高中数学学案:《直线与平面的平行》(二) 必修二
人教A版数学必修二2.2.3 直线与平面平行的性质 同步教学教案
2.2.3 直线与平面平行的性质一、教学目标 1.知识与技能通过教师的适当引导和学生的自主学习,使学生由直观感知获得猜想,经过逻辑论证,推导出直线与平面平行的性质定理,并掌握这一定理. 2.过程与方法(1)通过直观感知和操作确认的方法,发展几何直觉、运用图形语言进行交流的能力; (2)体会和感受通过自己的观察、操作等活动进行合情推理发现并获得数学结论的过程; (3)通过直线与平面平行的性质定理的实际应用,让学生体会定理的现实意义与重要性. 3.情感、态度与价值观通过主动参与、积极探究的学习过程,提高学生学习数学的自信心和积极性,培养合作意识和交流能力,领悟化归与转化的数学思想,提高学生分析、解决问题的能力. 二、教学重点与难点教学重点:直线与平面平行的性质定理.教学难点:综合应用线面平行的判定定理和性质定理. 三、授课类型:新授课 四、教学方法:师生合作探究 五、教具准备:三角板、小黑板 六、课时安排:1课时 七、教学过程教学内容师生互动【回顾旧知】1.直线与平面的位置关系;线在面内;线面平行、线面相交(统称为“线在面外”) 2.直线与平面平行判定定理的内容.通过复习直线与平面平行的判定定理,温故而知新,为后面线线平行与线面平行的相互转化做铺垫. ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄思想方法:【新课引入】思考:1.如果一条直线a 与平面α平行,那么这条直线与这个平面内的直线有哪些位置关系?2.在平面α内,哪些直线与直线a 平行?3.在什么条件下,平面α内的直线与直线a 平行呢? 通过演示实验,让学生观察、发现规律,并对发现的结论进行归纳.引导学生结合直观感知,层层递进,逐步探索,体会数学结论的发现过程.学生根据问题进行直观感知,进而提出合理猜想.并逐步探索,认真思考,画出相应图形,进行观察、感知、猜想.发现:过直线a 的某一平面,若与平面α相交,则直线a 就平行于这条交线. 已知://a α,a β⊂,b αβ=.求证://a b .证明:因为 b αβ=,所以 b α⊂.又因为 //a α, 所以 a 与b 无公共点. 又因为ββ⊂⊂b a ,, 所以 b a //.引导学生得出猜想,形成经验性结论,体会与感受数学结论的发现与形成过程:直观感知→操作确认→逻辑证明→形成经验.要求学生用语言描述发现的结论,并给出证明.【直线与平面平行的性质定理】一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα要求学生总结归纳,并能用文字语言、符号语言图形语言描述直线与平面平行的性质定理,为学生正确使用定理打下基础.【定理探微】1.定理可以作为直线与直线平行的判定方法;2.定理中三个条件缺一不可....; 3.提供了过已知平面内一点作与该平面的平行线相平行的直线的方法,即:辅助平面法.明确定理的条件和结论及定理的用途.【例题讲解】例1(教材P59例3) 如图所示的一块木料中,棱BC 平行于面''A C . (1)要经过面''A C 内的一点P 和棱BC 将木料锯开,应怎样画线?(2)所画的线与平面AC 是什么位置关系? ★思路点拔1.怎样确定截面?过点P 所画的线应怎样画? 2.“线面平行” 与“线线平行”之间有怎样的联系? ★解答过程 解:(1)在平面''A C 内,过点P 作直线EF ,使//''EF B C ,并分别交棱''A B ,''C D 于点E ,F .连接BE ,CF ,则EF ,BE ,CF 就是应画的线. (2)因为棱BC 平行于平面''A C ,平面'BC 与平面''A C 交于''B C ,所以//''BC B C ,由(1)知,//''EF B C ,所以,//EF BC ,因此引导学生分析画截面的关键是确定截面与上底面的交线,怎样过P 点作BC 的平行线是作图的难点.学生经过认真思考,运用所学知识找到作图方法,体会到解决问题后成功的喜悦,认识到数学来源于实践又反过来为实践服务,加强用数学的意识.////EF BCEF AC EF AC BC AC ⎫⎪⊄⇒⎬⎪⊂⎭平面平面平面BE ,CF 显然都与平面AC 相交.例2(教材P59例4) 已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面. ★思路点拔1.文字性命题的解题步骤是什么? 2.“线面平行”与“线线平行”之间有怎样的联系?★解答过程已知:如图所示,已知直线a 、b ,平面α,引导学生分析问题的条件与结论,并结合图形写出己知和求证.通过分析寻找解题途径.本题思想方法:且//a b ,//a α,a α⊄,b α⊄. 求证://b α. 证明:过a 作平面β,使c αβ=.因为//a α,a β⊂,c αβ=,所以//a c .又因为//a b ,所以//b c .因为c α⊂,b α⊄,所以//b α. 的解题关键是实现线线平行与线面平行的转化.通过教师的板书,规范解题步骤与格式.【课堂练习】1.如图,α∩β=CD ,α∩γ=EF ,β∩γ=AB ,AB ∥α 求证:CD ∥EF .学生独立完成练习l ,检查学习效果,使学生掌握证明线面平行问题的方法、步骤与格式,提高综合运用所学知识的能力.2.如图,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 中点,在DM 上取一点G ,过G 和AP 的平面交平面BDM 于GH ,求证://PA GH .练习2是证明线线平行问题,本题需作辅助线,比练习1要难,因此组织同学之间进行讨论,通过合作学习、寻找解题途径,最后选择学生上黑板板演证明过程,教师最后进行点评.【小结】(1)直线与平面平行的性质定理的内容及应用.(2)直线与平面平行的性质定理与判定定理的区别和联系.小结回顾:注意线面平行的性质定理与判定定理联系和区别,“线面平行”与“线线平行”问题是互相联系的,在解题时要善于将问题进行转化.【板书设计】【布置作业】教材P62 习题2.2 A 组 5、6【教学反思】八、备用习题1.判断下列说法的正误.(1)如果a 、b 是两条直线,并且a ∥b ,那么a 平行于过b 的任何平面. (2)如果直线a 和平面α满足a ∥α,那么a 与平面α内的任何直线平行. (3)如果直线a 、b 和平面α满足a ∥α,b ∥α,那么a ∥b . (4)如果b a a //,=βα ,那么β//b 或α//b . 2.三个平面两两相交有三条交线,如果其中两条交线平行,则第三条交线也和它们分别平行.3.求证:如果一条直线和两个相交平面平行, 那么这条直线和它们的交线平行.4.如图,已知异面直线AB 、CD 都与平面α平行,CA 、CB 、 DB 、DA 分别交α于点E 、F 、G 、H .试判断四边形EFGH 的形状,并证明你的结论.2.2.3 直线与平面平行的性质定理 一、线面平行的性质定理 二、例题讲解 三、课堂练习 1.文字语言 例1 练习1 2.图形语言 例2 练习2。
高中数学直线、平面平行的判定及其性质教案新人教版必修2
§2.2 直线、平面平行的判定及其性质§2.2.1 直线与平面平行的判定一、教材分析空间里直线与平面之间的位置关系中,平行是一种非常重要的关系,它不仅应用较多,而且是学习平面与平面平行的基础.空间中直线与平面平行的定义是以否定形式给出的用起来不方便,要求学生在回忆直线与平面平行的定义的基础上探究直线与平面平行的判定定理.本节重点是直线与平面平行的判定定理的应用.二、教学目标1.知识与技能(1)理解并掌握直线与平面平行、平面与平面平行的判定定理;(2)进一步培养学生观察、发现的能力和空间想象能力;2.过程与方法学生通过观察图形,借助已有知识,掌握直线与平面平行、平面与平面平行的判定定理.3.情感、态度与价值观(1)让学生在发现中学习,增强学习的积极性;(2)让学生了解空间与平面互相转换的数学思想.三、教学重点与难点如何判定直线与平面平行.四、课时安排1课时五、教学设计(一)复习复习直线与平面平行的定义:如果直线与平面没有公共点叫做直线与平面平行.(二)导入新课思路1.(情境导入)将一本书平放在桌面上,翻动书的封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?思路2.(事例导入)观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面的位置关系吗?图1(三)推进新课、新知探究、提出问题①回忆空间直线与平面的位置关系.②若平面外一条直线平行平面内一条直线,探究平面外的直线与平面的位置关系.③用三种语言描述直线与平面平行的判定定理.④试证明直线与平面平行的判定定理.活动:问题①引导学生回忆直线与平面的位置关系.问题②借助模型锻炼学生的空间想象能力.问题③引导学生进行语言转换.