泰勒公式及其在解题中应用
泰勒公式及其应用ko
![泰勒公式及其应用ko](https://img.taocdn.com/s3/m/088732c38bd63186bcebbc4d.png)
(k-1)! (1+x)k
(k=1,2,3,…)
故 f(k)(0)=(-1)(k-1)(k-1)!
ln(1+x)≈f(0)+f'(0)x+ f"(0) x2+…+ f(n)(0) xn=x- 1 x2+ 1 x3- 1 x4+…+(-1)n-1 xn
2!
n!
234
n
误差为 Rn(x) =
f(n+1)(θx) xn+1 (n+1)!
=
(-1)n (n+1)!
n! (1+θx)n+1
xn+1
n+1
<x n+1
取 x=0.2 由于 0.26 ≈0.000011 故取 n=5 6
则 ln1.2=ln(1+0.2)≈0.2- 1 (0.2)2+ 1 (0.2)3- 1 (0.2)4+ 1 (0.2)5=0.1823
2
3
4
2
(二)利用泰勒公式判断敛散性及求极限
图 2 金工实习与其前延后伸课程 2.CDIO 教学理论与 4+1 指挥人才的培养 所谓 CDIO 是 Conceive(构想),Design(设计),Implement(实施), Operate(操作)的简写,指的是现代工业产品从构思研发到运行改良乃 至终结废弃的生命全过程。CDIO 教学模式是以构思-设计-实施-运 行全过程为载体培养学生的工程能力,此能力不仅包括学生的专业知 识,而且包括创新能力、终生学习能力、团队交流能力和大系统掌控能 力。CDIO 教学模式不仅强调学生的基础知识,更重视教学实践,注重培
科技信息
高校理科研究
泰勒公式及其应用
内蒙古财经学院统计数学学院 高春香
[摘 要]泰勒公式是数学分析中重要的公式,在解题中有着重要的作用。本文介绍了泰勒公式及其余项定义,归纳总结了泰勒公式 在近似计算中的应用,利用泰勒公式判断敛散性及求极限,利用泰勒公式求函数的高阶导数,泰勒公式在无穷小中的应用,泰勒公式 在不等式证明中的应用。 [关键词]泰勒公式 应用 余项 极限 不等式
泰勒公式在考研数学的常见应用
![泰勒公式在考研数学的常见应用](https://img.taocdn.com/s3/m/ad67715bfe00bed5b9f3f90f76c66137ee064fac.png)
泰勒公式在考研数学的常见应用泰勒公式在解题中的妙用——从几道数学考研题说起泰勒公式是数学分析中的重要工具之一,它反映了函数在某一点处的局部行为。
在很多数学问题中,泰勒公式的应用可以帮助我们更好地理解问题的本质,从而找到更简洁高效的解题方法。
本文将从几道数学考研题入手,详细阐述泰勒公式在解题中的应用,同时介绍一些应用技巧和注意事项,并进一步拓展泰勒公式在更高维度和更复杂问题中的应用。
求limx→0(1+x+x2/2−−−−−−−√)−1x−−−−−−−−−−−−−−−√ex−1ex−1这道考研题中,我们可以将函数f(x)=(1+x+x2/2)−−−−−−−−−−−−−−−√ex −1在x=0处展开成泰勒级数,然后利用级数求和的方法得到答案。
具体步骤如下:f(x)=ex−1+xex−1+x22ex−1=(x+1)+x22+O(x3)因此,limx→0f(x)=limx→0(x+1)+limx→0x22+O(x3)=12+1+0=32这道考研题可以利用泰勒公式将sinxx展开成幂级数,然后求导n 次得到答案。
具体步骤如下:y=sinxx=∑k=0∞(−1)k×x2k+O(x3)y(n)=∑k=n∞(−1)k×2k×x2k−n+O(x3)因此,y(n)(0)=∑k=n∞(−1)k×2k×1=(−1)n×2n×1=2n×(−1)n证明:(1+x)ln(1+x)−xx=O(x3)这道考研题可以利用泰勒公式将等式中的函数展开成幂级数,然后进行恒等变形得到答案。
具体步骤如下:f(x)=(1+x)ln(1+x)−xx=(1+x)(ln1+ln(1+x))−xx=x+x2+O(x3)−ln(1+x)+O(x3)=O(x3)因此,f(x)(0)=0+0+…=0,即(1+x)ln(1+x)−xx=O(x3)成立。
泰勒公式在很多数学问题中都有着广泛的应用,例如在微积分、线性代数、概率论等领域。
泰勒公式在高考数学中的应用探索
![泰勒公式在高考数学中的应用探索](https://img.taocdn.com/s3/m/a0ff5b714a35eefdc8d376eeaeaad1f3469311d2.png)
4
4
4
g( x) = 1 -
h(x) =
在使用泰勒展开式时需要注意函数是否存在任
+ ] = 1 -
意阶导数ꎬ还需要注意泰勒级数的收敛区间. 基于①
易得 f(
- ⑥式ꎬ可以通过变量代换、四则运算或逐项求导、
逐项求积等方法ꎬ间接地求得其他函数的幂级数展
开形式. 如:
1
= 1 + x2 + x4 + +
( x - x0 ) +
1!
2!
f ( n ) ( x0 )
( x - x0 ) n + Rn ( x - x0 ) n . ( a)
n!
这里 R n ( x - x0 ) n 为拉格朗日余项. 如果在( a)
式中去掉 R n ( x - x0 ) n ꎬ那么在 x0 附近 f( x) 可用( a)
[1] 华东师范大学数学系. 数学分析下册( 第三版)
分析 由(1) 问联想到函数 sinx 在 x = 0 处的
[ 责任编辑:李 璟]
= 0 是 f( x) 的极大值点ꎬ求 a 的取值范围.
— 38 —
[ M] . 北京:高等教育出版社ꎬ2006.
凸性ꎬ证明f ′ ( 0 ) = 0ꎬf " ( 0 ) < 0.
解析 若利用泰勒公式将 f ( x) 在 x = 0 处展
开ꎬ则函数的一阶、二阶导函数性质清晰明了. 由泰
勒公式得 f ( x ) = [1 -
( a x )2 ( a x )4
+
+ + ( - 1) n
2!
4!
