微积分发展历程.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分发展历程(一)

一、数学无穷发展的萌芽

无穷作为一个极富迷人魅力的词汇,长期以来就深深激动着人们的心灵。彻底弄清这一概念的实质成为维护人类智力尊严的一种需要。而数学是“研究无限的学科”,因此数学就责无旁贷地担当起征服无穷的重任。我们在本文中将简要介绍一下数学中无穷思想发展的历程

早在远古时代,无限的概念就比其它任何概念都激动着人们的感情,而且远在两千年以前,人们就已经产生了对数学无穷的萌芽认识。

在我国,著名的《庄子》一书中有言:“一尺之棰,日取其半,而万世不竭。”从中就可体现出我国早期对数学无穷的认识水平。而我国第一个创造性地将无穷思想运用到数学中,且运用相当自如的是魏晋时期著名数学家刘徽。他提出用增加圆内接正多边形的边数来逼近圆的“割圆术”,并阐述道:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”可见刘徽对数学无穷的认识已相当深刻,正是以“割圆术”为理论基础,刘徽得出徽率,而其后继者祖冲之更是得出了圆周率介于3.1415926与3.1415927之间的领先国外上千年的惊人成果。

在国外,早在毕达哥拉斯关于不可公度量的发现及关于数与无限这两个概念的定义中已孕育了微积分学的关于无穷的思想方法。德谟克利特和柏拉图学派探索过无穷小量观念。欧多克索斯、安蒂丰、数学之神阿基米德所运用的穷竭法已备近代极限理论的雏形,尤其是阿基米德对穷竭法应用之熟练,使后人感到他在当时就已接近了微积分的边缘。

由此,我们可以看到在数学无穷思想发展之初,古人就已在这个领域开创了一个光辉的起点。

虽说,古人对无穷已有了较深刻认识,然而人们对无限的认识是缺乏严密的逻辑基础的。可以说,对于只熟知有限概念的人们来说“无限”这一概念仍然是陌生与神秘的。芝诺悖论的提出清楚地表明了这一点。

芝诺,公元前五世纪中叶古希腊哲学家。他提出的四个悖论虽是哲学命题。但却对数学无穷思想的发展产生了直接且深远影响。这里仅举其悖论之一。

阿基里斯悖论:跑得最快的阿基里斯永远追不上爬得最慢的乌龟。大意是说甲跑的速度远大于乙,但乙比甲先行一段距离,甲为了赶上乙,须超过乙开始的A点,但甲到了A点,则乙已进到A1点,而当甲再到A1点,则乙又进到A2点,依次类推,直到无穷,两者距离虽越来越近,但甲永远在乙后面而追不上乙。

这显然违背人们常识的芝诺悖论,因与无限问题密切相连,就使得古希腊人对无穷有些望之却步静而远之了。同时也导致古希腊数学家不得不把无限排斥在自己的推理之外了。

芝诺悖论就这样一直困惑着人们,问题的症结何在呢?

这里我们不得不提到一个伟大的数学家(物理学家)——阿基米德(Archimedes,约公元前287~212),

阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法。在推演这些公式的过程中,他创立了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计

......

算的鼻祖....

。他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率。面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题。

微积分发展历程(二)

微积分学的诞生

随着时代的发展,实践中提出了越来越多的数学问题,待数学家们加以解决,如曲线切线问题、最值问题、力学中速度问题、变力做功问题……初等数学方法对此越来越无能为力,需要的是新的数学思想、新的数学工具。不少数学家为此做了不懈努力,如笛卡尔、费马、巴罗……并取得了一定成绩,正是站在这些巨人的肩膀上,牛顿、莱布尼兹以无穷思想为据,成功运用无限过程的运算,创立了微积分学。这新发现、新方法的重要性使当时的知识界深感震惊,因而出现了一门崭新的数学分支:数学分析。这一学科的创立在数学发展史上翻开了崭新一页,谱写了光辉动人的乐章。

1)微积分的发展

无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。 不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor )、麦克劳林(C.Maclaurin )、棣莫弗(A.de Moivre )、斯特林(J.Stirling )等。泰勒(1685_1731)做过英国皇家学会秘书。他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理()23....22..112123v v v x z v x x

x x z z z ∴+=++++其中v 为独立变量z 的增量,.x 和.z 为流数。泰勒假定z 随时间均匀变化,故.z 为常数,

从而上述公式相当于现代形式的“泰勒公式”:

()()()()2

2!h f x h f x hf x f x '''+=+++。

泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。

泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。《流数论》中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。

麦克劳林之后,英国数学陷入了长期停滞的状态。微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。与此相对照,在英吉利海峡的另一边,新分析却在莱布尼茨的后继者们的推动下蓬勃发展起来。

相关文档
最新文档