问题④引导学生用反证法证明.讨论结果:①直线在平面内、直线与平面相交、直线与平面平行.②直线a在平面α外,是不是能够断定a∥α呢?不能!直线a在平面α外包含两种情形:一是a与α相交,二是a与α平行,因此,由直线a在平面α外,不能断定a∥α.若平面外一条直线平行平面内一条直线,那么平面外的直线与平面的位置关系可能相交吗?既然不可能相交,则该直线与平面平行.③直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.符号语言为:.图形语言为:如图2.图2④证明:∵a∥b,∴a、b确定一个平面,设为β.∴a⊂β,b⊂β.∵a⊄α,a⊂β,∴α和β是两个不同平面.∵b⊂α且b⊂β,∴α∩β=b.假设a与α有公共点P,则P∈α∩β=b,即点P是a与b的公共点,这与已知a∥b矛盾.∴假设错误.故a∥α.(四)应用示例思路1例1 求证空间四边形相邻两边中点的连线平行于经过另外两边的平面.已知空间四边形ABCD中,E、F分别是AB、AD的中点.求证:EF∥面BCD.活动:先让学生思考或讨论,后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.证明:如图3,连接BD,图3EF∥面BCD.所以,EF∥面BCD.变式训练如图4,在△ABC所在平面外有一点P,M、N分别是PC和AC上的点,过MN作平面平行于BC,画出这个平面与其他各面的交线,并说明画法.图4画法:过点N在面ABC内作NE∥BC交AB于E,过点M在面PBC内作MF∥BC交PB于F,连接EF,则平面MNEF为所求,其中MN、NE、EF、MF分别为平面MNEF与各面的交线.证明:如图5,图5.所以,BC∥平面MNEF.点评:“见中点,找中点”是证明线线平行常用方法,而证明线面平行往往转化为证明线线平行. 例2 如图6,已知AB 、BC 、CD 是不在同一平面内的三条线段,E 、F 、G 分别为AB 、BC 、CD 的中点.图6求证:AC∥平面EFG ,BD∥平面EFG.证明:连接AC 、BD 、EF 、FG 、EG.在△ABC 中,∵E、F 分别是AB 、BC 的中点,∴AC∥EF.又EF ⊂面EFG ,AC ⊄面EFG,∴AC∥面EFG.同理可证BD∥面EFG.变式训练已知M 、N 分别是△ADB 和△ADC 的重心,A 点不在平面α内,B 、D 、C 在平面α内,求证:MN∥α. 证明:如图7,连接AM 、AN 并延长分别交BD 、CD 于P 、Q ,连接PQ.图7∵M、N 分别是△ADB、△ADC 的重心, ∴NQAN MP AM ==2.∴MN∥PQ. 又PQ ⊂α,MN ⊄α,∴MN∥α.点评:利用平面几何中的平行线截比例线段定理,三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.思路2例题 设P 、Q 是边长为a 的正方体AC 1的面AA 1D 1D 、面A 1B 1C 1D 1的中心,如图8,(1)证明P Q∥平面AA 1B 1B ;(2)求线段PQ 的长.图8(1)证法一:取AA 1,A 1B 1的中点M,N,连接MN,NQ,MP, ∵MP∥AD,MP=AD 21,NQ∥A 1D 1,NQ=1121D A , ∴MP∥ND 且MP=ND.∴四边形PQNM 为平行四边形.∴PQ∥MN.∵MN ⊂面AA 1B 1B,PQ ⊄面AA 1B 1B,∴PQ∥面AA 1B 1B.证法二:连接AD 1,AB 1,在△AB 1D 1中,显然P,Q 分别是AD 1,D 1B 1的中点,∴PQ∥AB 1,且PQ=121AB . ∵PQ ⊄面AA 1B 1B,AB 1⊂面AA 1B 1B,∴PQ∥面AA 1B 1B.(2)解:方法一:PQ=MN=a N A M A 222121=+. 方法二:PQ=a AB 22211=. 变式训练如图9,正方体ABCD —A 1B 1C 1D 1中,E 在AB 1上,F 在BD 上,且B 1E=BF.图9求证:EF∥平面BB 1C 1C.证明:连接AF 并延长交BC 于M ,连接B 1M.∵AD∥BC,∴△AFD∽△MFB. ∴BFDF FM AF =. 又∵BD=B 1A ,B 1E=BF,∴DF=AE. ∴BFDF FM AF =. ∴EF∥B 1M ,B 1M ⊂平面BB 1C 1C. ∴EF∥平面BB 1C 1C.(五)知能训练已知四棱锥P —ABCD 的底面为平行四边形,M 为PC 的中点,求证:PA∥平面MBD.证明:如图10,连接AC 、BD 交于O 点,连接MO,图10∵O 为AC 的中点,M 为PC 的中点,∴MO 为△PAC 的中位线.∴PA∥MO.∵PA ⊄平面MBD,MO ⊂平面MBD,∴PA∥平面MBD.(六)拓展提升如图11,已知平行四边形ABCD 和平行四边形ACEF 所在的平面相交于AC,M 是线段EF 的中点.图11求证:AM∥平面BDE.证明:设AC∩BD=O ,连接OE ,∵O、M 分别是AC 、EF 的中点,ACEF 是平行四边形,∴四边形AOEM 是平行四边形.∴AM∥OE.∵OE ⊂平面BDE ,AM ⊄平面BDE ,∴AM∥平面BDE.(七)课堂小结知识总结:利用线面平行的判定定理证明线面平行.方法总结:利用平面几何中的平行线截比例线段定理,三角形的中位线性质等知识促成“线线平行”向“线面平行”的转化.(八)作业课本习题2.2 A组3、4.§2.2.3 直线与平面平行的性质一、教材分析上节课已学习了直线与平面平行的判定定理,这节课将通过例题让学生体会应用线面平行的性质定理的难度,进而明确告诉学生:线面平行的性质定理是高考考查的重点,也是最难应用的两个定理之一.本节重点是直线与平面平行的性质定理的应用.二、教学目标1.知识与技能掌握直线与平面平行的性质定理及其应用.2.过程与方法学生通过观察与类比,借助实物模型性质及其应用.3.情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力.(2)进一步体会类比的作用.(3)进一步渗透等价转化的思想.三、教学重点与难点教学重点:直线与平面平行的性质定理.教学难点:直线与平面平行的性质定理的应用.四、课时安排1课时五、教学设计(一)复习回忆直线与平面平行的判定定理:(1)文字语言:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(2)符号语言为:(3)图形语言为:如图1.图1(二)导入新课思路1.(情境导入)教室内日光灯管所在的直线与地面平行,是不是地面内的所有直线都与日光灯管所在的直线平行?思路2.(事例导入)观察长方体(图2),可以发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与长方体ABCD—A′B′C′D′的侧面C′D′DC所在平面平行,你能在侧面C′D′DC所在平面内作一条直线与A′B 平行吗?图2(三)推进新课、新知探究、提出问题①回忆空间两直线的位置关系.②若一条直线与一个平面平行,探究这条直线与平面内直线的位置关系.③用三种语言描述直线与平面平行的性质定理.④试证明直线与平面平行的性质定理.⑤应用线面平行的性质定理的关键是什么?⑥总结应用线面平行性质定理的要诀.活动:问题①引导学生回忆两直线的位置关系.问题②借助模型锻炼学生的空间想象能力.问题③引导学生进行语言转换.问题④引导学生用排除法.问题⑤引导学生找出应用的难点.问题⑥鼓励学生总结,教师归纳.讨论结果:①空间两条直线的位置关系:相交、平行、异面.②若一条直线与一个平面平行,这条直线与平面内直线的位置关系不可能是相交(可用反证法证明),所以,该直线与平面内直线的位置关系还有两种,即平行或异面.怎样在平面内作一条直线与该直线平行呢(排除异面的情况)?经过这条直线的平面和这个平面相交,那么这条直线和交线平行.③直线与平面平行的性质定理用文字语言表示为:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.这个定理用符号语言可表示为:这个定理用图形语言可表示为:如图3.图3④已知a∥α,a β,α∩β=b.求证:a∥b.证明:⑤应用线面平行的性质定理的关键是:过这条直线作一个平面.⑥应用线面平行性质定理的要诀:“见到线面平行,先过这条直线作一个平面找交线”.(四)应用示例思路1例1 如图4所示的一块木料中,棱BC平行于面A′C′.图4(1)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与面AC是什么位置关系?活动:先让学生思考、讨论再回答,然后教师加以引导.分析:经过木料表面A′C′内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P作截面,也就是找出平面与平面的交线.我们可以由线面平行的性质定理和公理4、公理2作出.