( a x ) 2n
x
x
++
+ ꎬ - ∞ < x < ∞ ꎻ
泰勒公式及其在解题中应用
![泰勒公式及其在解题中应用](https://img.taocdn.com/s3/m/0a29cd9ce53a580216fcfe57.png)
本科生毕业设计(论文)( 2014届)设计(论文)题目泰勒公式及其在解题中应用作者周立泉分院理工分院用数学1001班指导教师(职称)徐华(讲师)专业班级数学与应用数学)论文字数 8000 论文完成时间 2014年4月3日杭州师范大学钱江学院教学部制泰勒公式及其在解题中应用数学与应用数学1001班周立泉指导教师徐华摘要:泰勒公式是数学分析中的一个重要公式,它的基础思想是运用多项式来逼近一个已知函数,而该多项式的系数由给定的函数的各阶导数决定.本文主要归纳了其在证明不等式、等式,求极限,求近似值等各方面的应用.关键词:泰勒公式;数学分析 ;导数Taylor Formula and Its Application in Solving Problem Mathematics and Applied Mathematics class 1001 ZhouLiQuan Instructor: XuHuaAbstract:Taylor's formula is an important equation of mathematical analysis, it is the basic idea is to use polynomial approximation to a known function, and the polynomial coefficients given by the derivatives of the function determined. This paper describes the method to prove the Taylor formula,summarized in inequalities, find the limit,the approximate value and the other applications.Keyword:Taylor's formula;Mathematical analysis; derivative.目录1引言 (1)2泰勒公式 (1)3泰勒公式在解题中的应用 (2)3.1利用泰勒公式求近似值 (2)3.2利用泰勒公式求极限 (4)3.3泰勒公式在判断级数和广义积分敛散性的应用 (7)3.3.1判断级数的敛散性 (7)3.3.2判断广义积分的敛散性 (9)3.4利用泰勒公式证明等式与不等式 (10)4结论及展望 (10)参考文献 (11)致谢 (12)泰勒公式及其在解题中应用数学与应用数学1001班周立泉 指导教师徐华1引言泰勒公式在数值微积分中起着非常重要的作用,泰勒公式“化繁为简”的功能在数学研究方面也发挥了极大的作用.关于泰勒公式的应用,已有许多专家学者对它产生了浓厚的兴趣,它们对某些具体的题目作出了具体的解法,如证明不等式、求极限、判断函数凹凸性和敛散性、判别函数的极值、判断函数凹凸性及拐点、求渐近线、界的估计和近似值的计算等等.事实上,由于许多函数都能用泰勒公式来表示,并且研究函数近似值式和判断级数收敛性的问题又要借助于泰勒公式.因此泰勒公式在数学实际应用中也是一种非常重要的应用工具,我们必须掌握它,以便更好更方便的研究一些复杂的函数、解决更多实际的数学问题.虽然泰勒公式应用到各个数学领域很多,但同样也还有很多方面学者很少提及,因此在泰勒公式及其在解题中的应用方面我们有研究的必要,并且有着相当大的空间.2泰勒公式泰勒公式按不同的余项可以分为两类,一类是定性的,一类是定量的,它们的本质相同,但性质各异.定性的余项为佩亚诺余项))((0n x x o -,仅表示余项是nx x )(0-,即当)(0x x →时高阶的无穷小.定量的余项是拉格朗日型余项10)1()()!1()(++-+n n x x n f ξ(ξ也可以写成)(00x x x -+θ10<<θ),定量的余项一般用于对逼近误差进行具体的计算或者估计.定理1(泰勒定理):设)(x f 在0x 处有n 阶导数,则存在0x 的一个领域,对于领域中的任一点x ,成立)()(!)()(!2)())(()()(00)(200''00'0x r x x n x f x x x f x x x f x f x f n n n +-++-+-+= (1)其中余项)(x r n 满足)1(0)1()()!1()()(++-+=n n n x x n f x r ξ,ξ在x 与0x 之间. 上述公式(1)称为)(x f 在0x x =处的带拉格朗日型余项的泰勒公式.余项10)1()()!1()()(++-+=n n n x x n f x r ξ(ξ在x 与0x 之间) 称为拉格朗日余项.若不需要余项的精确表达式时,余项)(x r n 也可也成))(()(0n n x x o x r -=.此时,上述公式(1)则称为)(x f 在0x x =处的带有佩亚诺余项的泰勒公式.它的前1+n 项组成的多项式:''()'20000000()()()()()()()()2!!n n n f x f x p x f x f x x x x x x x n =+-+-++-称为)(x f 的在0x x =处的n 次泰勒多项式.当00=x 时,上式记为nn x n f x f x f x f f x f !)0(!3)0(!2)0()0()0()()(3'''2'''+++++= 该式称为麦克劳林公式,是泰勒公式的特殊形式带拉格朗日余项的泰勒公式对函数)(x f 的展开要求比较高,形式也相对复杂,但因为(2)对)(0x U x ∈∀均能成立(当x 不同时,ξ的取值可能不同),因此这反映出函数)(x f 在邻域)(0x U 内的全局性.带佩亚诺余项的泰勒公式对函数()x f 的展开要求较低,它只要求()x f 在点0x 处n 阶可导,展开形式也较为简单.(1)式说明当0x x →时用右端的泰勒多项式)(x p n 代替)(x f 所产生的误差是n x x )(0-的高阶无穷小,这反映了函数)(x f 在0x x →时的性态,或者说反映了)(x f 在点0x 处的局部性态.3泰勒公式在解题中的应用泰勒公式也被称为泰勒中值定理,是高等数学课程中的一个重要内容,不仅在理论分析方面有重要作用,其应用也非常广泛.但在高等数学课程中没有深入广泛地展开讨论,本文通过几个例子也仅仅说明其中的几个方面的应用,还有很多其他方面的应用,以及二元函数的泰勒公式及其应用等许多内容可以展开进一步的讨论,从而对泰勒公式有一个全面的认识与了解.3.1利用泰勒公式求近似值由于泰勒公式是利用增量法原理进行推导而来,因而在很多近似问题中也有广泛应用.在现今社会,由于计算机和通讯技术的发展,利用计算机进行近似计算已经成为科学研究和工程计算中的一个重要环节.泰勒公式是一个多项式拟合问题,而多项式是一个简单函数,它的研究对我们来说是轻松而又方便的.但必须注意的是泰勒公式是一种局部性质,因此在用它进行近似计算时,x 不能远离0x ,否则效果会比较差.利用泰勒公式可以对函数近似计算式和一些数值的近似计算,利用)(x f 麦克劳林展开得到函数的近似计算式为nn x n f x f x f f x f !)0(!2)0()0()0()()(2'''++++≈例1 求e 的近似值分析 因为e 介于2和3之间,是个无限不循环的数,所以直接得到确定的值比较困难,在这里我们可以利用泰勒公式导出的近似计算式进行近似得到e 的值.解 首先令()xe xf =,则x n e x f x f x f ====)()()('''把0=x 带入,得1)0()0()0()('====n f f f于是得到x e 的近似式!!212n x x x e nx++++≈上式中令1=x ,有!1!31!2111n e +++++≈ 由此可以求出e 的近似值.例2 求dx e x ⎰-12的近似值,精确到510-分析 因为dx ex ⎰-12中的被积函数是不可积的(即不能用初等函数表达),我们可以考虑利用泰勒公式和逐项积分的方法求dx e x ⎰-12的近似值.