BS期权定价模型详解精讲

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Copyright©Zhenlong Zheng 2003, Department of Finance, Xiamen University
效率市场假说可分为三类:弱式、半强式 和强式。
弱式效率市场假说可用马尔可夫随机过程 (Markov Stochastic Process)来表述。
随机过程是指某变量的值以某种不确定的 方式随时间变化的过程。可分为离散型的 和连续型的。马尔可夫过程是一种特殊类 型的随机过程。
可见,S也具有正态分布特征
S
S ~ (t, t ) (6.7)
S
Copyright©Zhenlong Zheng 2003, Department of Finance, Xiamen University
例6.1
设一种不付红利股票遵循几何布朗运动, 其波动率为每年18%,预期收益率以连 续复利计为每年20%,其目前的市价为 100元,求一周后该股票价格变化值的概 率分布。
dx a(x,t)dt b(x,t)dz
(6.5)
漂移非常数,正态规律项非常数,都是与时间和其目前位置有关,更加复杂的随机过程
其中,dz是一个标准布朗运动,a、b是变量x 和t的函数,变量x的漂移率为a,方差率为b2。
Copyright©Zhenlong Zheng 2003, Department of Finance, Xiamen University
(二)普通ቤተ መጻሕፍቲ ባይዱ朗运动
我们先引入两个概念:漂移率和方差率。 标准布朗运动的漂移率为0,方差率为 1.0。 我们令漂移率的期望值为a,方差率的期 望值为b2,就可得到变量x 的普通布朗 运动:dx adt bdz b是标准差 (6.4) 其中,a和b均为常数,dz遵循标准布朗 运动。普通的布朗运动随时间间隔的增加,需要加上一个漂移项,表示离开起始位置的程度(常
六、证券价格自然对数变化过程
令 G ln S,由于 代入式(6.10):
Copyright©Zhenlong Zheng 2003, Department of Finance, Xiamen University
五、伊藤引理
若变量x遵循伊藤过程,则变量x和t的函
数G将遵循如下过程:
dG

( G x
a

G t

1 2
2G x2
b2 )dt

G x
bdz(6.8)
Copyright©Zhenlong Zheng 2003, Department of Finance, Xiamen University
从(6.6)可知,在短时间后,证券价格
比率的变化值为:
S t t
S
, t, , 前三个是常数或者函数值, 最后一个是个标准正态随机变量, 整个式子是某种正态随机变量。只 不过这里符合的正态分布的均值和 方差是与时间间隔由关系的值而已。
如果证券价格遵循马尔可夫过程,则其未 来价格的概率分布只取决于该证券现在的 价格。
Copyright©Zhenlong Zheng 2003, Department of Finance, Xiamen University
二、布朗运动
(一)标准布朗运动
设t代表一个小的时间间隔长度,z代表变
量z在时间 t 内的变化,遵循标准布朗运
标准布朗运动(2)
特征2:对于任何两个不同时间间隔,t 和 z的值相互独立。
考察变量z在一段较长时间T中的变化情
形,我们可得: N z(T ) z(0) i t (6.2) i 1
当0时,我们就可以得到极限的标准布
朗运动: dz dt
(6.3)
Copyright©Zhenlong Zheng 2003, Department of Finance, Xiamen University
第六章 布莱克-舒尔斯期权定 价模型
第一节 证券价格的变化过程
一、弱式效率市场假说与马尔可夫过程
1965年,法玛(Fama)提出了著名的效 率市场假说。该假说认为,投资者都力 图利用可获得的信息获得更高的报酬; 证券价格对新的市场信息的反应是迅速 而准确的,证券价格能完全反应全部信 息;市场竞争使证券价格从一个均衡水 平过渡到另一个均衡水平,而与新信息 相应的价格变动是相互独立的。
由于 dS Sdt Sdz (6.9)
根据伊藤引理,衍生证券的价格G应遵循 如下过程:
dG

( G S
S

G t

1 2
2G S 2

2S 2 )dt

G S
Sdz
(6.10)
Copyright©Zhenlong Zheng 2003, Department of Finance, Xiamen University
数比率),而其运动是正态规律运动。总体是一个叠加运动。
Copyright©Zhenlong Zheng 2003, Department of Finance, Xiamen University
三、伊藤过程
普通布朗运动假定漂移率和方差率为常数,若 把变量x的漂移率和方差率当作变量x和时间t的 函数,我们可以从公式(6.4)得到伊藤过程 (Ito Process):
动的z具有两种特征:
这是一个按正态规律
集中在起始点的一个
特征1:z和t 的关系满足(6.1):随机运动。
z t
(6.1)
其中,代表从标准正态分布(即均值为0、
标准差为1.0的正态分布)中取的一个随
机值。
Copyright©Zhenlong Zheng 2003, Department of Finance, Xiamen University
四、证券价格的变化过程
证券价格的变化过程可以用漂移率为μS、
方差率为 2S 2的伊藤过程来表示:
dS Sdt Sdz
两边同除以S得: 表示未来时间间隔后的证券价格增量变化是符合 漂移和方差率只和目前价格有关系(线性关系) 的伊藤随机过程(即普通布朗运动的升级版)。 dS dt dz (6.6) S 表示未来价格变化率符合普通布朗运动,(描述运动偏离标注布朗运动的漂移 率和方差率项已变为常数而非与时间和目前值有关系的函数)
相关文档
最新文档