钛合金超塑性研究及应用现状
国内外钛合金研究的发展现状及趋势
国内外钛合金研究的发展现状及趋势钛合金作为一种重要的结构材料,具有低密度、高强度、良好的耐腐蚀性和优异的高温性能等特点,因此在航空航天、汽车制造、医疗器械和能源领域等众多领域有着广泛的应用。
随着技术的进步和需求的增加,钛合金研究正不断取得新的突破,呈现出以下发展现状和趋势。
一、国内外钛合金研究的发展现状1.1 国内发展现状我国钛合金研究始于20世纪50年代末,经过几十年的发展,已经取得了显著成果。
目前,我国已经建立了一批具有国际领先水平的钛合金研发和生产基地,如中国航空工业集团公司、中国船舶重工集团公司等。
同时,我国还建立了完善的钛合金材料标准体系和质量监测体系,提高了钛合金材料的质量和可靠性。
1.2 国外发展现状国外钛合金研究起步较早,已经形成了较为完善的产业体系。
美国、俄罗斯、日本和欧洲等国家和地区在钛合金研究和应用方面具有很强的实力。
这些国家和地区在钛合金材料制备、加工和应用等方面积累了丰富的经验,并取得了一系列重要的科研成果。
二、国内外钛合金研究的发展趋势2.1 新材料的研发随着科技的进步,越来越多的新材料被应用于钛合金领域。
例如,纳米材料、复合材料和多功能材料等,这些材料具有更好的性能和更广泛的应用前景。
因此,未来的钛合金研究将更加注重新材料的研发,以提高钛合金的性能和应用范围。
2.2 制备技术的创新钛合金的制备技术是钛合金研究的重要方向之一。
当前,粉末冶金、熔体冶金和快速凝固等制备技术已经取得了一定的成果。
未来,钛合金研究将更加注重制备技术的创新,以提高钛合金的制备效率和质量。
2.3 加工技术的改进钛合金的加工技术对于提高钛合金的应用性能至关重要。
目前,锻造、轧制、拉伸和挤压等加工技术已经得到广泛应用。
未来,钛合金研究将更加注重加工技术的改进,以提高钛合金的加工性能和产品质量。
2.4 应用领域的拓展随着技术的发展和需求的增加,钛合金在航空航天、汽车制造和医疗器械等领域的应用将越来越广泛。
TC4钛合金晶粒细化及超塑性研究
第15卷第4期2008年8月塑性工程学报J OU RNAL OF PL ASTICIT Y EN GIN EERIN GVol 115 No 14Aug 1 2008TC4钛合金晶粒细化及超塑性研究(西北工业大学材料学院,西安 710072) 王 敏 郭鸿镇摘 要:文章采用形变复合热处理方法对过热组织TC4钛合金进行了组织细化机理及超塑性能研究,结果表明,(α+β)两相区的低温多火次不均匀大变形能增加变形体内的畸变能,提高α和β晶粒的再结晶形核率;提高锻造后的冷却速度能抑制冷却过程中α相在β晶界和晶内的形核和长大,并形成马氏体组织(α′),细针状α′在随后加热锻造时容易破断并形成细小α晶粒;变形后800℃再结晶退火使α相进一步球化,最终形成两相分开度较大的、均匀细小的等轴α+β转变组织,经测定α晶粒直径为2μn ~5μn 。
在最佳工艺条件下,细化后TC4的延伸率可达188117%。
关键词:钛合金;微细化;形变复合热处理;机理中图分类号:T G 14 文献标识码:A 文章编号:100722012(2008)0420155204Study on superplasticity and f ine 2grained of TC4alloyWAN G Min GUO Hong 2zhen(School of Material Science ,Northwestern Polytechnical University ,Xi πan 710072 China )Abstract :Using composite ausform method ,the fine 2grained mechanism of TC4alloy with overheating structure was investigated in the paper.The results show that :The inhomogeneous severe deformation in low temperature zone of (α+β)area can enhance distortion energy of deforming body and increase recrystallizing nucleation rate of α2grain and β2grain.Increasing cooling speed af 2ter forging can restrain nucleation and growth of α2phase on βcrystal boundary ,and form martensite structure (α′).During sub 2sequent forging process ,the fine acicular α′is easy to be broken and to form fine α2grain.After deformation ,recrystallizing an 2nealing of 800℃makes α2phase more sphering and forms fine uniform and equiaxial