解 在x e 的展开式中用2x -代替x 得+-+++-=-!)1(!212422n x x x en n x 逐项积分,得() +-+-+-=⎰⎰⎰⎰⎰-dx n x dx x dx x dx dx enn x 1021412101!1!212++⋅-+-⋅+-=121!1)1(51!21311n n n +-+-+-+-=75600193601132912161421101311上述式子右端是一个收敛的交错级数,由其余项n R 的估计式知000015.07560017<≤R所以746836.09360113201216142110131112≈+-+-+-≈⎰-dx e x 我们不妨再看一例,例3 计算积分dx x x⎰10sin 的近似值分析 因为xxsin 不是初等函数,所以不能直接用牛顿——莱布尼兹公式求值,我们考虑利用泰勒公式求其近似值.解 由泰勒公式可得753!7)27sin(!5!3sin x x x x x x πθ⋅+++-= 所以642!7)27sin(!5!31sin x x x x x x πθ⋅-++-= 因此dx x x x x dx x x ⎰⎰⋅+++-=1064210)!7)27sin(!5!31(sin πθ 107537!7)27sin(5!53!3⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅⋅++⋅+⋅-=x x x x x πθ 7!7)27sin(5!513!311⋅⋅++⋅+⋅-=πθx 由此得到9461.05!513!311sin 10≈⋅+⋅-≈⎰dx x x 3.2利用泰勒公式求极限对于一般待定型的极限问题,我们采用洛必达法则来求.但是对于一些求导比较繁琐,或是要多次使用洛必达法则的情况,运用泰勒公式往往比洛必达法则更为有效.对于函数多项式或有理分式的极限问题的计算是十分简单的, 因此, 对于一些较复杂的函数可以考虑根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或者有理分式的极限问题, 因此满足下列情况时可以考虑用泰勒公式来求极限:(1) 运用洛比达法则时, 次数较多, 且求导及化简过程较繁锁.(2) 分子或分母中有无穷小的差, 且此差不易转化为等价无穷小的替代形式.(3 )所遇到的函数展开为泰勒公式不难.当确定要运用泰勒公式求极限时, 关键是要确定展开的阶数.如果分母( 或分子) 是n 阶, 就将分子( 或分母) 展开为n 阶麦克劳林公式.若分子, 分母都需要展开, 可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数.例4 求4202cos limxex x x -→- 分析 这是一个0待定型的极限问题,如果用洛必达法则,则分子分母都需求导4次.但若用泰勒公式计算就简单得多了.解 4202cos limx e x x x -→-44224420)()2(!21)2(1)(!4!21lim x x o x x x o x x x ⎥⎦⎤⎢⎣⎡+-+-+-⎥⎦⎤⎢⎣⎡++-=→ 444)(121limx x o x x +-=→121-= 例5 求⎥⎦⎤⎢⎣⎡+-∞→)1ln(lim 2xx x x x 的极限分析 当∞→x 时,此函数是∞-∞型未定式,虽然可以通过变换把它转换成型,再用洛必达法则求解,但计算量较大,现在我们先用泰勒公式将)11ln(x+展开,再求其极限.解 ))1(()1(211)11ln(22xo x x x +-=+ 故⎥⎦⎤⎢⎣⎡+-∞→)1ln(lim 2x x x x x ⎥⎦⎤⎢⎣⎡+--=∞→))1(211(lim 222x o x xx x x 21=在高等数学的学习中利用等价无穷小替换来求解极限问题一直是我们学习的难点,即使在学习了教材后仍然对等价无穷小替换求解极限的运用不够灵活甚至比较吃力,常常犯错. 究其原因主要有两个: 一是平时不够努力,对于常见的等价无穷小没有准确记忆并且对于此类问题缺少练习; 二是对于等价无穷小替换的实质还没有透彻的理解,表现在对一些等价无穷小替换的法则只知其然而不知其所以然. 如做练习时有这样的题目:例6 xxx x 3sin lim0-→分析 由于0→x ,根据无穷小量替换得到,x x →sin ,则03lim 3sin lim 00=-=-→→x x x xx x x x 从解答过程中我们可以看到,我们在解这道题时不管条件是否满足而生搬硬套地使用了等价无穷小的替换法则,反映出我们对于无穷小的替换原则并未达到本质的理解,解决问题也缺乏灵活性.下面我们利用泰勒公式来重新理解无穷小替换的法则和原理(假设所有极限问题涉及的自变量过程变化都趋向于零).性质一:)(~ααββαo +=⇔首先来理解)(~ααββαo +=⇔,在最初的学习过程中我们容易产生两个误区: 其一,在学习时容易被左边形式迷惑,潜意识里往往误认为α,β都是单独不相关的一项;其二,对于右边的式子中()αo 我们会觉得比较抽象难以理解.根据这些容易产生的理解上的偏差,我们可以结合泰勒公式来形象直观地理解.以正弦函数的泰勒公式为例:+-+-=753!71!51!31sin x x x x x 如果β取x sin -,那么α可以取x ,也可以取3!31x x -,甚至53!51!31x x x +-也行,相应的)(αo 分别为:,!71!51!31753 +-+-x x x ,!71!5175 +-x x +-7!71x , 这样我们可以知道)(αo 并不是抽象的符号,它代表的是具体的表达式,而且该表达式可以很复杂,比如可以由多个式子组成; 另一方面,由于这些式子中的每一项都是幂函数,我们能非常直观地看出它们分别是)(),(),(642x o x o x o ,那是)!51!31(),!31(),(5332x x x o x x o x o +--接着讨论)(~ααββαo +=⇐,本质上它是等价无穷小的又一个性质——和差取大原则:αβααβ-±⇒=)(o ,取,!71!51!31,753 +-+-==x x x x βα则),(αβo =x x x x x sin !71!51!31753=+-+-=+ βα,可理解成:正弦函数由α与β两部分组成,其中α是函数的主部项,它对函数的大小和变换趋势起主要作用,β是函数的次要项或者剩余项,由()αβo =可知,β实质上是相对于主部项α的小扰动项,对整个函数的数值及变化趋势起次要的作用.具体到求极限的问题中就是极限问题的结果取决于分子分母中多项式的最低次项.性质二(和差代替规则):若''~,~ββαα,并且βα,不等价,则''~βαβα--,并且'''limlim γβαγβα-=- 故对于例4,由于 +-=3!31sin x x x ,从而,61sin 3 +=-x x x 此时,61~sin 3+-x x x 所以0361lim 3sin lim 300==-→→x xxx x x x 对于表面上差异较小的问题但运用等价无穷小替换法则大相径庭,而这样的问题往往能够用泰勒公式统一解决. 说明在求极限问题的解题思路中泰勒公式比等价无穷小替换法则更普遍、更一般,在解决问题时往往倾向接受和使用那些放之四海而皆准的思路和方法,因此利用泰勒公式来理解等价无穷小替换的实质也就更容易被大家理解和掌握.3.3泰勒公式在判断级数和广义积分敛散性的应用 3.3.1判断级数的敛散性在级数敛散性的理论中,要判定一个正项级数∑∞=1n na是否收敛,我们通常找一个较简单的级数∑∑∞=∞==111n p n n n b )0(>p ,再用比较判定法来判定.在实际应用中较困难的问题是如何选取恰当的∑∞=11n p n )0(>p 中的p 值,例如 (1)当2=p ,此时∑∞=121n n 收敛,但+∞=∞→21lim n a n n . (2)当1=p ,此时∑∞=11n n发散,但01lim =∞→na n n . 这里我们无法判定∑∞=1n n a 的敛散性,为了有效地选取∑∞=11n pn中的p 值,可以应用泰勒公式研究通项0→n a )(+∞→n 的阶,据此选择恰当的p 值使l n a pnn =+∞→1lim,并且保证+∞<<l 0,再由比较判定法(极限形式)就可以判定∑∞=1n na的敛散性.下面我们来举例说明:例7 判定级数∑+∞=--+111)2(n nnaa()0>a 的敛散性.