解:(1)如图5,在平面A′C′内,过点P作直线EF,使EF∥B′C′,图5并分别交棱A′B′、C′D′于点E、F.连接BE、CF.则EF、BE、CF就是应画的线.(2)因为棱BC平行于面A′C′,平面BC′与平面A′C′交于B′C′,所以BC∥B′C′.由(1)知,EF∥B′C′,所以EF∥BC.因此BE 、CF 显然都与平面AC 相交.变式训练如图6,a∥α,A 是α另一侧的点,B 、C 、D ∈a ,线段AB 、AC 、AD 交α于E 、F 、G 点,若BD=4,CF=4,AF=5,求EG.图6解:A ∉a ,∴A、a 确定一个平面,设为β.∵B∈a ,∴B∈β.又A ∈β,∴AB ⊂β.同理AC ⊂β,AD ⊂β.∵点A 与直线a 在α的异侧,∴β与α相交.∴面ABD 与面α相交,交线为EG.∵BD∥α,BD ⊂面BAD ,面BAD∩α=EG,∴BD∥EG.∴△AEG∽△ABD. ∴ACAF BD EG =.(相似三角形对应线段成比例) ∴EG=920495=⨯=∙BD AC AF . 点评:见到线面平行,先过这条直线作一个平面找交线,直线与交线平行,如果再需要过已知点,这个平面是确定的.例2 已知平面外的两条平行直线中的一条平行于这个平面,求证另一条也平行于这个平面.如图7.图7已知直线a,b,平面α,且a∥b,a∥α,a,b 都在平面α外.求证:b∥α.证明:过a 作平面β,使它与平面α相交,交线为c.∵a∥α,a ⊂β,α∩β=c,∴a∥c.∵a∥b,∴b∥c.∵c ⊂α,b ⊄α,∴b∥α.变式训练如图8,E 、H 分别是空间四边形ABCD 的边AB 、AD 的中点,平面α过EH 分别交BC 、CD 于F 、G.求证:EH∥FG.图8证明:连接EH.∵E、H 分别是AB 、AD 的中点,∴EH∥BD.又BD ⊂面BCD ,EH ⊄面BCD,∴EH∥面BCD.又EH ⊂α、α∩面BCD=FG,∴EH∥FG.点评:见到线面平行,先过这条直线作一个平面找交线,则直线与交线平行.思路2例 1 求证:如果两个相交平面分别经过两条平行直线中的一条,那么它们的交线和这条直线平行.如图9.图9已知a∥b,a ⊂α,b ⊂β,α∩β=c.求证:c∥a∥b.证明:变式训练求证:一条直线与两个相交平面都平行,则这条直线与这两个相交平面的交线平行.图10已知:如图10,a∥α,a∥β,α∩β=b ,求证:a∥b.证明:如图10,过a 作平面γ、δ,使得γ∩α=c ,δ∩β=d ,那么有点评:本题证明过程,实际上就是不断交替使用线面平行的判定定理、性质定理及公理4的过程.这是证明线线平行的一种典型的思路.例2 如图11,平行四边形EFGH 的四个顶点分别在空间四边形ABCD 的边AB 、BC 、CD 、DA 上,求证:BD∥面EFGH ,AC∥面EFGH.图11证明:∵EFGH 是平行四边形变式训练如图12,平面EFGH 分别平行于CD 、AB ,E 、F 、G 、H 分别在BD 、BC 、AC 、AD 上,且CD=a ,AB=b ,CD⊥AB.图12(1)求证:EFGH 是矩形;(2)设DE=m,EB=n,求矩形EFGH 的面积.(1)证明:∵CD∥平面EFGH ,而平面EFGH∩平面BCD=EF,∴CD∥EF.同理HG∥CD,∴EF∥HG.同理HE∥GF,∴四边形EFGH 为平行四边形.由CD∥EF,HE∥AB,∴∠HEF 为CD 和AB 所成的角.又∵CD⊥AB,∴HE⊥EF.∴四边形EFGH 为矩形.(2)解:由(1)可知在△BCD 中EF∥CD,DE=m ,EB=n, ∴DB BE CD EF =.又CD=a,∴EF=a nm n +. 由HE∥AB,∴DBDE AB HE =. 又∵AB=b,∴HE=b n m m +. 又∵四边形EFGH 为矩形,∴S 矩形EFGH =HE·EF=ab n m mn a n m n b n m m 2)(+=+∙+. 点评:线面平行问题是平行问题的重点,有着广泛应用.(五)知能训练求证:经过两条异面直线中的一条有且只有一个平面和另一条直线平行.已知:a 、b 是异面直线.求证:过b 有且只有一个平面与a 平行.证明:(1)存在性.如图13,图13在直线b 上任取一点A ,显然A ∉a.过A 与a 作平面β,在平面β内过点A 作直线a′∥a,则a′与b 是相交直线,它们确定一个平面,设为α,∵b ⊂α,a 与b 异面,∴a ⊄α.又∵a∥a′,a′⊂α,∴a∥α.∴过b 有一个平面α与a 平行.(2)唯一性.假设平面γ是过b 且与a 平行的另一个平面,则b ⊂γ.∵A∈b ,∴A∈γ.又∵A∈β,∴γ与β相交,设交线为a″,则A ∈a″.∵a∥γ,a ⊂β,γ∩β=a″,∴a∥a″.又a∥a′,∴a′∥a″.这与a′∩a″=A 矛盾.∴假设错误,故过b 且与a 平行的平面只有一个.综上所述,过b 有且只有一个平面与a 平行.变式训练已知:a∥α,A ∈α,A ∈b ,且b∥a.求证:b ⊂α.证明:假设b ⊄α,如图14,图14设经过点A 和直线a 的平面为β,α∩β=b′, ∵a∥α,∴a∥b′(线面平行则线线平行). 又∵a∥b,∴b∥b′,这与b∩b′=A 矛盾.∴假设错误.故b ⊂α.(六)拓展提升已知:a,b 为异面直线,a ⊂α,b ⊂β,a∥β,b∥α,求证:α∥β.证明:如图15,在b 上任取一点P ,由点P 和直线a 确定的平面γ与平面β交于直线c ,则c 与b 相交于点P.图15变式训练已知AB 、CD 为异面线段,E 、F 分别为AC 、BD 中点,过E 、F 作平面α∥AB.(1)求证:CD∥α;(2)若AB=4,EF=5,CD=2,求AB 与CD 所成角的大小.(1)证明:如图16,连接AD交α于G,连接GF,图16∵AB∥α,面ADB∩α=GF AB∥GF.又∵F为BD中点,∴G为AD中点.又∵AC、AD相交,确定的平面ACD∩α=EG,E为AC中点,G为AD中点,∴EG∥CD.(2)解:由(1)证明可知:∵AB=4,GF=2,CD=2,∴EG=1,EF=5.在△EGF中,由勾股定理,得∠EGF=90°,即AB与CD所成角的大小为90°.(七)课堂小结知识总结:利用线面平行的性质定理将直线与平面平行转化为直线与直线平行.方法总结:应用直线与平面平行的性质定理需要过已知直线作一个平面,是最难应用的定理之一;应让学生熟记:“过直线作平面,把线面平行转化为线线平行”.(八)作业课本习题2.2 A组5、6.§2.2.2 平面与平面平行的判定§2.2.4 平面与平面平行的性质一、教材分析空间中平面与平面之间的位置关系中,平行是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面平行的判定定理给出了由线面平行转化为面面平行的方法;面面平行的性质定理又给出了由面面平行转化为线线平行的方法,所以本节在立体几何中占有重要地位.本节重点是平面与平面平行的判定定理及其性质定理的应用.二、教学目标1、知识与技能(1)理解并掌握平面与平面平行的判定定理;(2)掌握两个平面平行的性质定理及其应用(3)进一步培养学生观察、发现的能力和空间想象能力;2、过程与方法学生通过观察与类比,借助实物模型理解及其应用3、情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。
高中数学人教A版必修二教案:2.2.1直线与平面平行、平面与平面平行的判定
AB1D1∥平面 C1BD.
师:根据面面平行的判 定定理,结论可转化为证面 AB1D 内有两条相交直线平行
培养学生 转化化归 能力
--------------------------------------------------------
----------------------------------------------------------------------------
----------------------------------------------------------------------------
第一课时 直线与平面平行、平面与平面平行的判定
(一)教学目标
1.知识与技能
(1)理解并掌握直线与平面平行、平面与平面平行的判定定理;
(2)进一步培养学生观察、发现的能力和空间想象能力;
师:直线与平面平行,
可以直接用定义来检验,但
“没有公共点”不好验证所
以我们来寻找比较实用又便
于验证的判定定理.
一.直线和平面平行的判定
教师做实验,学生观察 通过实验,
1.问题 2:如图,将一本书 探索新知
平放在桌面上,
并思考问题. 生:平行
加深理解. 通过讨论,
翻动收的封面,
师:问题 2 与问题 1 有 培养学生
导、点拔.
教学过程
教学内容
师生互动
设计意图
1.直线和平面平行的重要性
教师讲述直线和平面的
2.问题(1)怎样判定直线 重要性并提出问题:怎样判
与平面平行呢?
定直线与平面平行?