α+βtransforming structures.The measuredα2grain size is in the range of 2μm ~5μm.In the optimal process parameters ,the elongation of TC4after composite ausform can arrive at 188117%.K ey w ords :titanium ;ultrafine ;composite ausform ;mechanism王 敏 E 2mail :wangmin @nwpu 1edu 1cn作者简介:王 敏,女,1959年生,陕西人,西北工业大学,副教授收稿日期:2007206221;修订日期:2008207204 引 言国产TC4属于(α+β)两相钛合金,兼有α和β钛合金的优点,具有较高的比强度、热强性和较好的综合力学性能,是最为广泛应用的一种钛合金。
钛合金超塑成形工艺方法研究
钛合金超塑成形工艺方法研究摘要:针对钛合金板材在常温下弹性大、成形困难的问题,提出了一种利用钛合金在高温下具有超塑性的特征进行超塑成形的工艺方法。
本文以TC4材料板材零件为研究对象,详细介绍了钛合金超塑成形(气胀成形)的具体工艺实施过程以及工艺参数的设置等,为超塑成形工艺的应用提供了指导规范。
关键词:钛合金板料;超塑成形;工艺流程;工艺参数0引言钛合金具有抗疲劳、比强度高、耐腐蚀耐高温、一定的形状记忆性能、优越的力学性质、化学性质稳定等优点[1],随着航空航天技术的发展,钛合金在航空航天领域的应用范围不断扩展,钛合金结构件越来越呈现出大尺寸、薄壁曲面、变厚度和整体结构的趋势,进一步提高了航空航天飞行器的性能、结构刚性,减轻了重量,因此钛合金成形技术也成为航空航天制造技术的研究重点。
超塑成形技术是利用材料的超塑性来成形零件的一种工艺方法(在本文中超塑成形是指板材的气胀成形),它具有成形的零件结构设计自由度大、所需模具结构简单、所需成形设备吨位小投资少等特点,因此用超塑性气压胀形可以进行整体设计,减少工序和工装数量,降低工时和费用。
1材料控制按本文进行超塑成形工艺时,TC4钛合金板材的规格、化学成分、室温和高温机械性能及供货条件应符合GB/T 3621-2007的要求,Ti-6Al-4V钛合金板材的规格、化学成分、室温和高温机械性能及供货条件应符合AMS 4911的要求,且应有材料合格证。
成形前应检查表面质量,不允许材料表面存在起皮、夹杂物及超过标准要求的划伤、压痕、裂纹等缺陷。
运输和存放过程中应注意防止表面划伤。
超塑成形时需要用到辅助材料,主要包括清洗剂、保护涂料(包括润滑剂)等。
常用的清洗剂包括丙酮、无水乙醇、金属清洗剂等,其主要作用是清除表面油污。
保护涂料主要包括高温漆、氮化硼、胶体石墨、润滑剂等,其主要目的是在零件成形时起到润滑作用和加热时起到防止(减轻)材料表面氧化作用。
所选辅助材料不应对钛合金零件产生有害影响,并符合相应的国家标准、行业标准或专用技术标准,若无相关标准的新型辅助材料,则采取试用可行的材料,辅助材料应有生产厂家质量保证单或合格证。
试析钛合金技术发展现状以及趋势
试析钛合金技术发展现状以及趋势钛合金技术是一种重要的金属材料的开发和应用领域,具有广泛的应用前景。
本文将从钛合金技术的发展现状和趋势两个方面进行探讨,以期给读者带来全面的了解。
我们来看一下钛合金技术的发展现状。
钛合金是一种具有优异性能的金属材料,它具有高强度、低密度、耐腐蚀、耐高温等优点,并且具有良好的可塑性和可焊性。
因此,钛合金被广泛应用于航空航天、汽车、医疗器械等领域。
目前,钛合金的生产工艺和加工技术已经取得了显著的进展。
采用粉末冶金法、熔模铸造法、等离子熔化沉积法等先进工艺,可以制备出具有复杂形状和高性能的钛合金制品。
此外,钛合金的表面处理技术也得到了快速发展,如阳极氧化、化学镀、电镀等方法可以改善钛合金的表面性能,提高其耐腐蚀性和装饰性。
钛合金技术的发展是一个不断推陈出新的过程。
在未来的发展中,钛合金技术将继续朝着以下几个方向发展。
钛合金的合金化技术将得到进一步改进。
通过添加不同的合金元素,可以改变钛合金的组织结构和性能,从而满足不同领域的需求。
例如,添加铝元素可以提高钛合金的强度和耐热性能,添加锆元素可以提高钛合金的耐腐蚀性能。
因此,钛合金的合金化技术将成为未来的研究重点。
钛合金的制备工艺将更加先进和高效。
随着科学技术的不断进步,制备钛合金的工艺也在不断革新。
新的制备工艺可以提高钛合金的制备效率和质量,并且可以实现对钛合金材料的精确控制。
例如,等离子熔化沉积技术可以实现高精度的三维打印,大大提高了钛合金制品的制造效率和质量。
钛合金的应用领域将进一步扩展。
随着科技的不断发展,钛合金的应用领域将越来越广泛。
例如,在航空航天领域,钛合金可以用于制造飞机的结构件、发动机部件等;在汽车领域,钛合金可以用于制造汽车的车身、发动机等;在医疗器械领域,钛合金可以用于制造人工关节、牙科植入物等。
因此,钛合金的应用前景非常广阔。
钛合金技术是一种具有巨大潜力和广泛应用前景的技术。
通过不断发展和创新,钛合金技术将在材料科学领域发挥重要作用,为人类社会的发展做出更大的贡献。
钛合金应用研究论文