解 因)1(ln 121ln 1222ln no a n a x e a xx x+++==, 故)1(ln 1!21ln 112221no a n a n a n+++= )1(ln 1!21ln 112221n o a n a n an++-=-因此)1(ln 1)2(22211n o a n a a a nnn +=-+=-从而有a n a n n 22ln 11lim=∞→,0→n a 是关于)1(n 的2阶.,即 ∑+∞=--+111)2(n nnaa与∑+∞=121n n同收敛 评注:当级数的通项表达式是由不同类型的函数式构成的繁难形式时,往往利用泰勒公式将级数通项简化成统一形式,以便于利用判敛准则.例8 讨论级数∑∞=+-1)1ln 1(n n n n的敛散性分析 直接根据通项去判断该项级数是正项级数还是非正项级数是比较困难的,因而也就无法恰当地选择判敛方法.在上式中我们注意到,)11ln(1ln n n n +=+这个式子中,若将其泰勒展开为n1的幂的形式,开二次方后恰与n1相呼应,会使判敛更容易进行. 解 )11ln(1ln nn n +=+ +-+-=4324131211n n n nn1<∴n n n 11ln<+ ∴01ln 1>+-=n n nu n故该级数是正项级数. 又 )1(312111ln332no n n n n n ++-=+ 2322332211)211(4111nn n n n n n -=-=+->∴232321)211(11ln 1n nn n n n n u n =--<+-=∑∞=12321n n收敛,由正项级数比较判别法知原级数收敛.例9判断级数∑∞=-1)1(n n n 的敛散性分析 对于级数∑∞=-1)1(n nn ,运用比较法,柯西判别法,魏尔斯特拉斯判别法难以直接判断其敛散性.因此我们可以考虑先把n n 进行泰勒展开,再运用上述方法进行判别.解 由泰勒公式有)ln 1(ln 1122ln 1n no n n en n nn++==所以)ln 1(ln 1122n n o n n n n +=-,而∑∑∞=∞=≥111ln 1n n n n n 发散,又)(0ln 12322∞→→n n n n所以n nn 212ln 1∑∞=收敛,故∑∞=-1)1(n n n 发散.3.3.2判断广义积分的敛散性在定积分中,我们总是假定积分区间是有限的,而被积函数(如果可积的话)一定是有界的.但在理论上或实际应用中都有需要去掉这两个限制,把定积分的概念广为(i )无限区间上的积分; (ii )无界函数的积分; 在判定广义积分dx x f a⎰+∞)(的敛散性时,通常选取广义积分)0(1>⎰+∞p dx x ap进行比较,在此通常研究无穷小量)()(+∞→x x f 的阶来有效地选择dx x f a⎰+∞)(中的p 值,从而判定敛散性.(注意到:如果dx x f a⎰+∞)(收敛,则dx x f a⎰+∞)(收敛.)例10 判断广义积分dx x x xx ⎰-10sin sin 的敛散性 分析 我们可以知道dx xx xx ⎰-10sin sin 是属于无界函数广义积分,在)1,0(上运用定积分的知识很判断出该积分是否收敛,那么我们可以考虑是否可以运用泰勒公式将x sin 展开,然后再进行计算.解 ()0sin sin <-=xx xx x f ,(]1,0∈x ,即被积函数在积分区间上不变号. )(61)(611)(!31)(!31sin sin 433224343x o x x o x x x o x x x x o x x x x x x x +⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+--⎥⎦⎤⎢⎣⎡+-=-[])(16)(611)(61)(61132232x o x x o x x o x x o x +⎥⎦⎤⎢⎣⎡+-=++-=)(6x o x+=故有1)6sin sin (lim 0=-→xx x x x x ,又由于广义积分dx x ⎰106发散,因此用比式判别法知原广义积分收敛. 例11 研究广义积分dx x x x ⎰+∞--++4)233(的敛散性分析 我们可以初步判断dx x x x ⎰+∞--++4)233(属于无限区间上的积分,在区间),4(+∞不易运用定积分的知识进行判断该积分是否收敛.那么同样我们可以考虑运用泰勒公式将其展开再进行讨论.解 我们已经学过()αx +1的泰勒展开式为),(!2)1(1)1(22x o x x x n+-++=+ααα则x x x x f 233)(--++=2)31()31(2121--++=xx x)2)1(1891231()1()1891231(2222-+⋅-⋅-++⋅-⋅+=x o x x x o x x x)1(1492323xo x +⋅-= 因此491)(lim23=+∞→x x f x ,即0)(→x f 是)(1+∞→x x 的23阶,而⎰+∞4231dx x 收敛,故dx x f ⎰+∞4)(收敛,从而dx x x x ⎰+∞--++4)233(收敛.3.4利用泰勒公式证明等式与不等式关于在不等式的证明方面,我们已经知道有很多种方法,比如利用函数的凸性来证明不等式,利用拉格朗日中值定理来证明不等式,以及通过讨论导数的符号来得到函数的单调性,从而证明不等式的方法,同样泰勒公式也是不等式证明的一个重要方法.如果函数)(x f 存在二阶及二阶以上的导数并且有界,那么利用泰勒公式去证明这些不等式,一般的证明思路为:(1)写出比最高阶导数低一阶的函数的泰勒展开式; (2)恰当地选择等式两边的x 与0x ;4结论及展望泰勒公式是数学分析中非常重要的内容,也是研究数学各个领域的不可或缺的工具.本文章是在大量查阅有关泰勒公式的资料的基础上作出的初步整理,这篇文章主要对泰勒公式在近似值计算、求极限、判断级数和广义积分的敛散性以及证明等式与不等式等方面做了简单系统的介绍和分析,从而体现了泰勒公式在微分学应用中的重要的地位,通过以上几个方面的探讨,充分利用其解题技巧在解题时可以起到事半功倍的效果.值得一提的是,虽然泰勒公式应用到各个数学领域很多,但同样也还有很多方面很少被提及,需要不断地探索.本文通过几个例子也仅仅说明其中的几方面的应用,还有很多其他方面的应用,以及二元函数的泰勒公式及其应用等很多内容可以展开进一步的总结讨论,从而对泰勒公式有一个全面的认识与了解.而泰勒公式在数学实际应用中又是一种非常重要的应用工具,只有掌握了这些知识,并且在此基础上加强训练、不断地进行总结,才能熟练的应用它,灵活的从不同角度找出解题的途径,探索新的解题方法,以便更好更方便的研究一些复杂的函数,解决更多实际的数学问题.参考文献[1]胡格吉乐吐.对泰勒公式的理解及泰勒公式的应用[J].内蒙古科技与经济,2009(24):73.[2]刘鹏.浅谈泰勒公式及其应用.科技信息[J],2011(09):521-522.[3]齐成辉.泰勒公式的应用.陕西师范大学学报,2003,31(09):24-25.[4]费德霖.泰勒公式的应用及技巧.皖西学院学报,2001,17(04):84-86.[5]潘劲松.泰勒公式的证明及应用.廊坊师范学院学报,2010,10(02):16-21.[6]董斌斌.泰勒公式及其在解题中的应用.科技信息,2010,(31):243.[7]冯平、石永廷.泰勒公式在求解高等数学问题中的应用.新疆职业大学学报,2003,11(04):64-66.[8]陈妙琴.泰勒公式在证明不等式中的应用.宁德师专学报(自然科学报),2007,19(02):155-156.[9]刘萍、王文锦.谈泰勒公式在微分有关证明题中的应用.科技信息,2009(11):235.[10]/faculty/kaliakin/appendix_Taylor.pdf[11]/~robbin/221dir/taylor.pdf[12]/wiki/Taylor_series[13]/wiki/Taylor's_theore致谢四年的大学生活即将在这个季节画上一个句号,而于我的人生只是一个逗号,我将面对又一次征程的开始.时光匆匆如流水,转眼便是大学毕业时节,离校的日期已日趋临近,毕业论文的完成也随之进入尾声.在本文即将完成之时,谨此向我的导师徐华讲师致以衷心的感谢和崇高的敬意.本文的顺利完成离不开徐华老师的悉心指导,老师以她敏锐的洞察力,渊博的知识,严谨的治学态度,精益求精的工作作风给我留下了深刻的印象,使我获益匪浅.我还要真诚地感谢我的室友张天闻同学,他不仅在学术上给我指引,而且在生活中也给予我帮助,从他身上我学到了很多.我还要感谢我的母校杭州师范大学钱江学院,这里严谨的学风,优美的校园环境使我的大学四年过得很充实也很愉快.最后我要感谢我的父母,当自己怀着忐忑的心情完成这篇论文的时候,自己也从当年一个刚走进大城市的懵懂少年变成了一个成熟的青年.十几年的求学之路,虽然只是一个本科毕业,但也实属不易.首先,从小学到大学的生活费及学费就不是个小数目,这当然要感谢我的爸爸妈妈,他们都是农民,没有他们的勤勤恳恳和细心安排,没有他们的支持和鼓励,我是无论如何也完成不了我的大学生活.书到用时方恨少,在这篇论文的写作过程中,我深感自己的水平还非常的欠缺.生命不息,学习不止,人生就是一个不断学习和完善的过程,敢问路在何方?路在脚下!。