(2)如图,直线 a 与平面
生:直线和平面没有公
2020-2021学年高中数学人教A版必修二2.2.3 直线与平面平行的性质 教案
课题:§2.2.3直线与平面平行的性质一、教材简析:在上一章学生通过整体观察,对空间几何体的结构特征已有了认识,并在本节之前学生已学习了空间两直线的位置关系,空间直线与平面的位置关系,还有线面平行的判定定理以及面与面平行的判定定理,这是学习本节内容的基础,直线与平面的位置关系中平行关系应用最多,而直线与平面平行的性质是本大节的难点,本节内容与下一节面面平行的性质有着密切的联系,在描述直线与直线,直线与平面,平面与平面的位置关系中起着重要的作用.二、教学目标(一)知识与技能通过观察探究,进行合情推理发现直线和平面平行的性质定理,并能准确地用数学语言表述该定理;能够对直线与平面平行的性质定理作出严密的逻辑论证,并能进行一些简单的应用.(二)过程与方法通过直观感知和操作确认的方法,培养和发展学生的几何直觉、运用图形语言进行交流的能力;体会和感受通过学生自己的观察、操作等活动进行合情推理发现并获得数学结论的过程.(三)情感态度价值观通过自主探究、主动参与的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法.三、教学重点、难点、疑点及解决方法(一)教学重点:直线和平面平行的性质定理.(二)教学难点:直线和平面平行的性质定理的证明及应用.(三)教学疑点:由线面平行⇒线线平行,并不意味着平面内的任意一条直线都与已知直线平行.即://a b,则由公理4,平面α内与b平行的所⊂且//aα,若bα有直线都与a平行(有无数条),否则都与是异面直线.四、教学方法和教学手段的运用(一)建构主义学习理论认为:学生的认知结构是通过同化和顺化而不断发展,学习不是对教师所授予的知识被动接受,而是一个以学生已有的知识和经验为基础的主动的建构过程.学生真正获得知识的消化,是把新的学习内容正确纳入已有的认知结构,使其成为整个认知结构的有机组成部分,所以在教学中,我以长方体为载体,按照“直观感知----操作确认-----思辩论证”的认识过程展开.通过创设良好的问题情境,不断引导学生观察、实验、思考、探索,通过自己的亲身实践,充分发挥学生学习的主动性,培养学生的自主、合作、探索能力.同时采用电脑课件的教学手段,加强直观性和启发性,提高课堂效益.(二)学法指导根据本节课特点及学生的认知心理,我把重点放在如何让学生“会学习”这一方面,学生在教师营造的“可探索”环境里,积极参与、生动活泼地获取知识、掌握规律、主动发现、积极探索,从而培养学生观察能力、空间想象能力、探索思维能力,分析问题及解决问题的能力.五、课时安排:1课时六、课前准备:多媒体、课件、实物模型(细棍子2根、小木块30个)七、教学基本流程:环节教学内容设计师生双边互动创设情境1.复习线面位置关系与线面平行的判定.(1)直线与平面的位置关系的各种情况;(2)直线与平面平行的判定定理.2.思考:(1)如果一条直线与平面平行,那么这条直线是否与这个平面内的所有直线都平行?(2)教室内日光灯管所在的直线与地面平行,如何在地面上作一条直线与灯管所在直线平行?师:复习引入,温故知新,为学习新知做铺垫.引导学生通过思考和实际问题,进行观察、感知、实践操作,提高学生学习兴趣,激发学生的求知欲望和探索精神.生:根据问题进行直观感知,进而提出合理猜想.组织探究探索:多媒体课体演示观察:在长方体ABCD-A1B1C1D1中,思考下列问题:(1)两条直线平行的条件是什么?(2)平行于平面的一条直线与该平面内的直线的位置关系有几种可能?(3)平行于平面的一条直线与该平面内一条直线平行,需附加什么条件?(4)平面内的这条直线具有什么特殊地位?发现:1)两直线平行的条件是:⎩⎨⎧无公共点在同一平面内;师:引导学生结合上面的直观感知,层层递进,逐步探索,体会数学结论的发现过程.生:逐步探索,认真思考,画出相应图形,进行观察,感知、猜想.师:引导学生猜想、发现,并画出图形进行操作确认.生:根据探索问题,提出大胆猜想.创设情境组织探究探索研究巩固练习作业回馈课外活动实际问题引入,激发学生探索兴趣和求知欲望.结合实际问题主动参与,通过直观感知、提出猜想进而操作确认获得定理;然后结合例题体会定理的应用.结合例题,总结线线平行与线面平行的相互转化,体会线面平行的判定定理和性质定理的综合运用.综合应用判定定理和性质定理解决简单问题,规范解题步骤与格式,培养学生良好的学习习惯.进一步巩固定理,深化基本方法.结合线线平行与线面平行的转化,思考线线平行、线面平行、面面平行的联系,提出合理猜想,主动探究并操作验证.A1C1B1D1BCDA作业与回馈教材P651.习题2.2(A组)第5、6题;2.由上述两题你能发现线面平行还具有什么性质?3.如图,已知异面直线AB、CD都与平面α平行,CA、CB、DB、DA分别交α于点E、F、G、H.求证:四边形EFGH是平行四边形.课外活动前面学习了平面与平面平行的定义及其判定方法,类比本节课的学习,通过直观感知、获得猜想、操作确认的方法自主探究平面与平面平行具有何种性质;结合线线平行与线面平行的转化,思考线线平行、线面平行、面面平行的联系,提出合理猜想,主动探究并操作验证.培养学生良好的思维品质及自主学习,主动探究的意识.判定定理:…………………………………………性质定理:证明:………………………………例1:…………………………………………例2:…………………………………………十、教学设想:本课我以“找线”为线索,在教学中,让学生找线—得线---用线,先从一个问题入手,引发学生在线面平行的前提下,在面内找该线的一条平行线,同时以长方体为载体,通过对问题的探索,让学生在找线的过程中发现:其实,并不是面内所有的线都会与该线平行,而与该线平行的线也不只一条,从而得出直线与平面平行的性质的猜想,然后让学生通过逻辑论证,证明猜想的正确性,进而得到性质定理,找到与该线平行的线都是过该直线的平面与原来平面的交线,接着,让学生运用该性质去解决例3这样与实际生活有关的问题,在解决例3的过程中通过实物模型和多媒体辅助教学,有目的的把学生的思维引导到用性质定理解决问题上来,即过已知直线和点P作一个平面与已知平面相交,交线和已知直线平行,此交线就是所要找的线,在这过程中,通过师生合作讨论研究,充分让学生表述自己的观点,共同分析解答,找到解决问题的方法。
【精品教案】高中数学必修2第二章《直线与平面、平面与平面平行的性质》教案
§2.2.3 —2.2.4直线与平面、平面与平面平行的性质一、教学目标:1、知识与技能(1)掌握直线与平面平行的性质定理及其应用;(2)掌握两个平面平行的性质定理及其应用。
2、过程与方法学生通过观察与类比,借助实物模型理解性质及应用。
3、情感、态度与价值观(1)进一步提高学生空间想象能力、思维能力;(2)进一步体会类比的作用;(3)进一步渗透等价转化的思想。
二、教学重点、难点重点:两个性质定理。
难点:(1)性质定理的证明;(2)性质定理的正确运用。
三、学法与教学用具1、学法:学生借助实物,通过类比、交流等,得出性质及基本应用。
2、教学用具:投影仪、投影片、长方体模型四、教学思想(一)创设情景、引入新课1、思考题:教材第60页,思考(1)(2)学生思考、交流,得出(1)一条直线与平面平行,并不能保证这个平面内的所有直线都与这个直线平行;(2)直线a与平面α平行,过直线a的某一平面,若与平面α相交,则直线a就平行于这条交线。
在教师的启发下,师生共同完成该结论的证明过程。
于是,得到直线与平面平行的性质定理。
定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:a∥αa β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题。
2、例3 培养学生思维,动手能力,激发学习兴趣。
例4 性质定理的直接应用,它渗透着化归思想,教师应多做引导。
3、思考:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么样的位置关系?学生借助长方体模型思考、交流得出结论:异面或平行。
再问:平面AC内哪些直线与B'D'平行?怎么找?在教师的启发下,师生共同完成该结论及证明过程,于是得到两个平面平行的性质定理。
定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:α∥βα∩γ= a a∥bβ∩γ= b教师指出:可以由平面与平面平行得出直线与直线平行4、例5以讲授为主,引导学生共同完成,逐步培养学生应用定理解题的能力。
2021人教A版数学必修二 直线与平面平行的性质教案
直线与平面平行的性质一、教学目标:1、知识与技能:掌握直线与平面平行的性质定理及其应用。
2、过程与方法:学生通过观察与类比,借助实物模型理解性质及应用。
3、情感态度与价值观:进一步提高学生空间想象能力、思维能力;体会类比的作用;渗透等价转化的思想。
二、教学重、难点:重点:直线与平面平行的性质定理的理解。
难点:直线与平面平行的性质定理的证明及正确运用。
三、学法指导:学生借助实物,通过类比、交流等,得出性质及基本应用。
四、教学过程:(一)复习回顾复习:(1)直线与平面平行的判定定理:。
(2)平面与平面平行的判定定理:师生活动:教师提问,首先叫一个同学来回顾,然后让其他同学来补充完善。
答案:(1)不在平面内的一条直线与平面内的一条直线平行,则这条直线与这个平面行(2)一个平面内的两条相交直线分别与另一个平面平行,则这两个平面平行本质:线线平行推出线面平行,由线面平行可推出面面平行(二)研探新知问题1:如果直线a与平面α平行,那么直线a与平面α内的直线有哪些位置关系?师生活动:教师提问,学生思考回答。
平行、异面问题2:若直线a与平面α平行,那么在平面α内与直线a平行的直线有多少条?这些直线的位置关系如何?师生活动:教师提问,学生思考回答。
无数条,平行问题3:如何在平面α找到这些与直线a平行的直线?师生活动:教师提问,学生思考回答。
过直线a作平面问题4:如果直线a与平面α平行,那么经过直线a的平面与平面α有几种位置关系?师生活动:教师提问,学生思考回答。
平行或相交问题5:直线a与平面α平行,过直线a的某一平面,若与平面α相交,则交线与直线a有什么样的位置关系?师生活动:通过学生思考、交流,得出:定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
作用:利用该定理可解决直线间的平行问题。
符号表示为:b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα图形语言描述如右图.问题6:如何证明该定理?师生活动:教师要求学生先自己证明,最后再由教师引导学生得出证明过程。
8.5.2直线与平面平行 教案-高一下学期数学人教A版必修第二册
