原级数收敛.2、用比式判别法或根式判别法鉴定下列级数的敛散性.(1)∑⋯⋅n!1)-(2n 31;(2)∑+n 101)!(n ;(3)∑⎪⎭⎫⎝⎛+n1n 2n ;(4)∑n n n!;(5)∑n 22n ;(6)∑⋅n n n n!3;(7)∑⎪⎪⎭⎫⎝⎛nn a b (其中n ∞n a lim +→=a, a n ,b,a>0, 且a ≠b). 解:(1)∵n1n ∞n u u lim++→=n!1)-(2n 31!)1(n 1)(2n 31lim ∞n ⋯⋅++⋯⋅+→=1n 12n lim ∞n +++→=2>1,∴原级数发散. (2)∵n1n ∞n u u lim++→=n1n ∞n 101)!(n 102)!(n lim ++++→=102n lim ∞n ++→=+∞,∴原级数发散. (3)∵n n∞n u lim +→=n n∞n 1n 2n lim ⎪⎭⎫⎝⎛++→=1n 2n lim∞n ++→=21<1,∴原级数收敛. (4)∵n1n ∞n u u lim++→=n1n ∞n n n!)1(n 1)!(n lim ++→++=n∞n 1n n lim ⎪⎭⎫ ⎝⎛++→=e1<1,∴原级数收敛. (5)∵n n∞n u lim +→=nn 2∞n 2n lim +→=2n lim n2∞n +→=21<1,∴原级数收敛.(6)∵n1n ∞n u u lim++→=n n 1n 1n ∞n nn!31)(n 1)!n (3lim ⋅++⋅+++→=n∞n 1n n 3lim ⎪⎭⎫ ⎝⎛++→=e 3>1,∴原级数发散.(7)∵n n∞n u lim +→=n ∞n a b lim +→=ab,∴当a=b 时,无法判定; 当b>a>0时,原级数发散;当a>b>0时,原级数收敛.3、设∑n u 与∑n v 为正项级数,且存在正数N 0,对一切n>N 0, 有n1n u u +≤n 1n v v +. 证明: 若级数∑n v 收敛,则级数∑n u 收敛;若∑n u 发散,则∑n v 发散. 证:由题意知:当n>N 0时,1n 1n v u ++≤nn v u,从而对n>N 0有, 0<1n 1n v u ++≤n n v u ≤1-n 1-n v u ≤…≤1N 1N 00v u ++,∴u n ≤1N 1N 00v u ++v n ,又1N 1N 00v u ++是常数, 根据比较原则,得证.4、设正项级数∑n a 收敛,证明∑2n a 也收敛;试问反之是否成立? 证:由∑n a 收敛知n ∞n a lim +→=0,∴存在N ,使n ≥N 时,有0≤a n <1,从而n ≥N 时,有0≤a n 2<a n ,由比较原则知 ∑2n a 也收敛.但反之不成立,如∑2n1收敛,而∑n 1发散.5、设a n ≥0, n=1,2,…. 且{na n }有界,证明∑2n a 收敛. 证:∵a n ≥0, {na n }有界,可设0≤na n ≤M ,则0≤a n ≤nM,从而a n 2≤22nM ,又级数∑22n M 收敛,由比较原则知 ∑2na也收敛.6、设级数∑2n a 收敛,证明∑na n(a n >0)也收敛. 证:∵0<n a n <21(a n 2+2n 1),又级数∑2n a 和∑2n1都收敛,∴级数∑+)n1(a 22n 收敛,由比较原则知级数∑n a n 也收敛.7、设正项级数∑n u 收敛,证明级数∑+1n n u u 也收敛.证:∵0<1n n u u +<21(u n +u n+1),又由级数∑n u 收敛知∑+1n u 也收敛, ∴级数∑)u +(u 1+n n 收敛,由比较原则知∑+1n n u u 也收敛.8、利用级数收敛的必要条件,证明下列等式:(1)2n∞n )(n!n lim +→=0;(2)n!∞n a )!(2n lim +→=0 (a>1). 证:(1)记u n =2n)(n!n ,则n1n ∞n u u lim ++→=2n 21n ∞n )(n!n ]1)![(n 1)(n lim ++++→=n∞n n 1n 1n 1lim ⎪⎭⎫ ⎝⎛+⋅++→=0<1, ∴级数∑2n)(n!n 收敛,∴2n ∞n )(n!n lim +→=0.(2)记u n =n!a )!(2n ,则当a>1时,n1n ∞n u u lim ++→=n!1)!(n ∞n a)!