钛合金应用研究论文摘要:综述了钛合金材料的应用及研究现状,着重介绍了钛及钛合金的主要特性,加工性能及其在航空航天、军事工业和汽车制造方面的应用,并在此基础上展望了钛合金的发展方向。
关键词:钛合金特性加工性能应用领域Ti在地壳中的丰度为0.56%(质量分数,下同),在所有按元素中居第9位,而在可作为结构材料的金属中居第4位,仅次于Al、Fe、Mg,其储量比常见金属Cu,Pb,Zn储量的总和还多。
我国钛资源丰富,储量为世界第一。
钛合金的密度小,比强度、比刚度高,抗腐蚀性能、高温力学性能、抗疲劳和蠕变性能都很好,具有优良的综合性能,是一种新型的、很有发展潜力和应用前景的结构材料。
近年来,世界钛工业和钛材加工技术得到了飞速发展,海绵钛、变形钛合金和钛合金加工材的生产和消费都达到了很高的水平,在航空航天领域、舰艇及兵器等军品制造中的应用日益广泛,在汽车、化学和能源等行业也有着巨大的应用潜力。
一、钛及钛合金的特性钛及钛合金具有许多优良特性,主要体现在如下几个方面:1.强度高。
钛合金具有很高的强度,其抗拉强度为686—1176MPa,而密度仅为钢的60%左右,所以比强度很高。
2.硬度较高。
钛合金(退火态)的硬度HRC为32—38。
3.弹性模量低。
钛合金(退火态)的弹性模量为1.078×10-1.176×10MPa,约为钢和不锈钢的一半。
4.高温和低温性能优良。
在高温下,钛合金仍能保持良好的机械性能,其耐热性远高于铝合金,且工作温度范围较宽,目前新型耐热钛合金的工作温度可达550—600℃;在低温下,钛合金的强度反而比在常温时增加,且具有良好的韧性,低温钛合金在-253℃时还能保持良好的韧性。
5.钛的抗腐蚀性强。
钛在550℃以下的空气中,表面会迅速形成薄而致密的氧化钛膜,故在大气、海水、硝酸和硫酸等氧化性介质及强碱中,其耐蚀性优于大多数不锈钢。
二、钛及钛合金的加工性能1.切削加工性能钛合金强度高、硬度大,所以要求加工设备功率大,模具、刀具应有较高的强度和硬度。
国内外钛及钛合金材料技术现状_展望与建议
国内外钛及钛合金材料技术现状_展望与建议钛及钛合金材料是一种重要的结构材料,具有优异的特性,广泛应用于航空航天、船舶、能源、汽车、医疗器械等领域。
然而,国内和国外在钛及钛合金材料技术上还存在一些差距。
在当前全球经济一体化的大背景下,我们需要关注国内外钛及钛合金材料技术现状,并展望未来发展趋势,提出相应的建议。
首先,国内外钛及钛合金材料技术的现状有以下几点差距:1.材料研发能力不足:国内在钛及钛合金材料的研发上相对滞后于国外。
国外已经形成了一系列的研发体系,拥有雄厚的科研实力和先进的技术手段,而国内钛及钛合金材料的研发还处于初级阶段。
2.制备工艺不成熟:国内制备钛及钛合金材料的工艺流程相对较为落后,特别是在实际生产方面,存在着制备工艺不稳定、退火工艺不完善等问题。
与国外相比,国内制备钛及钛合金材料的技术水平有待提高。
3.标准体系不健全:国内钛及钛合金材料的标准体系还不完善,缺乏统一的材料检测标准和材料质量评价体系。
这导致了产品质量参差不齐,难以满足市场需求。
展望未来,我们应该加强钛及钛合金材料技术的研发,提高核心竞争力。
以下是一些建议:1.加强国际合作:国内应与国外的知名大学、科研机构和企业加强合作,共享资源和技术优势,推动钛及钛合金材料的研发与应用。
2.提高制备工艺:国内应加大对钛及钛合金材料制备工艺的研究力度,提高制备工艺的稳定性与可控性,降低生产成本。
3.建立标准体系:国内应建立完善的钛及钛合金材料标准体系,参照国际标准,制定适应国情的标准,提高产品质量。
4.加大人才培养力度:国内应加大对钛及钛合金材料领域的人才培养力度,鼓励青年学者和工程师从事相关研究和开发工作,提高国内钛及钛合金材料技术的创新能力。
5.推动产学研结合:国内应积极推动钛及钛合金材料的产学研结合,促进科研成果的转化与应用,提升钛及钛合金材料产业的竞争力。
总之,国内外钛及钛合金材料技术的发展现状存在差距,但也面临巨大的机遇和挑战。
国外钛合金研究的现状
2.1.4
KSTi-19合金
日本神户制钢所最近研制出了一种命名为KSTi.19的新型钛合金,其名义化学成分为Ti一4.5A1.
2Mo-1.6V-0.5Fe-0.3Si,是一种o【a D两相钛合金。这种合金具有优良的加工性能,采用热轧工艺可
以代替传统的叠轧方法成功生产出厚度为0.8毫米的薄板,是Ti一6AI-4V合金的替代合金之一。 由于加工性能的限制,Ti・6A1—4V合金只能采用叠轧方法来生产薄板,但由于工艺复杂,成本 高,限制了Ti一6A1—4V合金薄板的民用推广。KSTi-19合金的研制成功,使钛合金薄板的成本下降,扩 展了钛合金的应用范围。目前,该合金薄板已投入正式生产,它主要应用干高尔夫球杆。据报道, 高尔夫球杆使用这种材料后,可使杆头变细、坚固,重量减轻。在此之前,高尔夫球杆头的顶部、
与退火态Ti一6AI-4V合金相比,有较高的强度、较低的弹性模量及较高的断裂韧性。 用Zr、Nb、Ta、Pd和Sn作为合金元素来改善钛合金力学性能、耐蚀性和生物相容性是开发生物 钛合金的主要途径。如开发出的Ti一15Mo一5Zr-3AI(时效态)及Ti.15Sn.4Nb.2Ta一0.2Pd(时效态)的 强度较高;Ti一29Nb-13Ta-4.6Zr合金的耐磨性和力学性能都接近于Ti一6AI.4V合金,且弹性模量更接近