8.5.2直线与平面平行教案一、内容和内容解析1. 内容直线与平面平行的判定与性质.2. 内容解析本节课是在学习了直线与平面平行的定义的基础上,探究直线与平面平行的判定定理和性质定理.直线与平面的平行关系是一种非常重要的空间位置关系.在直线与直线平行、直线与平面平行、平面与平面平行这三种平行关系的相互转化中,直线与平面的平行是很关键的一环.它既是进一步学习平面与平面平行的基础,其中也着直线与直线平行.正如前面所述,空间中,基本图形位置关系的研究,主要是以某两种图形的位置关系为前提(定义),研究相应的充分条件(判定)和必要条件(性质).无论是判定还是性质,都是“空间基本图形确定的相互关系”.直线与平面平行的判定定理,反映了直线与平面在具备了什么条件下互相平行的问题,是充分条件.事实上,假设平面α外的一条直线a与α有交点,则平面α内的任意一条直线b与直线a要么相交,要么异面,即不存在与a平行的直线.直线与平面平行的性质定理,反映了在直线与平面平行的条件下,该直线与平面内特定的一些直线之间的位置关系,是必要条件.直线与平面平行的判定定理和性质定理的发现以及性质定理的证明过程,体现了直观感知、确认操作、思辨论证的立体几何研究的基本方法,有利于学生直观想象、数学抽象、逻辑推理的素养的培养.直线与平面平行的判定和性质的研究,是直线与平面平行、直线与直线平行两种位置关系的相互转化,体现了立体几何研究中空间问题平面化的研究思路.基于以上分析,确定本节课的教学重点:直线与平面平行的判定定理和性质定理的探究.二、目标和目标解析1.目标(1)探究并理解直线与平面平行的判定定理.(2)探究并证明直线与平面平行的性质定理.(3)结合直线与平面判定定理和性质定理的探究,体会立体几何中研究位置关系的判定和性质的方法.2.目标解析达成目标(1)的标志是:学生能在直线与平面平行定义的基础上,将直线与平面平行的判定转化为直线与直线平行的判定.达成目标(2)的标志是:学生能够将直线与平面的平行转化为该直线与平面内的直线之间的位置关系;并通过直线与平面平行的定义、直线与直线的位置关系的定义以及基本事实3的推论3,发现直线与平面平行的性质定理,并能对性质定理进行证明.达成目标(3)的标志是:结合直线与平面平行的判定定理和性质定理的探究,体会什么是判定,什么是性质;了解发现图形位置关系的判定和性质的目标;能实现直线与直线、直线与平面的转化,体会其中空间问题与平面问题的转化.三、教学问题诊断分析在研究直线与平面平行的判定定理时,学生没有将直线与平面平行问题转化为直线与直线平行的问题解决经验.从直线与平面平行的定义转化到直线与平面内的一条直线平行是探究判定定理的关键,这里需要一定的生活实例和实验操作,学生直观感知,不难理解;但其中蕴含的转化思想值得学生认真体会.平面可以看成是由直线组成的.由直线a与平面α平行,可知直线a与平面α内的任何直线b都没有公共点,因此它们是异面直线或平行直线.由于a与b 没有公共点,如果再在四、教学过程设计(一)探究直线与平面平行的判定定理引言在直线和平面的位置关系中,直线和平面平行是一种很重要的位置关系,不仅在现实生活中有广泛应用(比如木料划线),也是我们后面学习平面与平面平行的基础.如何判定直线和平面平行(即直线与平面平行的充分条件)?已知直线和平面平行的条件下,又蕴藏怎样的性质(即直线与平面平行的必要条件)?下面我们重点来探究这两个问题.问题1:根据定义,直线与平面平行是指直线与平面没有公共点.请同学思考,直接用定义去判断直线和平面平行与否是否方便?为什么?师生活动:学生思考后回答,师生对话,由于直线的无限延伸和平面的无限延展,很难直接判断直线与平面是否有公共点,因此很难直接利用定义判断.设计意图:直接用定义不易判定直线与平面是否平行,说明学习本课内容的必要性,激发学生的学习兴趣.由于平面可以看作是直线“编织”而成的“直线网”,因而直线与平面没有公共点即是等价于直线和平面内的任意一条直线没有公共点,但我们也不可能逐一检验平面内的每条直线.问题2:为便于判定,我们能否通过检验平面内较少条数的直线与平面外直线的位置关系来达到目的?如果可以,可以减少到几条?你能用生活中的实例来佐证你的结论吗?师生活动:教师设计如下“观察—探究”的活动,供学生在动手操作的基础上进行合情猜想:如图1(1),门扇的两边是平行的,当门扇绕着一边转动时,另一边与墙面有公共点吗?此时门扇转动的一边与墙面平行吗?如图1(2),将一块矩形硬纸板ABCD平放在桌面上,把这块纸板绕边DC转动.在转动过程中(AB离开桌面),DC的对边AB与桌面有公共点吗?边AB与桌面平行吗?在上述“观察—探究”的基础上,请学生尝试用自己的话说一说他们感受到的直线与平面平行的判定方法以及如何用字母符号和图形表示,之后再让学生看教科书里给出的直线与平面平行的判定定理,及其符号和图形表示.判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.设计意图:将利用定义判断,转化为“直线与平面内的一条直线平行”来进行判断.这一过程,体现了由复杂向简单、由空间向平面的转化.通过设置“观察—探究”活动,学生在直观感知的基础上进行大胆猜想,培养学生的数学抽象、直观想象等数学素养.追问1:为什么平面α外的直线a与α内的一条直线b平行,就可以说直线a和平面α平行了?你能对此做一个简要的解释吗?师生活动:学生思考交流,教师可以给予一定提示(反证法).设计意图:增强说理,说明上述的猜想不是“瞎猜”.同时,反证法中会用到异面直线的判定,这也是对前面学习异面直线知识(教科书P130-例2)的一个回顾.追问2:这一定理告诉我们,通过直线间的平行,可以得出直线与平面平行,请说说这里面蕴含着怎样的数学思想方法?师生活动:学生回答,教师总结,指出转化的数学思想.设计意图:加深学生对定理的认识,明白将空间问题(直线与平面的平行)转化为平面问题(直线间的平行)是一种处理空间几何问题的常用方法.问题3:你能说说一定理在现实生活中的应用吗?师生活动:结合教科书中按照矩形镜子的例子,请同学们再多补充一些生活实例,体会其中的数学道理.设计意图:使学生了解判定定理在实际生活中的应用,培养学生的应用意识,进一步加强对判定定理的理解.(二)应用判定定理,熟练掌握例1 求证:空间四边形相邻两边中点的连线平行于经过另外两边的平面.追问:(1)从要解决的问题来看,本题是要证明直线与平面平行,你能想到用什么方法?(学生活动预设:直线与平面平行的判定定理.)(2)EF与平面BCD中哪条直线平行?为什么?师生活动:在师生共同分析问题后,学生动笔完成证明过程,教师巡视,检查书写是否规范.设计意图:熟悉判定定理的应用,明确要证明直线与平面的平行,只需在平面内找出一条直线与该直线平行即可.同时规范书写格式.(三)探究并证明直线与平面平行的性质定理问题4:根据前述判定定理,我们已经研究了直线与平面平行的充分条件.下面我们将研究已知直线与平面平行,可以得到什么结论.若直线与平面平行,则与平面内的任意一条直线是什么位置关系?师生活动:学生根据定义加以回答:或是异面直线,或是平行直线.设计意图:先对直线与平面平行条件下,该直线与平面内的直线具有怎样的位置关系做整体了解,然后再聚焦性质定理.追问1:若a∥α,平面α内的直线何时与直线a平行呢?你能够证明你的结论吗?师生活动:师生共同探究,假设平面α内的直线b与直线a平行,则a,b确定一个平面,记为β.我们可以将直线b看作是过直线a的平面β与平面α的交线.至此,老师可鼓励学生大胆提出猜想——若平面β经过直线a且与平面α相交,则直线a与平面α和β的交线b平行.在提出问题后,师生共同完成证明,并正式给出直线与平面平行的性质定理的文字、图形以及符号语言的描述.性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.设计意图:不同于通过观察、操作获得直线与平面平行的判定定理的过程,直线与平面平行的性质定理的研究更侧重于呈现提出问题,分析问题,最后解决问题的思辨过程.通过追问1的分析与解答,培养学生发现和提出问题的能力.追问2:直线和平面平行的性质定理给出了又一种判定两条直线平行的方法.请问使用该定理来判断直线与直线平行时共需要几个条件?师生活动:学生认真分析并回答问题.定理中的三个条件:(1)直线a和平面α平行;(2)平面α和平面β相交于直线b;(3)直线a在平面β内.教师然后给出一些命题让学生判断正误(比如“一条直线平行于一个平面,则它平行于这个平面内的所有直线.”),让学生明白定理中的三个条件缺一不可.设计意图:一方面提醒学生直线和平面平行的性质定理可作为直线与直线平行的判定方法,另一方面加深学生对定理结构的认识.(四)定理应用,巩固深化追问1:第(1)问是一个实际应用问题,你能用确切的数学语言对其进行刻画吗?师生活动:翻译成数学语言即是经过棱BC和BC外一点P作一个截面,确定该截面与木料表面的交线.追问2:该问题的数学本质是确定两个平面的交线.为了解决该问题我们可能用到哪些所学的知识?师生活动:直线与平面平行的性质定理,基本事实4和基本事实3及其推论.师生活动:学生思考,教师展示动画素材,为学生直观演示画线以及切割过程.设计意图:熟悉直线和平面平行的判定定理和性质定理的应用,让学生熟练掌握直线和直线平行、直线与平面平行的相互转化,同时规范解答格式.(五)巩固练习1.判断下列命题是否是真命题:(1)如果一条直线与平面内无数条直线没有公共点,则该直线与平面平行.()。
8.5.2直线与平面平行 第2课时 直线与平面平行的性质 教案高中数学(人教A版2019)必修第二册