泰勒公式及其应用
![泰勒公式及其应用](https://img.taocdn.com/s3/m/0318972b31126edb6f1a102c.png)
泰勒公式及其应用作者:闫艳来源:《教育界·上旬》2015年第04期【摘要】泰勒公式是高等数学中的一个重要公式,它能将一些复杂的函数近似地表示成简单的多项式函数。
本文主要探讨了泰勒公式在极限运算、近似计算、不等式的证明、级数敛散性的判断等方面的应用。
【关键词】泰勒公式极限不等式收敛性一、泰勒公式泰勒公式是一元微积分的一个重要内容,不仅在理论上占有重要地位,在近似计算、极限计算、函数性质的研究等方面都有着重要的应用。
泰勒公式的一般形式为:其中为拉格朗日余项或皮亚诺型余项。
若令,则泰勒公式变为麦克劳林公式,即:二、泰勒公式的应用1.利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理分式的极限,就能简捷地求出。
例如求极限,此为型极限,若用罗比塔法则很麻烦。
这时可将和分别用其泰勒展开式代替,则可简化此比式,求得==.注:用泰勒公式计算极限的实质是利用等价无穷小的替代来计算极限。
我们知道,当时,等,这种等价无穷小其实就是将函数用泰勒公式开至一次项,有些问题用泰勒公式和我们已经熟知的等价无穷小法相结合,问题又能进一步简化。
2. 利用泰勒公式判断函数的极值讨论函数极值通用的方法是:当且(或)时,是的极小(大)值。
但如果此时,此方法不能判别是否为极值点,可用泰勒公式。
3. 泰勒公式判断广义积分的收敛性为一正值函数,要判定的收敛性,如果能找到恰当的,,使,由比较判别法的极限形式可判别出无穷积分的收敛性。
这里的问题也是如何选取,才能应用判别法则呢?运用泰勒公式通过研究的阶,就可以解决这类问题。
4. 利用泰勒公式近似计算和误差估计泰勒定理:若函数在的某邻域内有直到n+1阶的连续偏导数,则对内的任一点,存在相应的,使得=+…+)5.利用泰勒公式证明不等式在高等数学中,常常要证明一些不等式,而且证明不等式的方法很多。
泰勒公式除了上面介绍的一些应用外,在证明不等式时也很方便。
泰勒公式及其在解题中的应用
![泰勒公式及其在解题中的应用](https://img.taocdn.com/s3/m/3dc347b6eefdc8d377ee326c.png)
本科生毕业设计(论文)(2014届)设计(论文)题目泰勒公式及其在解题中应用作者周立泉分院理工分院用数学1001班指导教师(职称)徐华(讲师)专业班级数学与应用数学)论文字数8000论文完成时间2014年4月3日杭州师范大学钱江学院教学部制泰勒公式及其在解题中应用数学与应用数学1001班周立泉指导教师徐华摘要:泰勒公式是数学分析中的一个重要公式,它的基础思想是运用多项式来逼近一个已知函数,而该多项式的系数由给定的函数的各阶导数决定.本文主要归纳了其在证明不等式、等式,求极限,求近似值等各方面的应用.关键词:泰勒公式;数学分析;导数Taylor Formula and Its Application in Solving Problem Mathematics and Applied Mathematics class 1001 ZhouLiQuan Instructor: XuHuaAbstract:Taylor's formula is an important equation of mathematical analysis, it is the basic idea is to use polynomial approximation to a known function, and the polynomial coefficients given by the derivatives of the function determined. This paper describes the method to prove the Taylor formula,summarized in inequalities, find the limit,the approximate value and the other applications.Keyword:Taylor's formula;Mathematical analysis; derivative.目录1引言 (1)2泰勒公式 (1)3泰勒公式在解题中的应用 (2)3.1利用泰勒公式求近似值 (2)3.2利用泰勒公式求极限 (4)3.3泰勒公式在判断级数和广义积分敛散性的应用 (7)3.3.1判断级数的敛散性 (7)3.3.2判断广义积分的敛散性 (9)3.4利用泰勒公式证明等式与不等式 (10)4结论及展望 (10)参考文献 (11)致谢 (12)泰勒公式及其在解题中应用数学与应用数学1001班周立泉 指导教师徐华1引言泰勒公式在数值微积分中起着非常重要的作用,泰勒公式“化繁为简”的功能在数学研究方面也发挥了极大的作用.关于泰勒公式的应用,已有许多专家学者对它产生了浓厚的兴趣,它们对某些具体的题目作出了具体的解法,如证明不等式、求极限、判断函数凹凸性和敛散性、判别函数的极值、判断函数凹凸性及拐点、求渐近线、界的估计和近似值的计算等等.事实上,由于许多函数都能用泰勒公式来表示,并且研究函数近似值式和判断级数收敛性的问题又要借助于泰勒公式.因此泰勒公式在数学实际应用中也是一种非常重要的应用工具,我们必须掌握它,以便更好更方便的研究一些复杂的函数、解决更多实际的数学问题.虽然泰勒公式应用到各个数学领域很多,但同样也还有很多方面学者很少提及,因此在泰勒公式及其在解题中的应用方面我们有研究的必要,并且有着相当大的空间.2泰勒公式泰勒公式按不同的余项可以分为两类,一类是定性的,一类是定量的,它们的本质相同,但性质各异.定性的余项为佩亚诺余项))((0n x x o -,仅表示余项是nx x )(0-,即当)(0x x →时高阶的无穷小.定量的余项是拉格朗日型余项10)1()()!1()(++-+n n x x n f ξ(ξ也可以写成)(00x x x -+θ10<<θ),定量的余项一般用于对逼近误差进行具体的计算或者估计.定理1(泰勒定理):设)(x f 在0x 处有n 阶导数,则存在0x 的一个领域,对于领域中的任一点x ,成立)()(!)()(!2)())(()()(00)(200''00'0x r x x n x f x x x f x x x f x f x f n n n +-++-+-+= (1)其中余项)(x r n 满足)1(0)1()()!1()()(++-+=n n n x x n f x r ξ,ξ在x 与0x 之间. 上述公式(1)称为)(x f 在0x x =处的带拉格朗日型余项的泰勒公式.余项10)1()()!1()()(++-+=n n n x x n f x r ξ(ξ在x 与0x 之间)称为拉格朗日余项.若不需要余项的精确表达式时,余项)(x r n 也可也成))(()(0n n x x o x r -=.此时,上述公式(1)则称为)(x f 在0x x =处的带有佩亚诺余项的泰勒公式.它的前1+n 项组成的多项式:''()'20000000()()()()()()()()2!!n n n f x f x p x f x f x x x x x x x n =+-+-++-称为)(x f 的在0x x =处的n 次泰勒多项式.当00=x 时,上式记为nn x n f x f x f x f f x f !)0(!3)0(!2)0()0()0()()(3'''2'''+++++= 该式称为麦克劳林公式,是泰勒公式的特殊形式带拉格朗日余项的泰勒公式对函数)(x f 的展开要求比较高,形式也相对复杂,但因为(2)对)(0x U x ∈∀均能成立(当x 不同时,ξ的取值可能不同),因此这反映出函数)(x f 在邻域)(0x U 内的全局性.