大量使用在飞机的起落架上,该合金的淬透性更好,俄罗斯的VSMPO联合体分别用p锻和o【+D锻
制造了该合金的大型锻件。另外俄罗斯研制的VST3553(Ti一3AI-5Mo-5V-3Cr)是用于紧固件的钛 合金,其强度和加工性能均优于Ti-64。在承压管路系统研制成功一种新的钛合金VST3331(Ti.3AI. 3V-3Mo一1Zr),其强度比Ti一3A1—2.5V高30%左右。高强可焊钛合金T-110(Ti.5.5AI一1.2Mo.1.2V-4Nb. 2Fe)为Antonov飞机的重型构架设计,合金同BT22的力学性能相当,但具有优良的焊接性能,焊接强 度系数可达0.95,优良的焊接性能是由于同晶型的D稳定元素溶于o【相中,有利于Fe等元素的均匀 分布,Zr的加入细化晶粒,减少了间隙元素在晶界的偏析,典型的力学性能为Rm)1100MPa、A≥
TC4合金超塑性变形行为及其评价机制研究
TC4合金超塑性变形行为及其评价机制研究近年来,随着钛合金的广泛应用,钛合金的超塑性等温锻造技术在航空宇航制造领域,特别是引擎的压气机叶片和大型航空复杂锻件的生产上展现出巨大的优势和应用前景。
超塑性等温锻造技术解决了传统钛合金锻造技术上的诸如变形抗力大、易开裂、设备吨位要求高等难题。
但是不同牌号的钛合金在超塑性能上存在巨大差异,这就大大限制了模具和锻件设计的余度,不利于发挥钛合金超塑性在提高材料利用率和精确成形上的巨大优势。
因此研究钛合金的塑性评价机制对于指导其在工程方面的应用极具现实意义。
本文以TC4钛合金为例,利用CMT4104型电子拉伸试验机和Gleeble-3500型热模拟试验机,进行高温拉伸和压缩实验。
研究了该牌号钛合金在拉伸和压缩状态下的超塑性流变特征,并建立TC4钛合金的超塑性本构方程。
研究显示:TC4合金在高温塑性变形时,流变应力随应变速率的增加而升高,随温度的升高而显著降低,同时TC4合金在变形温度>850℃,应变速率<10-2S-1时,其流变行为表现出超塑性变形特征。
求得其超塑性本构模型满足以下函数关系:ε=3.79×10<sup>12</sup>[sinh(0.011914σ)]<sup>4.83</sup>exp[-313.124×10<sup>3</sup>/(RT)]其次本文分析并确定钛合金在超塑性镦挤状态下鼓形区的损伤机制,通过实验测定韧性损伤阀值C和临界空穴扩张比VGC,进而确定超塑性镦挤试验的极限压下量并求得镦挤率λ的函数关系。
结果表明:(1)TC4合金在常温下的断裂机制为混合型断裂,在超塑性状态下的断裂机制为韧性断裂。
借助空穴扩张比理论及Cockcroft&Latham准则,建立的预测TC4合金在镦挤试验侧表面开裂的判据,可以作为镦挤试验的终止条件。
(2)TC4合金在超塑性变形时的空穴扩张比VGC≈0.88,在拉伸状态下损伤阀值C=3.15,多应力状态下的损伤阀值C=0.932。
国内外钛合金研究及应用现状
国内外钛合金研究及应用现状近年来,钛合金在国内外各行各业都得到广泛的应用,研究跨越了材料物理和化学,机械设计,生产工艺,涂敷工艺,智能制造,组装,维修和维护等多学科领域,这种多学科交叉性得到了国内外的广泛关注和深入研究,从而推动了钛合金的发展和实用化。
钛合金的特点是结构紧凑,耐腐蚀性强,耐热性好,延伸性和抗冲击性也非常出色,因此被广泛应用于航空航天,汽车,医疗,电力,建筑等行业,而且由于其低密度和轻量特点,更能够满足提高制造效率,减少能源消耗,减少污染的要求。
目前,国内外钛合金研究主要集中在材料特性、制备技术、新型钛合金的研发等方面。
先,关于材料性能的研究,国内外的研究者着重研究钛合金的强度、塑性、焊接性和耐腐蚀性等力学性能,以拓展其性能,满足不同环境下用途的需求。
其次,关于制备技术的研究,主要是研究高性能钛合金的制备工艺,以提高其材料性能,降低生产成本。
最后,关于新型钛合金研发方面,目前有多学科交叉研究,包括聚合物增强钛合金、复合材料、添加剂改性等,从而进一步拓展钛合金的应用范围,满足不同行业的多样化需求。
在实际应用方面,钛合金目前主要用于航空航天、汽车、医疗、电力、建筑等行业,特别是航空航天领域的应用最为广泛,主要是因为钛合金的低密度、重量轻、高强度、耐腐蚀性良好等特点,能够充分地满足航空航天装备的要求,比如飞机发动机,航空航天机械件和结构零件等,这些应用使得钛合金在航空航天领域得到了广泛的应用。
此外,还有越来越多的行业开始尝试使用钛合金,比如汽车、电力行业,利用它们的可塑性,建造轻量化的汽车零部件,减轻汽车质量,降低汽车节油,以及在高速公路、铁路、桥梁等高精尖的土木工程中,使用钛合金制作可靠的抗腐蚀结构件,从而提高了建筑物的抗侵蚀性,维护了高速公路和铁路等行业的安全性和可靠性。
总而言之,钛合金在国内外各行各业的研究和应用都得到了广泛的关注,以提高性能、节约能源、降低污染等多方面都有着重要作用,推动了钛合金的发展和实用化。
钛合金技术发展现状及趋势
钛合金技术发展现状及趋势
钛合金是一种具有高强度、低密度、耐腐蚀等优良性能的金属材料,
被广泛应用于航空、航天、汽车、医疗等领域。
随着科技的不断进步,钛合金技术也在不断发展,未来的趋势是什么呢?