8.5.2直线与平面平行第二课时 直线与平面平行的性质一、教学目标 1. 掌握空间平面与平面平行的判定定理,并能应用这个定理解决问题2. 平面与平面平行的判定定理的应用3. 进一步培养学生观察、发现问题的能力和空间想象能力二、教学重点 空间平面与平面平行的判定定理教学难点 应用平面与平面平行的判定定理解决问题三、教学过程1、复习回顾情境引入问题1:直线与平面平行的判定定理答:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行问题2:如果一条直线和一个平面平行,那么这条直线和这个平面内的直线有怎样的位置关系?答:问题3:什么条件下,平面α内的直线与直线a 平行呢?引出下面问题:已知://, , a a b αβαβ⊂=,求证://a b 证明:∵b αβ=∴b α⊂又//a α∴a 与b 无公共点又 , a b ββ⊂⊂∴//a b2、探索新知1)直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行符号表述:a ∥α,a ⊂β,α∩β=b ⇒a ∥b简记:线线平行 线面平行注意:①定理中三个条件缺一不可②简记:线面平行,则线线平行③定理的作用:判断直线与直线平行的重要依据④定理的关键:寻找平面与平面的交线【例1】如右图的一块木料中,棱BC 平行面A'C'(1)要经过面A'C'内的一点P 和棱BC 将木料锯开,在木料表面应该怎样画线?(2)所画的线与平面AC 是什么位置关系?解:(1)如右图,在平面A'C 内,过点P 作直线EF ,使EF//B'C',并分别交棱A'B'、D'C' 于点E 、F.连接BE 、CF,则EF 、BE 、 CF 就是应画的线(2) ∵BC ∥平面A'C',平面BC'平面A'C'=B'C'∴BC//B'C'由(1)知EF//B'C'∴EF//BC ,而BC ⊂平面AC ,EF ⊄平面AC∴EF//平面AC显然,BE 、CF 都与平面AC 相交【例2】如图所示,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,AC 与BD 交于点O ,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .证明:连接MO∵四边形ABCD 是平行四边形∴O 是AC 的中点又∵M 是PC 的中点∴AP ∥OM又∵AP ⊄平面BDMOM ⊂平面BDM∴AP ∥平面BDM又∵AP ⊂平面APGH ,平面APGH ∩平面BDM =GH∴AP ∥GH【例3】如图,在三棱柱111ABC A B C -中,点,E F 分别是棱11,CC BB 上的点,点M 是线段AC 上的动点,22EC FB ==.若//MB 平面,AEF MB ⊂,试判断点M 的位置解:M 是AC 的中点因为//MB 平面,AEF MB ⊂平面FBMN平面FBMN ⋂平面AEF FN =所以//MB FN所以四边形BFNM 是平行四边形所以1MN BF ==而//,22EC FB EC FB == 所以1//,12MN EC MN EC == 故MN 是ACE 的中位线所以M 是AC 的中点时,//MB 平面AEF方法规律:线面平行的性质和判定经常交替使用,也就是通过线线平行得到线面平行,再通过线面平行得线线平行.利用线面平行的性质定理解题的具体步骤:(1)确定(或寻找)一条直线平行于一个平面(2)确定(或寻找)过这条直线且与这个平行平面相交的平面(3)确定交线(4)由性质定理得出线线平行的结论四、课堂练习P 138 练习1、如图,在五面体EF ABCD 中,已知四边形ABCD 为梯形,AD ∥BC ,求证:AD ∥EF证明 ∵AD ∥BC ,AD ⊄平面BCEF ,BC ⊂平面BCEF∴AD ∥平面BCEF∵AD ⊂平面ADEF ,平面ADEF ∩平面BCEF =EF∴AD ∥EF2、如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点.求证:EF ∥平面BDD 1B 1证明:取D 1B 1的中点O ,连接OF ,OB (图略)∵F 为C 1D 1的中点∴OF ∥B 1C 1且OF =12B 1C 1 又BE ∥B 1C 1,BE =12B 1C 1 ∴OF ∥BE 且OF =BE∴四边形OFEB是平行四边形,∴EF∥BO∵EF⊄平面BDD1B1,BO⊂平面BDD1B1∴EF∥平面BDD1B1五、课堂小结1、直线与平面平行的性质定理2、证明线与线、线与面的平行关系的一般规律是:“见了已知想性质,见了求证想判定”,也就是说“发现已知,转化结论,沟通已知与未知的关系”.这是分析和解决问题的一般思维方法,而作辅助线和辅助面往往是沟通已知和未知的有效手段六、课后作业习题8.5 7、8七、课后反思。
《直线与平面平行的判定》教案-人教A版高中数学必修二
《直线与平面平行的判定》教案一、教学内容分析本节选自教材《基础模块》下第九章,本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析任教的学生在年级段属中上程度,学生学习兴趣较高,学生已经学习完空间直线与直线的位置关系以及直线与直线平行,并掌握直线与直线平行的判断方法.在日常生活中积累了许多线面平行的素材,和直观判断的方法,但对这些方法是否正确合理缺乏深入理性的分析.在空间想象和逻辑论证等方面的能力有待于再进一步学习中提高.学习立体几何所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
四、教学目标通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。
培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。
让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学重点与难点教学重点:直线与平面平行的判定定理.教学难点:直线与平面平行的判定定理验证和应用六、教学过程设计(一)知识准备、新课引入提问1:根据公共点的情况,空间中直线a和平面α有哪几种位置关系?并完成下表:我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
《直线与平面平行的判定》教案-公开课-优质课(人教A版必修二精品)
《直线与平面平行的判定》教案教学目标1、理解并掌握直线与平面平行的判定定理;2、并会用判定定理证明直线与平面平行;3、培养学生的空间思维能力.教学重难点教学重点:直线与平面平行的判定定理的应用.教学难点:判定定理的理解.教学过程一、复习提问引课:我们已经学习过空间点、直线、平面之间的位置关系,在这些关系中,直线和平面、平面和平面的关系最为重要.今天我们要来学习的是:直线和平面平行的判定.提问:直线与平面有几种位置关系?分别是什么?答:空间中,直线和平面的位置关系有且只有三种:(1)直线在平面内;(2)直线与平面相交;(3)直线与平面平行,直线和平面相交或平行的情况统称为直线在平面外.二、研探新知:提出问题:在直线与平面的位置关系中,平行是一种非常重要的关系.它不仅应用较多,而且是学习平面与平面平行的基础.怎样判断直线与平面平行呢?答:用定义法判断,只须判定直线和平面有没有公共点.指出:这个方法好是好,但并不实用。
因为直线无限伸展,平面无限延展;此处无交点并不表示延伸后就没有交点.我们还是先来看看:1、生活中线面平行的例子(1)门扇的两边是平行的,当门扇绕着一边转动时,另一边始终与门框所在的平面没有公共点,此时门扇转动的一边与门框所在的平面给人以平行的印象.(2)观察:如图,将一本书平放桌面上,翻动书的硬皮封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?分析、思考:对(1),门扇的另一边在门框所在的平面内,门扇转动的边与没有转动的另一边互相平行;对(2),封面边缘AB所在直线与桌面所在平面内的一条直线平行.猜想、证明:是不是只要平面外的一条直线和平面内的一条直线平行,就能推出这条直线和平面平行呢?如右图,若a∥b,且直线a在平面α外,直线b在平面α内问:直线a与平面α平行吗?直线a与b共面吗?指出:上述结论是可以证明的,不过要用到反证法,所以我们以后再来证明.归纳出定理定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.上述定理就是直线与平面平行的判定定理,它可以用符号表示:αa,α⊄⊂b,且a∥b⇒a∥α由定理可知,要证明一条已知直线与一个平面平行,只要在这个平面内找出一条直线与已知直线平行,就可断定已知直线与这个平面平行.三、例题示范,巩固新知:例1、求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面.已知:如图,空间四边形ABCD中,E,F分别是AB、AD的中点.求证:EF∥平面BCD.证明:连接BD,∵A E=B E,A F=F D∴EF∥BD∵EF⊄平面BCD,BD⊂平面BCD∴EF∥平面BCD.方法归纳:将直线与平面的平行关系转化为直线间的平行关系,是处理空间位置关系的一种常用方法.练一练,巩固新知:P55练习1,2题补充练习:判断对错直线a与平面α不平行,即a与平面α相交. ( )直线a∥b,直线b平面α,则直线a∥平面α. ( )直线a∥平面α,直线b平面α,则直线a∥b. ( )四、归纳小结:1、本节课所学定理的内容是什么?其作用是什么?2、同学们在运用该判定定理时应注意什么?3、在解决空间几何问题时,常将之转换为平面几何问题.五、作业:1、教材第61页习题2.2A组第3题;2、预习:如何判定两个平面平行?。
人教课标版高中数学必修2导学案-直线与平面平行的性质
2.2.3直线与平面平行的性质学习目标:1.通过观察探究,发现直线与平面平行的性质定理,并能准确地用数学语言表述该定理;经历直线与平面平行的性质定理的论证,体验数学学习中直观感知,获得猜想,逻辑论证的探究过程.2.通过直线与平面平行的性质定理的实际应用,让学生体会定理的现实意义与重要性;培养、提高学生分析、解决问题的能力.学习重点:直线与平面平行的性质定理.学习难点:综合应用线面平行的判定定理和性质定理进行线线平行与线面平行的相互转化.一、探究1.观察实验利用笔和桌面做实验,把一支笔放置到与桌面所在平面平行的位置上,把另一支笔放置在桌面,笔所在的直线代表桌面所在平面上的一条直线,移动桌面上的笔到不同的位置,观察两笔所在直线的位置关系.并思考,当桌面上的笔放在哪些位置时,两笔平行.2.思考猜想根据你所做实验完成下面问题(1)一条直线与平面平行,那么这条直线与平面内的直线有哪些位置关系?(2)根据实验猜想:一条直线与一个平面平行,在什么条件下,平面内的直线与这条直线平行?3.逻辑证明将你的猜想用数学符号式写成已知、求证的形式,并证明二、性质定理直线与平面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.符号表示:数学思想:三、典例剖析1/ 31、判断下列说法是否正确:①一条直线和一个平面平行,它就和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何一条直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行;④如果直线l和平面α平行,那么过平面α内一点和直线l平行的直线在α内.2、已知:平面外的两条平行直线中的一条平行这个平面,求证:另一条也平行这个平面.3、在图中所示的一块木料中,棱BC平行于面A’C’ .(1)要经过面A’C’内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面AC是什么位置关系?四、小结1、填表2、数学思想线面平行判定定理线面平行性质定理符号表示作用关键数学思想作法提示:1用数学符号描述上述命题,写出已知求证;2用图形语言描述上述命题,画出相应图形3利用线面平行的性质定理解答本题.2/ 33 / 3达标检测:1、判断下列结论是否成立:① 过平面外一点,有且仅有一个平面与已知平面平行;( )② αββγαγ若∥,∥,则∥;( )③ 平行于同一个平面的两条直线平行;( )④ 两个平面都与一条直线平行,则这两个平面平行;( )⑤一条直线与两个平行平面中的一个相交,则必与另一个相交.( )2、如图,E 、H 分别是空间四边形ABCD 的边AB 、AD 的中点,平面α过EH 分别交BC 、CD 于F 、G .求证:EH ∥FG .课后作业:1.若直线a 不平行于平面α,则下列结论成立的是( )A .α内的所有直线都与直线a 异面B .α内不存在与a 平行的直线C .α内的直线都与a 相交D .直线a 与平面α有公共点2.过平面外一点作一平面的平行线有 条.3.若直线a ,b 都平行于平面α,那么a 与b 的位置关系是 .4.三个平面两两相交有三条交线,如果其中两条交线平行,则第三条交线也和它们分别平行.5.求证:一条直线与两个相交平面都平行,则这条直线与这两个相交平面的交线平行.判定定理 性质定理。