带佩亚诺余项的泰勒公式对函数()x f 的展开要求较低,它只要求()x f 在点0x 处n 阶可导,展开形式也较为简单.(1)式说明当0x x →时用右端的泰勒多项式)(x p n 代替)(x f 所产生的误差是n x x )(0-的高阶无穷小,这反映了函数)(x f 在0x x →时的性态,或者说反映了)(x f 在点0x 处的局部性态.3泰勒公式在解题中的应用泰勒公式也被称为泰勒中值定理,是高等数学课程中的一个重要内容,不仅在理论分析方面有重要作用,其应用也非常广泛.但在高等数学课程中没有深入广泛地展开讨论,本文通过几个例子也仅仅说明其中的几个方面的应用,还有很多其他方面的应用,以及二元函数的泰勒公式及其应用等许多内容可以展开进一步的讨论,从而对泰勒公式有一个全面的认识与了解.3.1利用泰勒公式求近似值由于泰勒公式是利用增量法原理进行推导而来,因而在很多近似问题中也有广泛应用.在现今社会,由于计算机和通讯技术的发展,利用计算机进行近似计算已经成为科学研究和工程计算中的一个重要环节.泰勒公式是一个多项式拟合问题,而多项式是一个简单函数,它的研究对我们来说是轻松而又方便的.但必须注意的是泰勒公式是一种局部性质,因此在用它进行近似计算时,x 不能远离0x ,否则效果会比较差.利用泰勒公式可以对函数近似计算式和一些数值的近似计算,利用)(x f 麦克劳林展开得到函数的近似计算式为nn x n f x f x f f x f !)0(!2)0()0()0()()(2'''++++≈例1 求e 的近似值分析 因为e 介于2和3之间,是个无限不循环的数,所以直接得到确定的值比较困难,在这里我们可以利用泰勒公式导出的近似计算式进行近似得到e 的值.解 首先令()xe xf =,则x n e x f x f x f ====)()()('''把0=x 带入,得1)0()0()0()('====n f f f于是得到x e 的近似式!!212n x x x e nx++++≈上式中令1=x ,有!1!31!2111n e +++++≈ 由此可以求出e 的近似值.例2 求dx e x ⎰-12的近似值,精确到510-分析 因为dx e x ⎰-12中的被积函数是不可积的(即不能用初等函数表达),我们可以考虑利用泰勒公式和逐项积分的方法求dx e x ⎰-12的近似值.解 在x e 的展开式中用2x -代替x 得+-+++-=-!)1(!212422n x x x en n x 逐项积分,得() +-+-+-=⎰⎰⎰⎰⎰-dx n x dx x dx x dx dx enn x 1021412101!1!212++⋅-+-⋅+-=121!1)1(51!21311n n n +-+-+-+-=75600193601132912161421101311 上述式子右端是一个收敛的交错级数,由其余项n R 的估计式知000015.07560017<≤R所以746836.093601132012161421101311102≈+-+-+-≈⎰-dx ex我们不妨再看一例,例3 计算积分dx x x⎰10sin 的近似值 分析 因为xxsin 不是初等函数,所以不能直接用牛顿——莱布尼兹公式求值,我们考虑利用泰勒公式求其近似值.解 由泰勒公式可得753!7)27sin(!5!3sin x x x x x x πθ⋅+++-= 所以642!7)27sin(!5!31sin x x x x x x πθ⋅-++-= 因此dx x x x x dx x x ⎰⎰⋅+++-=1064210)!7)27sin(!5!31(sin πθ107537!7)27sin(5!53!3⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅⋅++⋅+⋅-=x x x x x πθ 7!7)27sin(5!513!311⋅⋅++⋅+⋅-=πθx 由此得到9461.05!513!311sin 10≈⋅+⋅-≈⎰dx x x 3.2利用泰勒公式求极限对于一般待定型的极限问题,我们采用洛必达法则来求.但是对于一些求导比较繁琐,或是要多次使用洛必达法则的情况,运用泰勒公式往往比洛必达法则更为有效.对于函数多项式或有理分式的极限问题的计算是十分简单的, 因此, 对于一些较复杂的函数可以考虑根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或者有理分式的极限问题, 因此满足下列情况时可以考虑用泰勒公式来求极限:(1) 运用洛比达法则时, 次数较多, 且求导及化简过程较繁锁.(2) 分子或分母中有无穷小的差, 且此差不易转化为等价无穷小的替代形式.(3 )所遇到的函数展开为泰勒公式不难.当确定要运用泰勒公式求极限时, 关键是要确定展开的阶数.如果分母( 或分子) 是n 阶, 就将分子( 或分母) 展开为n 阶麦克劳林公式.若分子, 分母都需要展开, 可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数.例4 求4202cos limx e x x x -→-分析 这是一个待定型的极限问题,如果用洛必达法则,则分子分母都需求导4次.但若用泰勒公式计算就简单得多了.解 4202cos limx e x x x -→-44224420)()2(!21)2(1)(!4!21lim x x o x x x o x x x ⎥⎦⎤⎢⎣⎡+-+-+-⎥⎦⎤⎢⎣⎡++-=→ 444)(121limxx o x x +-=→ 121-= 例5 求⎥⎦⎤⎢⎣⎡+-∞→)1ln(lim 2xx x x x 的极限分析 当∞→x 时,此函数是∞-∞型未定式,虽然可以通过变换把它转换成型,再用洛必达法则求解,但计算量较大,现在我们先用泰勒公式将)11ln(x+展开,再求其极限.解 ))1(()1(211)11ln(22xo x x x +-=+ 故⎥⎦⎤⎢⎣⎡+-∞→)1ln(lim 2x x x x x ⎥⎦⎤⎢⎣⎡+--=∞→))1(211(lim 222x o x xx x x 21=在高等数学的学习中利用等价无穷小替换来求解极限问题一直是我们学习的难点,即使在学习了教材后仍然对等价无穷小替换求解极限的运用不够灵活甚至比较吃力,常常犯错. 究其原因主要有两个: 一是平时不够努力,对于常见的等价无穷小没有准确记忆并且对于此类问题缺少练习; 二是对于等价无穷小替换的实质还没有透彻的理解,表现在对一些等价无穷小替换的法则只知其然而不知其所以然. 如做练习时有这样的题目:例6 xxx x 3sin lim0-→分析 由于0→x ,根据无穷小量替换得到,x x →sin ,则03lim 3sin lim 00=-=-→→xx x x x x x x从解答过程中我们可以看到,我们在解这道题时不管条件是否满足而生搬硬套地使用了等价无穷小的替换法则,反映出我们对于无穷小的替换原则并未达到本质的理解,解决问题也缺乏灵活性.下面我们利用泰勒公式来重新理解无穷小替换的法则和原理(假设所有极限问题涉及的自变量过程变化都趋向于零).性质一:)(~ααββαo +=⇔首先来理解)(~ααββαo +=⇔,在最初的学习过程中我们容易产生两个误区: 其一,在学习时容易被左边形式迷惑,潜意识里往往误认为α,β都是单独不相关的一项;其二,对于右边的式子中()αo 我们会觉得比较抽象难以理解.根据这些容易产生的理解上的偏差,我们可以结合泰勒公式来形象直观地理解.以正弦函数的泰勒公式为例:+-+-=753!71!51!31sin x x x x x 如果β取x sin -,那么α可以取x ,也可以取3!31x x -,甚至53!51!31x x x +-也行,相应的)(αo 分别为:,!71!51!31753 +-+-x x x ,!71!5175 +-x x +-7!71x , 这样我们可以知道)(αo 并不是抽象的符号,它代表的是具体的表达式,而且该表达式可以很复杂,比如可以由多个式子组成; 另一方面,由于这些式子中的每一项都是幂函数,我们能非常直观地看出它们分别是)(),(),(642x o x o x o ,那是)!51!31(),!31(),(5332x x x o x x o x o +--接着讨论)(~ααββαo +=⇐,本质上它是等价无穷小的又一个性质——和差取大原则:αβααβ-±⇒=)(o ,取,!71!51!31,753 +-+-==x x x x βα则),(αβo =x x x x x sin !71!51!31753=+-+-=+ βα,可理解成:正弦函数由α与β两部分组成,其中α是函数的主部项,它对函数的大小和变换趋势起主要作用,β是函数的次要项或者剩余项,由()αβo =可知,β实质上是相对于主部项α的小扰动项,对整个函数的数值及变化趋势起次要的作用.