目前,钛合金技术的发展主要集中在以下几个方面:
1. 新材料的研发
钛合金的种类越来越多,不同的合金具有不同的性能,如高强度、高温、高耐腐蚀等。
目前,研究人员正在不断探索新的钛合金材料,以
满足不同领域的需求。
2. 制备工艺的改进
钛合金的制备工艺对其性能有着重要影响。
目前,研究人员正在探索
新的制备工艺,如粉末冶金、等离子烧结等,以提高钛合金的性能和
降低成本。
3. 应用领域的拓展
钛合金在航空、航天、汽车、医疗等领域已经得到广泛应用,未来还
有很大的拓展空间。
例如,钛合金可以用于制造海洋工程设备、核电
设备等。
未来,钛合金技术的发展趋势主要有以下几个方面:
1. 多功能化
随着人们对钛合金性能要求的不断提高,未来的钛合金将具有更多的
功能,如自修复、自清洁、自感应等。
2. 精细化
未来的钛合金将更加精细化,具有更高的强度、更低的密度、更好的
耐腐蚀性能等。
3. 绿色化
钛合金的制备过程中会产生大量的废水、废气等污染物,未来的钛合
金制备将更加环保,减少对环境的影响。
总之,钛合金技术的发展前景广阔,未来的钛合金将具有更多的功能、更高的性能和更好的环保性能。
Ti-15-3钛合金的超塑性
T i-15-3 合金是一种新型的亚稳定 型钛合 金[ 1] , 名义 成分是 T i-15V -3A l-3Cr-3Sn, 1978 年 在美国空军的资助下由美国内华达·亨德森钛金 属有限公司和蒂梅特( T IM ET ) 金属分部及加利 福 尼亚 霍 索恩 有 限公 司 航空 分部 共 同研 制 成 功[ 2] , 适合于带材冷轧生产。该合金不但具有钛合 金所共有的高比强度、耐蚀等优良特性, 还具有优 异的冷加工特性、生产成本较低、可热处理强化等 诸多优点, 成为一种理想的航空航天结构材料[ 3] , 已被加工成铸件、锻件、管材、板材等在航天航空 工业得到了广泛的应用[ 1, 2, 4~10] 。但由于生产加工 手段和工艺的限制, 再加上 T i-15-3 合金本身所 固有的低塑性、低硬化参数、高变形抗力和高回弹 性等特点[ 11] , 采用冷成形制造复杂形状的构件时 有较大的困难, 严重制约了该合金的应用。具有成 本低、能成形复杂构件和工艺简单等优点的超塑 性成形技术, 为这一问题的解决提供了一条重要 的可行途径。因此, T i-15-3 合金的超塑性研究对 于指导该合金的超塑性成形和促进其更广泛应用 有 着重 要的意 义。对 T i-15-3 合金的 超塑性 研 究[ 10 , 12~18] 始于上 个世纪 80 年代初, 已 取得了一 些成果。本文总结分析了 T i-15-3 合金超塑性研 究的进展情况, 并展望了发展趋势。
摘要: T i-15-3( T i-15V -3Cr -3Sn-3A l) 合 金是一种在航空航天 工业领域具有广泛 应用前景的亚稳定 型钛合金。 本文介绍了 T i-15-3 合金的性能特点和应用, 总结和评价 了固溶态、热轧态和冷轧态 T i-15-3 合金超塑性研 究的 进展情况。针对 已取得的成果和研究 中存在的问题, 对 T i-15-3 合 金超塑性的进一步研 究提出了一些看法 并作 了展望。 关键词: T i-15-3; 亚稳定 钛合金; 超塑性; 动态再结晶 ; 晶界滑动 中图分类号: T G 136 文献标识码: A 文 章编号: 1005-5053( 2003) 04-0052-07
钛合金的发展现状及应用前景
钛合金的发展现状及应用前景钛合金是一种具有优异性能的金属材料,其具有高强度、高刚度、低密度、耐腐蚀等特点,被广泛应用于航空、航天、医疗、能源、汽车、化工等领域。
在未来,随着科学技术的不断发展,钛合金的应用前景将更加广阔。
首先,钛合金的制备技术得到了显著提升。
随着材料工艺的不断改进创新,钛合金制备技术从单一的熔化法发展到了粉末冶金、表面改性、复合材料等多个领域,能够满足不同应用场景的需求。
同时,钛合金的制备成本也逐渐降低,进一步促进了其在各个行业的应用。
其次,钛合金在航空航天领域的应用越发广泛。
钛合金具有低密度和高强度的特点,使得它成为飞机、航天器等航空器件的理想材料。
例如,钛合金在飞机结构、发动机部件、螺旋桨等方面的应用已经非常成熟。
而且,随着航空航天技术的不断进步,对钛合金的需求将会进一步增加。
再次,钛合金在医疗领域有着广泛的应用前景。
由于钛合金具有良好的生物相容性和耐腐蚀性能,被广泛应用于人体骨骼修复、人工关节、牙科种植等领域。
随着人口老龄化趋势加剧,对医疗器械的需求将会进一步增加,钛合金在医疗领域的应用前景非常广阔。
此外,钛合金在能源、化工、汽车等领域也显示出了巨大的潜力。
钛合金可以用于制造高温耐腐蚀的燃烧器、炉子等能源装备,并且在太阳能、风能等领域也有着广泛的应用前景。
同时,钛合金在汽车制造领域可以用于制造减重部件,提高汽车耐用性和燃油效率。
总之,钛合金作为一种优质的金属材料,在航空、航天、医疗、能源、化工、汽车等领域具有重要的应用价值。
作为一种高强度、高刚度、低密度、耐腐蚀的材料,钛合金在未来的应用前景将会越来越广阔。
随着科技的进步和制备技术的提升,钛合金将能够更好地满足不同行业的需求,为人们的生活和工作提供更多的便利和发展机遇。
钛合金超塑性研究及应用现状
