第六章固体的磁学性质和磁性材料.
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ni2+
Pz轨道
O2dz2轨道
Ni2+
图6.5 超交换作用
Ni2+离子有8个d电子,在八面体配位环境中,只有其中2个电子为成单 状态,它们占据八面体晶体场中的eg轨道(dz2和dx2-y2)。 这些轨道是平行于晶胞轴取向的,因此指向毗邻的氧负离子O2-。Ni2+离 子的eg轨道上的未成对电子能与O2-离子p电子进行磁耦合,耦合过程发生电 子从Ni2+离子的eg轨道跃迁到O2-离子的p轨道。这样,每个O2-离子的p轨道上 就有2个反平行耦合的电子。所以,NiO晶体中允许直链耦合发生,总结果 造成毗邻的镍离子和氧离子相间排列,并且是反平行耦合的。
(a)
(b)
(c)
(d)
图6.1 成单电子自旋取向和材料的磁性 a 抗磁性 b 铁磁性c 反铁磁性 d 亚铁磁性
2. 抗磁性 拉莫尔进动 在外磁场作用下,原子内的电子轨道将绕着场向进动 (称作拉莫尔进动),并因此获得附加的角速度和微观环形电流,同时 也得到了附加的磁矩。 按照楞次定律:该环形电流所产生的磁矩与外磁场方向相反,由此而 产生的物质磁性称作抗磁性。它无例外地存在于一切物质中,但只有原 子核磁矩为零的物质才可能在宏观上表现出来,并称这种物质为抗磁性 物质。在另外一些物质中,这种磁性往往被更强的其他磁性所掩盖。 如上所述,在外磁场作用下,原子产生与外磁场方向相反的感生磁矩, 原子磁矩叠加的结果使得宏观物质也产生了与外磁场方向相反的磁矩。 如果外磁场强度为H(A/m),宏观物质单位体积的磁矩叫磁化强度I (A/m),那么,它与外磁场强度H之比叫做磁化率,通常用K表示,即 K=I/H ,显然,由于抗磁性物质的I与H的方向相反,所以K为负值。 它的大小及其与温度的关系因抗磁性物质的类型不同而不同。还可以将K 表示为摩尔磁化率χ, χ=KM/d 式中 M是物质的分子量,d为物质样品的密度。
第6章 固体的磁性和磁性材料
§6.1 固体的磁性质及磁学基本概念 6.1.1 固体的磁性质
(一)物质磁性的来源 物理学原理:任何带电体的运动都必然在周围的空间产生磁场。 电动力学定律:一个环形电流还应该具有一定的磁矩,即它在磁场中 行为像个磁性偶极子。 设环形电流的强度为 I(A),它所包围的面积为 A( m2),则该环流的 m 磁矩为: I(A) m=I*A(A m3) A(m )
百度文库磁性物质的分类
根据抗磁性物质χ值的大小及其与温度的关系可将抗磁性物质分 为三种类型: 1 弱抗磁性 例如惰性气体、金属铜、锌、银、金、汞等和大量 的有机化合物,磁化率极低,约为-10-6,并基本与温度无关; 2 反常抗磁性 例如金属铋、镓、碲、石墨以及γ-铜锌合金,其 磁化率较前者约大10-100倍,Bi的磁化率χ比较反常,是场强H的周 期函数,并强烈与温度有关; 3 超导体抗磁性 许多金属在其临界温度和临界磁场以下时呈现 超导性,具有超导体完全抗磁性,这相当于其磁化率χ=-1.
(二)物质磁性的普遍性 物质磁性的普遍性首先表现在它无处不在: (1)物质的各种形态,无论是固态、液态、气态、等离子态、超高密度态 和反物质态都会具有磁性; (2)物质的各个层次,无论是原子、原子核、基本粒子和基础粒子等都会 具有磁性。 (3)无限广袤的宇宙,无论是各个天体,还是星际空间都存在着或强或弱 的磁场。例如:地球磁场强度约为240A/m,太阳的普遍磁场强度约为80A/m,而 中子星的磁场强度高达1013-1014A/m。 物质的磁性的普遍性还表现在磁性与物质的其他属性之间存在着广泛的联系, 并构成多种多样的耦合效应和双重(多重)效应(例如磁电效应、磁光效应、磁
声效应和磁热效应等)。这些效应既是了解物质结构和性能关系的重要途径,又 是发展各种应用技术和功能器件(例如磁光存储技术、磁记录技术和霍尔器件等) 的基础。
(三)物质磁性的特殊性和多样性 1. 电子交换作用 原子磁矩为零的物质具有抗磁性(Diamagnetism)。原子内具有未 成对的电子使得原子的固有磁矩不为零是物质磁性的必要条件。但是, 由于近邻原子共用电子(交换电子)所引起的静电作用,及交换作用可 以影响物质的磁性。交换作用所产生能量,通常用A表示,称作交换能, 因其以波函数的积分形式出现,也称作交换积分。它取决于近邻原子未 填满的电子壳层相互靠近的程度,并决定了原子磁矩的排列方式和物质 的基本磁性。一般地: 当A大于零时,交换作用使得相邻原子磁矩平行排列,产生铁磁性 (Iferromagnetism)。 当A小于零时,交换作用使得相邻原子磁矩反平行排列,产生反铁磁 性(Antiferromagnetism)。 当原子间距离足够大时,A值很小时,交换作用已不足于克服热运动 的干扰,使得原子磁矩随机取向排列,于是产生顺磁性(Paramagnetism)
铁氧体磁性材料具有亚铁磁性(Ferrimagnetism), 其中金属离子 具 有几种不同的亚点阵晶格,因相邻的亚点阵晶格相距太远,因此在其格 点的金属离子之间不能直接发生交换作用,但可以通过位于它们之间的 氧原子间接发生交换作用,或称超交换作用(Superexchange)。 我们以NiO为例来讨论自旋耦合如何产生反铁磁性,也就是所谓超交 换作用(Superedchange)。图6.5示意这种超交换作用。
2
玻尔(Bohr)原子模型:原子内的电子在固定的轨道上绕着原子核作旋 转运动,同时还绕自身的轴线作自旋运动。前一种运动产生“轨道磁矩”, 后一种运动产生“自旋磁矩”。
物质磁性来源的同一性。 原子磁矩应该是构成原子的所有基本粒子磁矩的叠加。但是实际上 原子核磁矩要比电子磁矩小三个数量级,在一般情况下可以忽略不计。 因此,原子磁矩主要来源于原子核外电子的自旋磁矩与轨道磁矩。 如果原子中所有起作用的磁矩全部抵消,则原子的固有磁矩为零。 但在外磁场作用下仍具有感生磁矩,并产生抗磁性。 如果如果原子中所有起作用的磁没有完全抵消,则原子的固有磁矩 不为零,那么原子就具有磁偶极子的性质。 原子内电子的运动便构成了物质的载磁子。尽管宏观物质的磁性是 多种多样的,但这些磁性都来源于这种载磁子。这便是物质磁性来源的 同一性。