新人教版必修二高中数学:2.2.1直线与平面平行的判定教案
2.2.1 直线与平面平行的判定一、教学目标:1、知识与技能(1)理解并掌握直线与平面平行的判定定理;(2)进一步培养学生观察、发现的能力和空间想象能力;2、过程与方法学生通过直观感知——观察——操作确认——归纳并认识直线与平面平行的判定定理。
3、情感、态度与价值观(1)让学生在发现中学习,增强学习的积极性;(2)让学生了解空间与平面互相转换的数学思想。
二、教学重点、难点重点、难点:直线与平面平行的判定定理及应用。
三、学法与教学用具1、学法:学生借助实例,通过观察、思考、交流、讨论等,理解判定定理。
2、教学用具:投影仪(片)四、教学思想(一)知识准备,新课引入问题1.直线与平面的位置关系有哪几种?完成下表。
问题2:在直线与平面的位置关系中,平行是一种非常重要的关系,它是空间线面位置关系的基本形态,那么怎样判定直线与平面平行呢?(二)研探新知知识探究(一):直线与平面平行的背景分析1、直观感知思考1:根据定义,怎样判定直线与平面平行?图中直线l和平面α平行吗?思考2:生活中,我们注意到门扇的两边是平行的.αl当门扇绕着一边转动时,观察门扇转动的一边与门框所在平面的位置关系如何?2.动手实践——数学实验(1)将课本的一边AB 紧靠桌面,并绕AB 转动,观察AB 的对边CD 在各个位置时,是不是都与桌 面所在的平面平行?(2)直线AB 、CD 各有什么特点呢?有什么关系呢?(3)从中你能得出什么结论?结论:CD 是桌面外一条直线, AB如果CD ∥ AB ,则CD ∥桌面。
3.探究思考 思考3:猜想在什么条件下直线a 与平面α平行?猜想:如果平面外一条直线和这个平面内 的一条直线平行,那么这条直线和这个平面平行。
(引发学生思考其可否作为判断线面平行的定理。
)探究(二):直线与平面平行的判断定理 1、归纳确认思考1:如果直线a 与平面α内的一条直 线b 平行,则直线a 与平面α一定平行吗? (说明直线a 在平面外的重要性)思考2:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
高中数学2.2.1直线与平面平行的判定教案1新人教A版必修2
2.2.1 直线与平面平行的判定【教学重难点】重点、难点:直线与平面平行的判定定理及应用。
【教学过程】(一)复习旧知,揭示课题复习线面的位置关系.(二)设疑引探1、观察归纳①当门扇绕着一边转动时,门扇转动的一边所在直线与门框所在平面具有什么样的位置关系?②将课本放在桌面上,翻动书的封面,封面边缘所在直线与桌面所在平面具有什么样的位置关系?揭示问题本质:门扇两边平行;书的封面的对边平行2.概念形成从情境抽象出图形语言学生思考后,小组共同探讨,得出以下结论直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:a αb β => a∥αa∥b三.辨析深化:已知不重合的直线a,b和平面α,①若a∥α,则a平行于过a,b的所有平面;②若a∥α,a∥b,则b∥α③若a∥b,b∥α,则a∥b④过平面外一点和这个平面平行的直线只有一条四.练习巩固如图,长方体ABCD—A1B1C1D1中,①与AB平行的平面是_______________②与AA1平行的平面是________________③与AD平行的平面是__________________五.典例讲解例1求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面。
分析:先把文字语言转化为图形语言、符号语言,要求已知、求证、证明三步骤,要证线面平行转化为线线平行题后反思:反思1:要证明直线与平面平行可以运用判定定理反思2:能够运用定理的条件是要满足六个字:“面外、面内、平行”反思3:运用定理的关键是找平行线;找平行线又经常会用到三角形中位线定理.六.课堂小结(1)线面平行的判定定理(2)线面平行的判定方法;中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。
高中数学必修2《直线、平面平行的判定及其性质》教案
高中数学必修2《直线、平面平行的判定及其性质》教案一、知识与技能:1、理解并掌握直线与平面平行的性质定理;2、引导学生探究线面平行的问题可以转化为线线平行的问题,从而能够通过化归解决有关问题,进一步体会数学转化的思想。
二、过程与方法:通过直观观察、猜想研究线面平行的性质定理,培养学生的自主学习能力,发展学生的合情推理能力及逻辑论证能力。
三、情感、态度与价值观:培养学生主动探究知识、合作交流的意识,在体验数学转化过程中激发学生的学习兴趣,从而培养学生勤于动脑和动手的良好品质。
2重点难点教学重点:线与面平行的性质定理及其应用。
教学难点:线与面的性质定理的应用。
3教学过程3.1 第一学时教学活动活动1【导入】问题引入一、问题引入木工小刘在处理如图所示的一块木料,已知木料的棱BC∥平面A C .现在小刘要经过平面A C 内一点P和棱BC将木料锯开,却不知如何画线,你能帮助他解决这个问题吗?预设:(1)过P作一条直线平行于B C(2)过P作一条直线平行与BC。
(问题引入的目的在于激起学生对于这堂课的兴趣,带着问题学习目的性更强,效果也会更好。
)活动2【讲授】新课讲授二、知识回顾判定一条直线与一个平面平行的方法:1、定义法:直线与平面没有公共点。
2、判定定理法:平面外一条直线与平面内的一条直线平行,则该直线与此平面平行。
(线线平行线面平行)三、知识探究(一)思考一:如果直线a与平面平行,那么直线a与平面内的直线有哪些位置关系?答:平行或异面。
思考2:若直线a与平面平行,那么在平面内与直线a平行的直线有多少条?这些直线的位置关系如何?答:无数条;平行。
思考3:如果直线a与平面平行,经过直线a的平面与平面相交于直线b,那么直线a、b的位置关系如何?为什么?答:平行;因为a∥,所以a与没有公共点,则a与b没有公共点,又a与b在同一平面内,所以a与b平行。
思考4:综上分析,在直线a与平面平行的条件下我们可以得到什么结论?答:如果一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.(四个思考题的目的在于引导学生探究直线与平面平行的性质定理。
人教A版高中数学必修二第二章直线与平面平行的判定教案新
§2.2.1直线与平面平行的判定一、教学目标:1、知识与技能(1)理解并掌握直线与平面平行的判定定理;(2)进一步培养学生观察、发现的能力和空间想象能力;2、过程与方法学生通过观察图形,借助已有知识,掌握直线与平面平行的判定定理。
3、情感、态度与价值观(1)让学生在发现中学习,增强学习的积极性;(2)让学生了解空间与平面互相转换的数学思想。
二、教学重点、难点重点、难点:直线与平面平行的判定定理及应用。
三、学法与教学用具1、学法:学生借助实例,通过观察、思考、交流、讨论等,理解判定定理。
2、教学用具:投影仪(片)四、教学思想(一)创设情景、揭示课题引导学生观察身边的实物,如教材第55页观察题:封面所在直线与桌面所在平面具有什么样的位置关系?如何去确定这种关系呢?这就是我们本节课所要学习的内容。
(二)研探新知 1、投影问题直线a 与平面α平行吗?若α内有直线b 与a 平行,那么α与a 的位置关系如何? 是否可以保证直线a 与平面α平行?学生思考后,师生共同探讨,得出以下结论直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:a αb β => a ∥αa ∥b2、例1 引导学生思考后,师生共同完成该例是判定定理的应用,让学生掌握将空间问题转化为平面问题的化归思想。
αa α a b(三)自主学习、发展思维练习:教材第57页 1、2题让学生独立完成,教师检查、指导、讲评。
(四)归纳整理1、同学们在运用该判定定理时应注意什么?2、在解决空间几何问题时,常将之转换为平面几何问题。
(五)作业1、教材第64页习题2.2 A组第3题;2、预习:如何判定两个平面平行?。
高一数学必修二2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质导学案(解析版)
2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质一、课标解读1、掌握直线与平面平行的性质定理及其应用;2、学生通过观察与类比,借助实物模型理解性质及应用。
3、进一步提高学生空间想象能力、思维能力;二、自学导引问题1:在直线与平面平行的条件下可以得到什么结论?并用文字语言表述之.问题2:上述定理通常称为直线与平面平行的性质定理,该定理用符号语言可怎样表述?问题3:直线与平面平行的性质定理可简述为“线面平行,则线线平行”,在实际应用中它有何功能作用?问题4:平面与平面平行的性质定理:问题5:符号语言表述:问题6:面与面平行的性质定理有何作用?三、合作探究探究1:如果直线a 与平面α平行,那么直线a 与平面α内的直线有哪些位置关系?探究2:若直线a 与平面α平行,那么在平面α内与直线a 平行的直线有多少条?这些直线的位置关系如何?探究3:如果直线a 与平面α平行,那么经过平面α内一点P 且与直线a 平行的直线怎样定位?探究4:如果α∥β,,,βα⊂⊂b a 则直线a 与直线b 的位置关系如何?四、典例精析例1 如果一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.已知:βαβα//,//,a a l =求证:l a //变式训练1 已知,,321l l l ===γβγαβα ,1l ∥2l .求证:3l ∥1l ,3l ∥2l例2.如图所示,三棱椎BCD A -被一平面所截,截面为平行四边形EFGH .求证:CD ∥平面EFGH变式训练2 在长方体1111ABCD A BC D -中,点重合)不与11,(B B BBP ∈M BA PA =1 N BC PC =1 ,求证:MN ∥平面AC例 3 已知N M CD AB ,,之间的线段,,是夹在两个平行平面βα分别为CD AB ,的中点.