文章编号:100321545(2004)0620034205钛合金超塑性研究及应用现状李 梁,孙建科,孟祥军(洛阳船舶材料研究所,河南 洛阳 471039)摘 要:本文对钛合金超塑性研究和应用进行了综述,并对钛合金超塑性的发展方向进行了展望。
关键词:钛合金;超塑性;超塑性成形;应用中图分类号:TG 146.23 文献标识码:B收稿日期:2004203224作者简介:李梁,男,1979年生,洛阳船舶材料研究所硕士研究生。
金属的超塑性是指材料在一定的内部条件(如晶粒形状、尺寸和相变等)和外部条件(如温度、应变速率等)下,呈现出异常低的流变抗力及异常高的流变性能(例如百分之几百以上的伸长率)的现象。
金属材料的这种物理现象最早见报道是在1920年[1]。
从20世纪60年代起,世界各国在超塑性材料、力学、机理和成形等方面进行了大量的研究,并初步形成了比较完整的理论体系。
特别值得注意的是,近几十年来金属超塑性已在工业生产领域获得了较为广泛的应用。
一些超塑性的Zn 合金、T i 合金、Al 合金、Cu 合金以及黑色金属等以其优异的变形性能和材质均匀等特点,在航空航天以及汽车的零部件生产、工艺品制造、仪器仪表壳罩件和一些复杂形状构件的生产中起到了不可替代的作用[2,3]。
本文着重对钛合金超塑性及应用情况作以综述。
1 钛合金超塑性的研究概况钛合金由于比强度高、抗疲劳、耐腐蚀,能在600℃左右温度下使用,在常温下化学稳定性良好,在航空、航天、化工等工业中的应用不断扩大。
但是,钛合金的屈强比高,弹性模量低,在加工后易产生各向异性及回弹。
因此,各国对钛合金超塑性进行了深入研究,包括机理、成形条件、模具、模具材料和加工方法等。
超塑性合金在拉伸时,呈现无缩颈的超塑性变形,应变硬化可忽略不计,其变形应力主要依赖应变速率的变化,两者之间有下列关系:σ=K ・・εm 式中σ为流动应力;・ε为应变速率;K 为与材料成分、结构及试验温度有关的常数;m 为流动应力的应变速率敏感性指数。
钛合金超塑性研究的进展
超塑性成形与扩散连接结合技术——即SPF/DB技术。它是利用钛合金在特定的显微组织、温度及拉伸量下,合金的延伸率超过100%的特性进行超塑成形;同时在同等条件下,把温度控制在合金的熔点以下进行焊接,在足够的热量和压力之下,使加工金属的接触面上的原子和分子相互扩散,从而连接成一个整体。钛合金工件在封闭模具中成形,然后在真空或惰性气体环境中进行扩散连接,由于两者加工温度相近,可同时进行这两项工艺,使得钛合金的大型复杂结构件可一次加工成型,得到的工件性能良好且加工成本得到降低。
与普通锻造方法相比,等温锻造具有整个锻造过程中,锻模和锻材始终处于相同的加工温度;锻造速度慢,应变速率小;没有模具激冷、表面氧化和局部过热倾向小;可获得更理想的微观组织和机械性能等优点,故采用等温锻造方法生产的锻件,具有锻件精度高、表面质量好、锻件材料的利用率高和锻件尺寸稳定等优点[6]。
2.2等通道转角挤压
根据文献[4]得知,超塑性特性最好的是α+β型钛合金,α型和β型钛合金稍差。因为α+β型钛合金为两相合金,晶粒本来就细小,在超塑性加工过程中两相相互制约,晶粒难以长大,细晶粒能长时间保持下来,利于超塑性变形。相反,α型和β型钛合金的晶粒不能细化,且α型钛合金中不存在有助于提高超塑性的β相。β型钛合金中,由于不存在α相,β相晶粒可迅速长大。
按变形效应的机理来分,可以将金属的超塑性分为如下三大类:第一类是具有细小等轴晶粒(晶粒细化的程度要达到0.5~5μm,一般不超过10μm)的材料在较高变形温度和较低应变速率下表现出的超塑性称为微晶超塑性或结构超塑性。第二类是在变形过程中由反复的循环相变或同素异形转变诱发的超塑性称为相变超塑性或动态超塑性。第三类是其他类超塑性。如在消除应力退火过程中,在应力作用下金属可以得到超塑性[2]。
钛合金研究新进展及应用现状
钛合金研究新进展及应用现状摘要:综述了钛合金的发展历程及当今的研究应用新进展,并对我国钛合金的应用前景做出展望。
关键词:钛合金;发展;研究;应用1 钛合金的发展历程钛是20 世纪50 年代发展起来的一种重要的结构金属,钛合金因具有比强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。
世界上许多国家如美国、日本、俄罗斯以及中国等都认识到钛合金材料的重要性,并相继对其进行了研究开发,得到了实际应用[1~3]。
美国钛工业起步较早,其规模和技术目前都处在世界领先地位,一开始就注重钛合金材料的基础研究,并以此指导钛合金材料的应用和开发,取得了举世瞩目的成就。
第一个实用的钛合金就是1954年美国研制成功的Ti-6Al-4V 合金,由于它的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,而成为钛合金工业中的王牌合金,该合金使用量已占全部钛合金的75%~85%。
20 世纪50~60 年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金,70 年代开发出一批耐蚀钛合金,80 年代以来,耐蚀钛合金和高强钛合金得到进一步发展。
耐热钛合金的使用温度已从50 年代的400 ℃提高到90 年代的600~650℃。
α2 (Ti3Al)和γ(TiAl)基合金的出现,使钛在发动机的使用部位正由发动机的冷端(风扇和压气机)向发动机的热端(涡轮)方向推进。