(2n a )!2(2n lim ++→+=!n n ∞n a )21)(2n (2n lim ⋅+→++=0, ∴级数∑n!a )!(2n 收敛,∴n!∞n a )!(2n lim +→=0 (a>1).9、用积分判别法讨论下列级数的敛散性:(1)∑+1n 12;(2)∑+1n n 2;(3)∑∞=3n )nlnnln(lnn 1;(4)∑∞=3n qp (lnlnn)n(lnn)1. 解:(1)∵f(x)=1x 12+在[1,+ ∞)上非负减,且 ⎰+∞1f(x )dx=⎰++∞121x 1dx=2π,积分收敛;∴原级数收敛. (2)∵f(x)=1x x2+在[1,+ ∞)上非负减,且由1x x x lim 2∞x +⋅+→=1知 ⎰++∞121x xdx 发散;∴原级数发散. (3)∵f(x)=ln(lnx )lnx x 1⋅⋅在(3,+ ∞)上非负减,且⎰+∞3f(x )dx=⎰+⋅⋅∞3ln(lnx )lnx x 1dx=⎰+∞ln(ln3)u1du ,积分发散;∴原级数发散.(4)∵f(x)=qp (lnlnx )x (lnx )1在(3,+ ∞)上非负减,且 ⎰+∞3f(x )dx=⎰+∞3q p (lnlnx )x (lnx )1dx=⎰+∞ln(ln3)q 1)u -(p ue 1du , 当p=1时,⎰+∞3f(x )dx=⎰+∞ln(ln3)q u1du ;若q>1,收敛;若q ≤1,发散. 当p ≠1时,取t>1,有q 1)u -(p t∞u u e 1u lim ⋅+→=1)u -(p q -t ∞u e u lim +→=⎩⎨⎧<∞+>1p 1p 0,,, ∴当p>1或(p=1且q>1)时,由积分收敛知原级数收敛; 当p<1或(p=1且q ≤1)时,由积分发散知原级数发散.10、判别下列级数的敛散性:(1)∑1-2n n -n ;(2)∑+na 11 (a>1);(3)∑n 2nlnn ;(4)∑n n n n!2; (5)∑n n n n!3;(6)∑lnn 31;(7)∑+⋯++)x (1)x x)(1(1x n2n(x>0). 解:(1)∵1-2n n -n >1-2n 1(n ≥3),又级数∑1-2n 1发散,∴原级数发散. (2)∵n a 11+<n a 1,又当a>1时,等级级数∑na1收敛,∴原级数收敛. (3)n1n ∞n u u lim++→=n1n ∞n 2nlnn 21)1)ln(n (n lim ++→++=nlnn 21)1)ln(n (n lim ∞n +++→=21<1,∴原级数收敛. (4)∵n1n ∞n u u lim++→=n n 1n 1n ∞n n n!21)(n 1)!2(n lim +++→++=n∞n 1n n 2lim ⎪⎭⎫ ⎝⎛+⋅+→=e2<1,∴原级数收敛. (5)∵n1n ∞n u u lim++→=nn 1n 1n ∞n n n!31)(n 1)!3(n lim +++→++=n∞n 1n n 3lim ⎪⎭⎫ ⎝⎛+⋅+→=e3>1,∴原级数发散. (6)3lnn =n ln3,又ln3>1,∴∑ln3n 1收敛,∴原级数收敛. (7)n1n ∞n u u lim++→=1n ∞n x 1xlim++→+=⎪⎩⎪⎨⎧<=<><1x x 1x 1211x 10,,∴原级数收敛.11、设{a n }为递减正项数列,证明:级数∑∞=1n n a 与∑∞=0m 2m ma 2同敛散性.证:记两个级数的部分和分别为S n , T n ,由{a n }为递减正项数列知: S n <n2S ≤a 1+(a 2+a 3)+…+(n2a +…+121n a -+)≤a 1+2a 2+…+2n n2a =T n ,∴当级数∑∞=0m 2mma 2收敛时,级数∑∞=1n n a 也收敛.又n2S =a 1+a 2+(a 3+a 4)+…+(121n a +-+…+n2a )≥21a 1+a 2+2a 4+…+2n-1n2a =21T n , ∴当级数∑∞=1n n a 收敛时,级数∑∞=0m 2m ma 2也收敛. 得证!12、用拉贝判别法判别下列级数的敛散性: (1)12n 1(2n)421)-(2n 31+⋅⋯⋅⋯⋅∑;(2)∑+⋯++n)(x 2)1)(x (x n!(x>0). 