求证:MN ∥α变式训练3 如图所示,在正方体1111ABCD A BC D -中,P N M ,,分别为11111,,B A D B B A上的点,若311111==BA BM D B N B ,又PN ∥11D A ,求证:MN ∥平面11BCC B例4 如图所示,已知的分别是所在平面外一点,是平行四边形PC AB N M ABCD P ,,中点,平面l PBC PAD =平面 .(1) 求证:l ∥BC(2) MN 与平面PAD 是否平行?证明你的结论.五、自主反馈 1.平面α∩平面β=a ,平面β∩平面γ=b ,平面γ∩平面a =c ,若a ∥b ,则c 与a ,b的位置关系是( )A .c 与a ,b 都异面B .c 与a ,b 都相交C .c 至少与a ,b 中的一条相交D .c 与a ,b 都平行2.如果两个相交平面分别经过两条平行线中的一条,那么它们的交线和这两条平行线的位置关系是( )A .都平行B .都相交C .一个相交,一个平行D .都异面 3.对于直线m 、n 和平面α,下面命题中的真命题是A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//nB .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //D .如果m n m ,//,//αα、n 共面,那么n m //4.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题①若m ⊂α,n ∥α,则m ∥n ;②若m ∥α,m ∥β,则α∥β;③若α∩β=n ,m ∥n ,则m ∥α且m ∥β;其中真命题的个数是A .0B .1C .2D .35.A 、B 是不在直线l 上的两点,则过点A 、B 且与直线l 平行的平面的个数是 ( )A .0个B .1个C .无数个D .以上三种情况均有可能 6 用一个平面去截正方体,所得的截面可能是______________________________;7.三个平面两两相交,有三条交线,则这三条交线的位置关系为__________;8. 在△ABC 中,AB =5,AC =7,∠A =60°,G 是重心,过G 的平面α与BC 平行,AB ∩α=M ,AC ∩α=N ,则MN ___________;9. P 是边长为8的正方形ABCD 所在平面外的一点,且PA =PB =PC =PD =8,M 、N 分别在PA 、BD 上,且53==ND BN MA PM ,则MN =_________; 答案2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质例1 证明:过b a 于交作平面αγb a a //,//∴α,于交平面作平面过c βδα βββ⊂⊄∴c b c b c a a ,,//,//,//又l a l b l b b //,//,,,//∴∴=⊂∴βααβ 又例2 略例3 证明:情形一:若ABCD CD AB 在同一平面内,则平面, BD AC BD AC //,//,,∴βαβα 的交线为,与BD MN CD AB N M //,,∴的中点,为又αα平面平面又//,MN BD ∴⊂P AE E CD AE A CD AB 中点,取于交作异面,过情形二:若α//, 连接AEDC CD AE CD AE ED BE PN MP 确定平面,,//,,,,∴ 且平面AC ED AEDC ,的交线为,与βα的中点分别为又CD AE N P ED AC ,,,//,//∴βααα//,//,//,//MP BE MP PN ED PN ∴∴∴同理可证 αα//,,//MN MPN MN MPN ∴⊂∴平面又平面例4 证明:(1)PAD AD PAD BC AD BC 平面平面⊂⊄,,// l PAD PBC PAD BC =∴平面平面,又平面 //l BC //∴(2)平行证明:取NE AE E PD ,,连接的中点AM NE AM NE =且可得,//是平行四边形可知四边形AMNEPAD MN AE MN 平面//,//∴∴变式训练1.略2.证明:M BA PA AA BB BA B A =11111,// 且中,在平面 1111,,CC PB MA PM CC AA AA PB MA PM =∴==∴又 ① N BC PC CC BB BCC B =11111,// 且中,在平面1CC PB NC PN =∴ ② 由①②得AC MN NC PN MA PM //,∴=AC MN AC AC AC MN 平面,平面平面//,∴⊂⊄3.证明:31,31,//11111111==A B P B D B N B D A PN 得由 ,//,3111BB PM BA BM ∴=又 11111,BCC B BB BCC B PM 平面平面又⊂⊄ 11111111//,////C B D A D A PN BCC B PM ,又平面∴ 111111//,C B PN BCC B C B ∴⊂平面1111//BCC B PN BCC B PN 平面,平面又∴⊄ 11//,BCC B PMN P PN PM 平面平面又∴= 11//,BCC B MN PMN MN 平面平面∴⊂ 自主反馈答案1.D2.A3.C4.A5.D6. 3,4,5,6边形7. 平行或交于一点 8.3392 9. 19。
高中数学必修二教案:2.2.2直线与平面、平面与平面平行的性质
课题名称直线与平面、平面与平面平行的性质 三维目标1. 知识与技能:理解直线与平面、平面与平面平行的性质定理的含义, 并会应用性质解决问题2.过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平面的性质定理3.情感态度与价值观:通过自主学习、主动参与、积极探究的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法 重点目标知识与技能 难点目标 过程与方法 导入示标目标三导学做思一: 1)如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系?(观察长方体) 2)如果一条直线和一个平面平行,如何在这个平面内做一条直线与已知直线平行?(可观察教室内灯管和地面) 学做思二: 一条直线与平面平行,这条直线和这个平面内直线的位置关系有几种可能? 学做思三:如果一条直线a 与平面α平行,在什么条件下直线a 与平面α内的直线平行呢? 学做思四:两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?两个平面平行,那么其中一个平面内的直线与另一平面内的直线有何关系? 达标检测 1.有一块木料如图,已知棱BC 平行于面A ′C ′(1)要经过木料表面A ′B ′C ′D ′ 内的一点P 和棱BC 将木料锯开,应怎样画线?(2)所画的线和面AC 有什么关系?2.已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。
3.求证:夹在两个平行平面间的平行线段相等已知://αβ,AB CD ∥,,,,A D B C ααββ∈∈∈∈,求证:AB CD =。
反思总结 1.知识建构2.能力提高3.课堂体验课后练习1.61页练习2.下列判断正确的是( )⊂,则a∥b B.a∩α=P,b α,则a与b不平行A.a∥α,bα⊄,则a∥α D.a∥α,b∥α,则a∥bC.aα3.直线a∥平面α,P∈α,过点P平行于a的直线( )A.只有一条,不在平面α内 B.有无数条,不一定在α内C.只有一条,且在平面α内 D.有无数条,一定在α内4.下列命题错误的是()A.平行于同一条直线的两个平面平行或相交B.平行于同一个平面的两个平面平行C.平行于同一条直线的两条直线平行D.平行于同一个平面的两条直线平行或相交5. 平行四边形EFGH的四个顶点E、F、G、H、分别在空间四边形ABCD的四条边AB、BC、CD、AD、上,又EF∥BD,则()A.EH∥BD,BD不平行与FGB.FG∥BD,EH不平行于BDC.EH∥BD,FG∥BDD.以上都不对6.若直线a∥b,a∥平面α,则直线b与平面α的位置关系是7.一个平面上有两点到另一个平面的距离相等,则这两个平面。
高中数学人教A版必修二教案:2.2.2直线与平面平行的性质
无公共点.
线与平面平行可得到直线与直
又因为 , b ,所 线平行,这给出了一种作平行
以 a∥b.
线的重要方法.
3.定理 一条直线与一个
平面平行,则过这条直线的任
一平面与此平面的交线与该直
线平行.
简证为:线面平行则线线
平行.
符号表示:
a P
a
a
Pb
a I b
典例剖析
例2 如 图所示的一 块林料中,棱 BC 平行平面 A′C′.
∴ EG AF BD 5 4 20 .
AC
9
9
--------------------------------------------------------
----------------------------------------------------------------------------
(1)知,EF∥BC,因此
EF PBC
EF 平平AC平平
EF
P显然都与平面 AC 相交.
例 3 已知平面外的两条平
----------------------------------------------------------------------------
第二课时 直线与平面平行的性质
(一)教学目标
1.知识与技能
掌握直线与平面平行的性质定理及其应用.
2.过程与方法
学生通过观察与类比,借助实物模型性质及其应用.
1.线线平行
性质定理
行
线面平
构建
知识系统 学生归纳后教师总结完善
思维的严
2.在学习性质定时注意事项
谨性.
课后作业
2.2 第二课时 习案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
学习目标: 1. 理解并掌握直线与平面平行的性质定理
2.会综合运用直线与平面平行的判定定理、性质定理解决线线平行、线面平行的
相关问题.
学习重点: 直线与平面平行的性质定理及应用. 活动过程: 活动一、引入新课 一.创设情境
(2)符号表示
(3)图形表示
活动二、例题剖析
例1.如图,直线AC//平面EFGH,直线BD//平面EFGH, 求证:四边形EFGH 是平行四边形.
例2.一个长方体木块如图所示, 要经过平面A 1C 1内一点P 和棱BC 将木块锯开, 应怎样画
线?
A
B
C
D
E
F
G
H
A 1
2
[问]: 在平面A 1B 1C 1D 1内所画的线与平面ABCD 有何位置关系?
例3.求证: 如果三个平面两两相交于三条直线, 并且其中两条直线平行, 那么第三条直线也和它们平行.
活动三、巩固练习
例4.已知直线a ∥平面α,直线b//直线a ,直线b ⊄平面α,求证:直线b//平面α.
活动四、课堂小结
掌握直线与平面平行的性质定理.会综合运用直线与平面平行的判定定理、性质定理解决线线平行、线面平行的相关问题.
l
m
n
β γ
α
α
a
b。