结构钛合金向高强、高塑、高强高韧、高模量和高损伤容限方向发展。
目前,美国航空航天用钛量最大,在20世纪80 年代以后设计的各种先进军用战斗机和轰炸机中,钛合金的用量已稳定在20%以上[4,5]。
2 钛合金的研究新进展近年来,各国正在开发低成本和高性能的新型钛合金,努力使钛合金进入具有巨大市场潜力的民用工业领域。
国内外钛合金材料的研究新进展主要体现在以下几方面[6]。
2.1 高温钛合金世界上第一个研制成功的高温钛合金使用温度仅为300~350 ℃。
随后相继研制出使用温度达400℃的IMI550,BT3-1 等合金,以及使用温度为450~500 ℃的IMI679,IMI685,Ti-6246,Ti-6242 等合金。
低温超塑性钛合金的超塑性研究
第26卷 第5期2006年10月航 空 材 料 学 报J OURNAL OF A ERONAUT ICAL MAT ER I A LSV o.l 26,N o .5O ctober 2006低温超塑性钛合金的超塑性研究曾立英,赵永庆,李丹柯,李 倩(西北有色金属研究院,西安710016)摘要:对一种超塑性温度相对较低的双相钛合金SPZ 的超塑性能进行了研究。
结果表明:740~800e ,应变速率恒为1.11@10-3s -1时,SPZ 合金的最大拉伸延伸率均超过1600%;760b C ,合金的超塑延伸率可高达2149%。
760e ,应变速率高达1.11@10-2s -1时,合金的超塑延伸率仍可达1380%。
也就是说,700e /1hAC 处理后,SPZ 合金在试验温度范围内具有低温高速超塑性。
SE M 观察发现,超塑变形前,合金的晶粒细小均匀,平均晶粒尺寸只有0189L m;应变速率为2122@10-3s -1,740e ,760e 变形后SPZ 合金的晶粒尺寸分别为1151L m,2133L m 。
超塑性变形的微观机制是以晶界滑动为主,晶内变形以及位错蠕变起了协调作用。
关键词:低温超塑性;双相钛合金;延伸率;细晶组织;变形机制中图分类号:TG 146.23 文献标识码:A 文章编号:2005-5053(2006)05-0006-04收稿日期:2005-04-21;修订日期:2005-10-20作者简介:曾立英(1970)),女,高级工程师,硕士,(E -m a il)ZENG -l y @163.co m 。
一些超塑性钛合金因变形性能优异,在航空航天、汽车制造等工业部门的应用前景越来越广阔,尤其适宜用于制备形状复杂的构件[1]。
目前用途最广泛的超塑性钛合金为T-i 6A -l 4V 合金[1],T -i 6A -l 4V 合金在900e 左右具有最佳超塑性,最大超塑性延伸率可达2000%。
但T-i 6A -l 4V 合金在900e 成形加工的成本较高;模具材料需耐高温和抗氧化;合金的超塑性成型通常需在惰性气体保护中进行;超塑成形后,成型部件需进行表面修磨以去除a 脆性层。
钛及钛合金的应用现状与发展趋势分析
1. 钛及钛合金的应用现状与发展趋势分析钛及其合金具有重量轻、强度大、耐热性强、耐腐蚀等许多优特性,被誉为“未来的金属”,是具有发展前途的新型结构材料。
钛及其合金不仅在航空、宇宙航行工业中有着十分重要的应用,而且已经开始在化工、石油、轻工、冶金、发电等许多工业部门中广泛应用。
1.1. 钛在化工等部门的应用钛的另一个显著特点是耐腐蚀性强,这是由于它对氧的亲合力特别大,能在其表面上生成一层致密的氧化膜,可保护钛不受介质腐蚀。
金属钛在大多数水溶液中,都能在表面生成钝化氧化膜。
因此,钛在酸性、碱性、中性盐水溶液中和氧化性介质中具有很好的稳定性,比现有的不锈钢和其它有色金属的耐腐蚀性都好,甚至可与铂比美。
但是,如果在某种介质中,能连续溶解钛表面氧化膜时,则钛在这种介质中便会受到腐蚀。
例如,钛在氢氟酸、浓的或热的盐酸、硫酸和磷酸中,由于这些溶液溶解钛表面氧化膜,所以钛被腐蚀。
如果在这些溶液中加入氧化剂或某些金属离子时,则钛表面氧化膜便会受到保护,此时钛的稳定属于增加。
1.2. 化学工业钛在各种酸、碱、盐介质中,除上述四种无机酸和腐蚀性很强的氯化铝外,都具有很好的稳定性。
所以,钛是化学工业中优良的抗腐蚀材料,得到了越来越广泛的应用。
例如,在氯碱工业中使用钛金属阳极和钛制湿氯气冷却器,收到很好的经济效果,被誉为氯碱工业中的一大革命。
1.3. 石油工业钛在有机化合物中,除了温度较高下的五种有机酸(甲酸、乙酸、草酸、三氯乙酸和三氟乙酸)外,都具有非常好的稳定性。
因此,钛是石油炼制和石油化工中优良的结构材料,可以用来制作各种热交换器、反应器、高压容器和蒸馏塔等。
三.冶金工业钛属活性金属,具有良好的吸气性能,是炼钢工业中优良的脱气剂,它能化合钢在冷却时析出的氧和氮。
在钢中加入少量的钛(<%)可使钢坚韧而富有弹性。
钛也是炼钢,炼铝等工业中重要的合金添加剂。
钛具有超导性,是一种常见的超导材料。
另外,钛在含有金属离子的酸性溶液中具有很好的稳定性,因此钛在湿法冶金工业中,如铜、镍、钴、锰等有色金属的电解生产中,有着十分广泛的应用。
钛合金的应用现状及发展前景
钛合金的应用现状及发展前景
随着工业化进程以及科学技术的不断进步,钛合金这种材料已经逐渐被应用到各种领域之中。