具体到求极限的问题中就是极限问题的结果取决于分子分母中多项式的最低次项.性质二(和差代替规则):若''~,~ββαα,并且βα,不等价,则''~βαβα--,并且'''limlim γβαγβα-=- 故对于例4,由于 +-=3!31sin x x x ,从而,61sin 3 +=-x x x 此时,61~sin 3+-x x x 所以0361lim 3sin lim 300==-→→x xxx x x x 对于表面上差异较小的问题但运用等价无穷小替换法则大相径庭,而这样的问题往往能够用泰勒公式统一解决. 说明在求极限问题的解题思路中泰勒公式比等价无穷小替换法则更普遍、更一般,在解决问题时往往倾向接受和使用那些放之四海而皆准的思路和方法,因此利用泰勒公式来理解等价无穷小替换的实质也就更容易被大家理解和掌握.3.3泰勒公式在判断级数和广义积分敛散性的应用 3.3.1判断级数的敛散性在级数敛散性的理论中,要判定一个正项级数∑∞=1n na是否收敛,我们通常找一个较简单的级数∑∑∞=∞==111n pn n nb )0(>p ,再用比较判定法来判定.在实际应用中较困难的问题是如何选取恰当的∑∞=11n p n )0(>p 中的p 值,例如 (1)当2=p ,此时∑∞=121n n 收敛,但+∞=∞→21lim n a n n . (2)当1=p ,此时∑∞=11n n发散,但01lim =∞→na n n . 这里我们无法判定∑∞=1n n a 的敛散性,为了有效地选取∑∞=11n pn中的p 值,可以应用泰勒公式研究通项0→n a )(+∞→n 的阶,据此选择恰当的p 值使l n a pnn =+∞→1lim,并且保证+∞<<l 0,再由比较判定法(极限形式)就可以判定∑∞=1n na的敛散性.下面我们来举例说明:例7 判定级数∑+∞=--+111)2(n nnaa()0>a 的敛散性.解 因)1(ln 121ln 1222ln no a n a x e a xx x+++==, 故)1(ln 1!21ln 112221no a n a n a n+++=)1(ln 1!21ln 112221n o a n a n an++-=-因此)1(ln 1)2(22211no a n a a a nnn +=-+=- 从而有a n a n n 22ln 11lim=∞→,0→n a 是关于)1(n 的2阶.,即 ∑+∞=--+111)2(n nnaa 与∑+∞=121n n 同收敛 评注:当级数的通项表达式是由不同类型的函数式构成的繁难形式时,往往利用泰勒公式将级数通项简化成统一形式,以便于利用判敛准则.例8 讨论级数∑∞=+-1)1ln 1(n n n n的敛散性分析 直接根据通项去判断该项级数是正项级数还是非正项级数是比较困难的,因而也就无法恰当地选择判敛方法.在上式中我们注意到,)11ln(1lnn n n +=+这个式子中,若将其泰勒展开为n1的幂的形式,开二次方后恰与n1相呼应,会使判敛更容易进行. 解 )11ln(1ln nn n +=+ +-+-=4324131211n n n nn1<∴n n n 11ln<+ ∴01ln 1>+-=n n nu n故该级数是正项级数. 又 )1(312111ln332no n n n n n ++-=+2322332211)211(4111nn n n n n n -=-=+->∴232321)211(11ln 1n nn n n n n u n =--<+-=∑∞=12321n n收敛,由正项级数比较判别法知原级数收敛. 例9判断级数∑∞=-1)1(n n n 的敛散性分析 对于级数∑∞=-1)1(n nn ,运用比较法,柯西判别法,魏尔斯特拉斯判别法难以直接判断其敛散性.因此我们可以考虑先把n n 进行泰勒展开,再运用上述方法进行判别.解 由泰勒公式有)ln 1(ln 1122ln 1n no n n en n nn++==所以)ln 1(ln 1122n n o n n n n +=-,而∑∑∞=∞=≥111ln 1n n n n n 发散,又)(0ln 12322∞→→n n n n 所以n nn 212ln 1∑∞=收敛,故∑∞=-1)1(n n n 发散.3.3.2判断广义积分的敛散性在定积分中,我们总是假定积分区间是有限的,而被积函数(如果可积的话)一定是有界的.但在理论上或实际应用中都有需要去掉这两个限制,把定积分的概念广为(i )无限区间上的积分; (ii )无界函数的积分; 在判定广义积分dx x f a⎰+∞)(的敛散性时,通常选取广义积分)0(1>⎰+∞p dx xap 进行比较,在此通常研究无穷小量)()(+∞→x x f 的阶来有效地选择dx x f a⎰+∞)(中的p 值,从而判定敛散性.(注意到:如果dx x f a⎰+∞)(收敛,则dx x f a⎰+∞)(收敛.)例10 判断广义积分dx x x xx ⎰-10sin sin 的敛散性 分析 我们可以知道dx xx xx ⎰-10sin sin 是属于无界函数广义积分,在)1,0(上运用定积分的知识很判断出该积分是否收敛,那么我们可以考虑是否可以运用泰勒公式将x sin 展开,然后再进行计算.解 ()0sin sin <-=xx xx x f ,(]1,0∈x ,即被积函数在积分区间上不变号. )(61)(611)(!31)(!31sin sin 433224343x o x x o x x x o x x x x o x x x x x x x +⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+--⎥⎦⎤⎢⎣⎡+-=-[])(16)(611)(61)(61132232x o x x o x x o x x o x +⎥⎦⎤⎢⎣⎡+-=++-=)(6x o x+= 故有1)6sin sin (lim 0=-→xx x x x x ,又由于广义积分dx x ⎰106发散,因此用比式判别法知原广义积分收敛. 例11 研究广义积分dx x x x ⎰+∞--++4)233(的敛散性分析 我们可以初步判断dx x x x ⎰+∞--++4)233(属于无限区间上的积分,在区间),4(+∞不易运用定积分的知识进行判断该积分是否收敛.那么同样我们可以考虑运用泰勒公式将其展开再进行讨论.解 我们已经学过()αx +1的泰勒展开式为),(!2)1(1)1(22x o x x x n+-++=+ααα则x x x x f 233)(--++=2)31()31(2121--++=xx x)2)1(1891231()1()1891231(2222-+⋅-⋅-++⋅-⋅+=x o x x x o x x x)1(1492323xo x +⋅-= 因此491)(lim23=+∞→xx f x ,即0)(→x f 是)(1+∞→x x的23阶,而⎰+∞4231dx x 收敛,故dx x f ⎰+∞4)(收敛,从而dx x x x ⎰+∞--++4)233(收敛.3.4利用泰勒公式证明等式与不等式关于在不等式的证明方面,我们已经知道有很多种方法,比如利用函数的凸性来证明不等式,利用拉格朗日中值定理来证明不等式,以及通过讨论导数的符号来得到函数的单调性,从而证明不等式的方法,同样泰勒公式也是不等式证明的一个重要方法.如果函数)(x f 存在二阶及二阶以上的导数并且有界,那么利用泰勒公式去证明这些不等式,一般的证明思路为:(1)写出比最高阶导数低一阶的函数的泰勒展开式; (2)恰当地选择等式两边的x 与0x ;4结论及展望泰勒公式是数学分析中非常重要的内容,也是研究数学各个领域的不可或缺的工具.本文章是在大量查阅有关泰勒公式的资料的基础上作出的初步整理,这篇文章主要对泰勒公式在近似值计算、求极限、判断级数和广义积分的敛散性以及证明等式与不等式等方面做了简单系统的介绍和分析,从而体现了泰勒公式在微分学应用中的重要的地位,通过以上几个方面的探讨,充分利用其解题技巧在解题时可以起到事半功倍的效果.