2013年中考数学专题复习第13讲:反比例函数(含详细参考答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考数学专题复习第十三讲反比例函数

【基础知识回顾】

一、反比例函数的概念:

一般地:互数y (k是常数,k≠0)叫做反比例函数

【名师提醒:1、在反比例函数关系式中:k≠0、x≠0、y≠0

2、反比例函数的另一种表达式为y= (k是常数,k≠0)

3、反比例函数解析式可写成xy= k(k≠0)它表明反比例函数中自变量x与其对应函数值y之积,总等于】

二、反比例函数的同象和性质:

1、反比例函数y=k

x(k≠0)的同象是它有两个分支,关于对称

2、反比例函数y=k

x(k≠0)当k>0时它的同象位于象限,在每一个象

限内y随x的增大而当k<0时,它的同象位于象限,在每一个象限内,y 随x的增大而

【名师提醒:1、在反比例函数y=k

x中,因为x≠0,y≠0所以双曲线与坐标轴

无限接近,但永不与x轴y轴

2、在反比例函数y随x的变化情况中一定注明在每一个象限内】

3、反比例函数中比例系数k的几何意义:

反曲线y=k

x(k≠0)上任意一点向两坐标轴作垂线

两线与坐标轴围成的形面积,即如图:AOBP=

S△AOP=

【名师提醒:k的几何意义往常与前边提示中所谈到的xy=k联系起来理解和应用】

三、反比例函数解析式的确定

因为反比例函数y=k

x(k≠0)中只有一个被定系数所以求反比例函数

关系式只需知道一组对应的x、y值或一个点的坐标即可,步骤同一次函数解析式的求法

一、反比例函数的应用

二、解反比例函数的实际问题时,先确定函数解析式,再利用同象找出解决问题

的方案,这里要特别注意自变量的

【重点考点例析】

考点一:反比例函数的同象和性质

例1 (2012•张家界)当a≠0时,函数y=ax+1与函数

a

y

x

=在同一坐标系中的图象可能

是()

A.B.

C.D.

思路分析:分a>0和a<0两种情况讨论,分析出两函数图象所在象限,再在四个选项中找到正确图象.

解:当a>0时,y=ax+1过一、二、三象限,y=

a

y

x

=过一、三象限;

当a<0时,y=ax+1过一、二、四象限,y=

a

y

x

=过二、四象限;

故选C.

点评:本题考查了一次函数与二次函数的图象和性质,解题的关键是明确在同一a值的前提下图象能共存.

例2 (2012•佳木斯)在平面直角坐标系中,反比例函数

22

a a

y

x

-+ =

图象的两个分支分别在()

A.第一、三象限B.第二、四象限

C.第一、二象限D.第三、四象限

思路分析:把a2-a+2配方并根据非负数的性质判断出是恒大于0的代数式,再根据反比例函数的性质解答.

解:a2-a+2,

=a2-a+1

4

-

1

4

+2,

=(a-1

2

)2+7 4 ,

∵(a-1

2

)2≥0,

∴(a-1

2

)2+7 4 >0,

∴反比例函数图象的两个分支分别位于第一、三象限.

故选A.

点评:本题考查了反比例函数图象的性质,先判断出a2-a+2的正负情况是解题的关键,对

于反比例函数

k

y

x

=(k≠0):(1)k>0,反比例函数图象在一、三象限;(2)k<0,反

比例函数图象在第二、四象限内.

例3 (2012•台州)点(-1,y1),(2,y2),(3,y3)均在函数

6

y

x

=的图象上,则y1,

y2,y3的大小关系是()

A.y3<y2<y1B.y2<y3<y1 C.y1<y2<y3 D.y1<y3<y2

思路分析:先根据反比例函数的解析式判断出此函数图象所在的象限,再根据各点的坐标判断出各点所在的象限,根据函数图象在各象限内点的坐标特点解答.

解:∵函数

6

y

x

=中k=6>0,

∴此函数的图象在一、三象限,且在每一象限内y随x的增大而减小,

∵-1<0,

∴点(-1,y1)在第三象限,

∴y1<0,

∵0<2<3,

∴(2,y2),(3,y3)在第一象限,

∴y2>y3>0,

∴y2>y3>y1.

故选D.

点评:本题考查的是反比例函数图象上点的坐标特点,根据题意判断出函数图象所在象限是解答此题的关键.

对应训练

1.(2012•毕节地区)一次函数y=x+m(m≠0)与反比例函数

m

y

x

=的图象在同一平面直

角坐标系中是()

A.B.C.D.1.C

2.(2012•内江)函数

1

y x

x

=+的图象在()

A.第一象限B.第一、三象限C.第二象限D.第二、四象限2.A

2.解:∵x中x≥0,1

x

中x≠0,

故x>0,此时y>0,则函数在第一象限.故选A.

3.(2012•佛山)若A(x1,y1)和B(x2,y2)在反比例函数

2

y

x

=的图象上,且0<x1

<x2,则y1与y2的大小关系是y1 y2.3.>

考点二:反比例函数解析式的确定

例4 (2012•哈尔滨)如果反比例函数

1

k

y

x

-

=的图象经过点(-1,-2),则k的值是()

A.2 B.-2 C.-3 D.3

思路分析:根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.解答:解:根据题意,得

-2=

1

1

k-

-

,即2=k-1,

解得k=3.

故选D.

点评:此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.

对应训练

4.(2012•广元)已知关于x的方程(x+1)2+(x-b)2=2有唯一的实数解,且反比例函数

1b y

x

+ =

的图象在每个象限内y随x的增大而增大,那么反比例函数的关系式为()

A.

3

y

x

=-B.

1

y

x

=C.

2

y

x

=D.

2

y

x

=-

4.D

4.分析:关于x的方程(x+1)2+(x-b)2=2有唯一的实数解,则判别式等于0,据此即可

求得b的值,然后根据反比例函数

1b

y

x

+

=的图象在每个象限内y随x的增大而增大,则

比例系数1+b<0,则b的值可以确定,从而确定函数的解析式.

解:关于x的方程(x+1)2+(x-b)2=2化成一般形式是:2x2+(2-2b)x+(b2-1)=0,△=(2-2b)2-8(b2-1)=-4(b+3)(b-1)=0,

解得:b=-3或1.

∵反比例函数

1b

y

x

+

=的图象在每个象限内y随x的增大而增大,

∴1+b<0 ∴b<-1,∴b=-3.

相关文档
最新文档