钛合金具有高强度、良好的抗腐蚀性能以及良好的加工性能,因此被广泛应用于航空、航天、核工业、电子、化工、医疗等领域。
未来,随着科技的发展,人们对钛合金的应用领域将会不断地拓展。
1、航空航天领域
在航空航天领域,因为钛合金的重量轻、强度高、抗腐蚀性能好,所以被广泛应用。
例如,超音速飞机的机身结构就需要使用钛合金,已经实现了钛合金制造的战斗机和客机的商业化生产。
未来,钛合金的应用将会不断拓展,例如应用于新型太空飞行器、无人机等。
2、医疗领域
在医疗领域,不锈钢、钴铬合金等传统材料都存在一些缺陷,例如过敏性、耐蚀性、生物相容性等问题。
而钛是一种用于制造医疗器械、人工关节和人工牙齿等的理想材料。
因此,未来钛合金在医疗领域的应用预计将会逐渐增加。
3、核工业领域
在核工业领域,钛合金也是一种理想的材料。
例如,钛合金可以用于核反应堆的燃料元件或无毒水下核电站的建造。
随着清洁能源的需求不断增加,钛合金在核工业领域的应用前景也将会越来越广阔。
4、化工领域
钛合金在化工领域也有着广泛的应用,例如用于制造酸、碱、盐等强腐蚀性化学品的容器、泵等设备。
与不锈钢相比,钛合金具有更好的耐腐蚀性,更长的使用寿命。
钛合金超塑性工艺研究
I ndustry development行业发展钛合金超塑性工艺研究刘 富1,刘广鑫2摘要:随着各国对钛合金重视的程度不断加深,近年来,在钛合金超塑性工艺技术的推进下,钛合金的研究和创新步伐一日千里,成功地解决了钛合金难以形变的局面,凸显了其优势。
目前,超塑性工艺使得钛合金广泛应用于军用和民用零件制造,并扮演了重要的角色。
本文将基于钛合金的视角,对超塑性工艺展开分析和阐述,旨在探索其研究意义。
关键词:钛合金;超塑性工艺;航空航天钛与钛合金被称为“未来金属”“第三种金属”“海洋金属”等等。
钛合金发展以来受到多国高度重视。
自进入21世纪,我国航空航天科技事业发展空前,这样的成就离不开高能研究团体和先进系统的支持,而这些都是基础性但又不可或缺的金属材料所促成的。
其中,钛作为一种轻质金属,被广泛应用于制造飞机、轮船和工业生产中。
近几年,钛合金被广泛应用于飞机发动机、加固部位、燃烧室、喷口以及涡轮盘等关键零部件。
钛及钛合金被赞誉为现代的“新式金属”。
虽然钛合金作为一种具有发展意义的金属材料已广泛应用于航空航天等领域的制造,但是由于提取和加工成本较高,钛合金依旧不能满足我国建设需求。
1 钛合金定义钛是一种化学元素,外观为银灰色。
由于其自身分散、提取困难,成为自然界中的稀有金属元素。
主要分布于地壳和特定岩石圈层中。
目前提取钛元素的方法主要有克罗尔法和亨特法。
钛合金的结构原理:钛合金主要以钛为基础性元素,混合其他元素形成合金。
钛包含两种同质异金属,分别为882℃以下的密排六方ɑ钛和882℃以上的体心立方β钛。
钛合金依据它们对不同温度的影响可分为以下三类:第一类是稳定α相,稳定元素有铝、锰,水合物等。
第二类是稳定β相,降低相互转变温度,稳定元素有钼、钒(同晶型)和铜、铁、硅等(共析型)。
第三类是对相变温度影响不大的中性元素,如锡、锆等。
2 钛合金超塑性发展现状我国展开钛合金超塑性成形工艺研究已经有20多年的历史,超塑性的钛材已经被划入到了重点的扶持新材料的品种行列之中。
TC4钛合金晶粒细化及超塑性研究
156塑性工程学报第15卷图1TCA钛合金的原始显微组织Fig.1Microstructureofas-receivedTCAalloy1.2试验方法根据TCA钛合金原始组织情况,试验采用形变热处理晶粒细化的方案:方案1:将TCA钛合金棒料加热至930℃,3火次镦拔至022mm(总锻比为K。
一5.63),第2火次锻后直接回炉加热,1火次和3火次锻后采用水淬。
然后进行再结晶退火,加热至800℃,保温60min后空冷。
方案2:将TC4钛合金棒料加热至930℃,3火次镦拔至017mm(总锻比为KL一8.20),锻后全部采用水淬。
然后进行再结晶退火,加热至800℃,保温60min后空冷。
2原始组织分析由图1可以看出,试验用TC4钛合金棒材原始.8晶界清晰完整,晶界口相非常明显,晶内口相呈粗大针状有规则排列,属于魏氏组织。
产生这种组织的主要原因,是原始坯料的加热或变形在p相区进行,或者是原始坯料在卢相区加热,而在a+卢两相区变形时,所取的变形量较小所致。
晶界口是晶界上口相因变形不足未再结晶球化遗留下来的。
这类组织的断裂韧性、持久性能、蠕变强度较好,但塑性、疲劳强度、抗缺口敏感性、热稳定性、抗热应力腐蚀性较差。
其性能随口束域的大小和晶界口的厚度而异,口束域减小,晶界口变薄,综合性能好转。
一般称这类组织为过热组织,只有通过在口+卢两相区较低温度下,以足够大的塑性变形方可纠正。
3TC4钛合金棒材的显微组织细化研究图2为经方案1形变热处理后022mmTC4钛合金棒料的显微组织,与图1原始显微组织相比较,晶界口相已基本消失,口相得到了明显的细化和等轴化,但仍留有部分较粗大的等轴a相和较多的拉长a相,经测定球状口晶粒的直径为5弘m~9弘m。
这是因为方案1形变热处理的变形程度和水冷次数还不能产生使口和p晶粒足够细化的畸变能,即原始晶粒的细化程度还不够,故难于通过随后的再结晶退火而使显微组织中的初生口相充分细化和等轴化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。