解:(1)∵⎪⎪⎭⎫ ⎝⎛-++→n 1n ∞n u u 1n lim =6n 104n 5n 6n lim 22∞n ++++→=23>1,∴原级数收敛. (2)当x=1时,原级数为∑+1n 1发散,又⎪⎪⎭⎫ ⎝⎛-++→n 1n ∞n u u 1n lim =1x n xn lim ∞n +++→=x , ∴当x>1时,原级数收敛;当0<x ≤1时,原级数发散.13、用根式判别法证明级数∑n(-1)--n 2收敛,并说明比式判别法对此级数无效.证:∵n n∞n u lim +→=n (-1)-n -∞n n2lim +→=n(-1)-1-∞n n2lim +→=21<1,∴原级数收敛.又n 1n ∞n u u lim ++→=n 1n (-1)-n -(-1)-1--n ∞n 22lim ++→=n1n )1((-1)--1∞n 2lim -++→+=⎪⎩⎪⎨⎧><为偶数为奇数n 12n 181,,,可见, 比式判别法对此级数无效.14、求下列极限(其中p>1): (1)⎥⎦⎤⎢⎣⎡+⋯+++++→p p p ∞n (2n)12)(n 11)(n 1lim ;(2)⎪⎪⎭⎫ ⎝⎛+⋯+++++→2n 2n 1n ∞n p 1p 1p 1lim . 解:(1)∵当p>1时,级数∑p n1收敛,由柯西准则知,任给ε>0,存在N ,当n>N 时,有pp p (2n)12)(n 11)(n 1+⋯++++<ε, ∴⎥⎦⎤⎢⎣⎡+⋯+++++→p p p ∞n (2n)12)(n 11)(n 1lim =0. (2)∵当p>1时,等级级数∑n p1收敛,由柯西准则知, 任给ε>0,存在N ,当n>N 时,有2n 2n 1n p1p 1p 1+⋯++++<ε, ∴⎪⎪⎭⎫⎝⎛+⋯+++++→2n 2n 1n ∞n p 1p 1p1lim =0.15、设a n >0,证明数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑n a 同敛散性. 解:数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑+)a ln(1n 有相同的敛散性. 又当级数∑n a 或∑+)a ln(1n 收敛时,都有n ∞n a lim +→=0,∴nn ∞n a )a 1ln(lim++→=1. 由比较判别法知∑+)a ln(1n 与∑n a 有相同的敛散性. ∴数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑n a 同敛散性.。

数学分析之十三章函数列与函数项级数

数学分析之十三章函数列与函数项级数

连续 .即证: 对 0 , 0 , 当 | x x0 | 时, | f (x) f (x0 ) | . )
| f (x) f (x0) || f (x) fn(x) | | fn(x) fn(x0) | | fn(x0) f (x0) |
估计上式右端三项. 由一致收敛 , 第一、三两项
说明: 虽然函数序列 sn ( x) xn 在( 0, 1 )内处处 收敛于 s( x) 0 , 但 sn ( x)在( 0, 1 )内各点处收
敛于零的“快慢”程度是不一致的.
从下图可以看出:
y y sn ( x) x n (1,1)
n1
n2
n n410
n 30
o
1x
注意:对于任意正数r 1,这级数在[0,r] 上 一致收敛.
lim
n
sn
(
x)
s(
x)
lim
n
rn
(
x)
0
(x在收敛域上)
注意 函数项级数在某点x的收敛问题,实质上 是数项级数的收敛问题.
例 1 求级数 (1)n ( 1 )n的收敛域. n1 n 1 x 解 由达朗贝尔判别法
un1( x) n 1 1 (n )
un ( x) n 1 1 x 1 x
註 定理表明: 对于各项都连续且一致收敛
的函数列{ f n (x) }, 有
lim lim
xx0 n
fn (x)
lim lim
n xx0
fn (x)
即极限次序可换 .
3. 可积性定理
若在区间 [ a ,b ] 上函数列{ fn (x) }一致收
敛 , 且每个 f n (x) 在[ a , b ] 上连续. 则有

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档