值得一提的是,虽然泰勒公式应用到各个数学领域很多,但同样也还有很多方面很少被提及,需要不断地探索.本文通过几个例子也仅仅说明其中的几方面的应用,还有很多其他方面的应用,以及二元函数的泰勒公式及其应用等很多内容可以展开进一步的总结讨论,从而对泰勒公式有一个全面的认识与了解.而泰勒公式在数学实际应用中又是一种非常重要的应用工具,只有掌握了这些知识,并且在此基础上加强训练、不断地进行总结,才能熟练的应用它,灵活的从不同角度找出解题的途径,探索新的解题方法,以便更好更方便的研究一些复杂的函数,解决更多实际的数学问题.参考文献[1]胡格吉乐吐.对泰勒公式的理解及泰勒公式的应用[J].内蒙古科技与经济,2009(24):73.[2]刘鹏.浅谈泰勒公式及其应用.科技信息[J],2011(09):521-522.[3]齐成辉.泰勒公式的应用.陕西师范大学学报,2003,31(09):24-25.[4]费德霖.泰勒公式的应用及技巧.皖西学院学报,2001,17(04):84-86.[5]潘劲松.泰勒公式的证明及应用.廊坊师范学院学报,2010,10(02):16-21.[6]董斌斌.泰勒公式及其在解题中的应用.科技信息,2010,(31):243.[7]冯平、石永廷.泰勒公式在求解高等数学问题中的应用.新疆职业大学学报,2003,11(04):64-66.[8]陈妙琴.泰勒公式在证明不等式中的应用.宁德师专学报(自然科学报),2007,19(02):155-156.[9]刘萍、王文锦.谈泰勒公式在微分有关证明题中的应用.科技信息,2009(11):235.[10]/faculty/kaliakin/appendix_Taylor.pdf[11]/~robbin/221dir/taylor.pdf[12]/wiki/Taylor_series[13]/wiki/Taylor's_theore致谢四年的大学生活即将在这个季节画上一个句号,而于我的人生只是一个逗号,我将面对又一次征程的开始.时光匆匆如流水,转眼便是大学毕业时节,离校的日期已日趋临近,毕业论文的完成也随之进入尾声.在本文即将完成之时,谨此向我的导师徐华讲师致以衷心的感谢和崇高的敬意.本文的顺利完成离不开徐华老师的悉心指导,老师以她敏锐的洞察力,渊博的知识,严谨的治学态度,精益求精的工作作风给我留下了深刻的印象,使我获益匪浅.我还要真诚地感谢我的室友张天闻同学,他不仅在学术上给我指引,而且在生活中也给予我帮助,从他身上我学到了很多.我还要感谢我的母校杭州师范大学钱江学院,这里严谨的学风,优美的校园环境使我的大学四年过得很充实也很愉快.最后我要感谢我的父母,当自己怀着忐忑的心情完成这篇论文的时候,自己也从当年一个刚走进大城市的懵懂少年变成了一个成熟的青年.十几年的求学之路,虽然只是一个本科毕业,但也实属不易.首先,从小学到大学的生活费及学费就不是个小数目,这当然要感谢我的爸爸妈妈,他们都是农民,没有他们的勤勤恳恳和细心安排,没有他们的支持和鼓励,我是无论如何也完成不了我的大学生活.书到用时方恨少,在这篇论文的写作过程中,我深感自己的水平还非常的欠缺.生命不息,学习不止,人生就是一个不断学习和完善的过程,敢问路在何方?路在脚下!。
泰勒公式及其应用
![泰勒公式及其应用](https://img.taocdn.com/s3/m/4a08c30c7cd184254b353524.png)
1、绪论泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆。
作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结。
由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明。
使我们对泰勒公式有了更深一层的理解,怎样应用泰勒公式解题有了更深一层的认识。
只要在解题训练中注意分析,研究题设条件及其形式特点,并把握上述处理规则,就能比较好地掌握利用泰勒公式解题的技巧。
2、布鲁克·泰勒简介布鲁克·泰勒(1685年8月18日出生于英格兰密德萨斯埃德蒙顿,1731年11月30日逝世于伦敦)是一名英国数学家,他主要以泰勒公式和泰勒级数出名。
他的母校为剑桥大学圣约翰学院。
进入大学之前,他一直在家里读书,他的全家尤其是他的父亲都喜欢音乐和艺术,并且经常在家里招待艺术家。
这对泰勒一生的工作造成了极大的影响,这从他的俩个主要科学研究课题:弦振动问题及透视画法就可以看出来。
1701年布鲁克·泰勒进入剑桥大学圣约翰学院,1709年他获得法学学士、1714年获得法学博士学位。
他也学习数学。
1708年他获得了“振荡中心”问题的一个解决方法,但是这个解法直到1714年才被发表。
因此导致约翰·白努利与他争谁首先得到解法的问题。
他1715年发表的《Methodus Incrementorum Directa et Inversa》为高等数学添加了一个新的分支,今天这个方法被称为有限差分方法。
除其它许多用途外他用这个方法来确定一个振动弦的运动。
他是第一个成功地使用物理效应来阐明这个运动的人。
在同一著作中他还提出了著名的泰勒公式。
直到1772年约瑟夫·路易斯·拉格朗日才认识到这个公式的重要性并称之为“导数计算的基础”(le principal fondement du calcul différentiel)。
浅谈泰勒公式在高考数学压轴题中的应用
![浅谈泰勒公式在高考数学压轴题中的应用](https://img.taocdn.com/s3/m/ceb4a59327d3240c8547efbd.png)
数学学习与研究㊀2019 21浅谈泰勒公式在高考数学压轴题中的应用浅谈泰勒公式在高考数学压轴题中的应用Һ孙玉静㊀(深圳市西乡中学ꎬ广东㊀深圳㊀518000)㊀㊀近年来ꎬ在各类测试和高考命题中ꎬ不等式exȡx+1ꎬlnxɤx-1都是出题者出题的一个很重要的出发点.上面的两个不等式都是很容易证明的ꎬ追根溯源ꎬ这两个不等式都来源于高等数学中的泰勒展开公式.本文在简单介绍泰勒公式的基础上ꎬ结合例题给大家呈现函数y=exꎬy=lnx的泰勒公式在高考压轴题中的应用.一㊁背景介绍数学中ꎬ泰勒公式是一个用函数在某点的信息描述其附近取值的公式.如果函数足够平滑的话ꎬ在已知函数在某一点的各阶导数值的情况下ꎬ泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值.泰勒公式还给出了这个多项式和实际的函数值之间的偏差.若函数f(x)在包含x0的某个闭区间[aꎬb]上具有n阶导数ꎬ且在开区间(aꎬb)上具有(n+1)阶导数ꎬ则对闭区间[aꎬb]上任意一点xꎬ成立下式:f(x)=f(x0)0!+fᶄ(x0)1!(x-x0)+fᵡ(x0)2!(x-x0)2+ +f(n)(x0)n!+Rn(x).f(n)(x)表示f(x)的n阶导数ꎬ等号后的多项式称为函数f(x)在x0处的泰勒展开式ꎬ剩余的Rn(x)是泰勒公式的余项ꎬ是(x-x0)n的高阶无穷小.函数f(x)=exꎬf(x)=lnx在x=0处的泰勒展开式为ex=1+x1!+x22!+x33!+o(x3)ꎬln(x+1)=x-12x2+13x3+o(x3).㊀如图所示ꎬ函数f(x)=exꎬg(x)=ln(x+1)ꎬ与三次函数fᶄ(x)=1+x+x22+x36ꎬgᶄ(x)=x-x22+x33.在x=0处的拟合程度非常好ꎬ所以在求极限的时候可以近似替代.这给很多高考导数压轴题中出现的一侧最值求不到的情况一个解决方案.二㊁应用举例1.在«中学数学教学参考»上旬刊2017年第11期P47-49中作者给了一个例题:设函数f(x)=ex-1-x-ax2ꎬ当xȡ0时ꎬf(x)ȡ0ꎬ求实数a的取值范围.作者给出的方法如下:由于f(0)=0ꎬ所以f(x)在x=0右侧的一个小邻域(0ꎬδ)(δ>0)上递增ꎬ即fᶄ(x)ȡ0在区间(0ꎬδ)内成立.又有fᶄ(x)=ex-1-2axꎬfᶄ(0)=0ꎬ同样地ꎬh(x)=fᶄ(x)在区间(0ꎬδ)内递增ꎬ即hᶄ(x)ȡ0对xɪ(0ꎬδ)成立.因为hᶄ(x)=ex-2aꎬ所以aɤe22在区间(0ꎬδ)内成立ꎬ所以aɤ12.然后再根据这个猜想来验证结论的正确性.下面我们看看如果用学生比较容易接受的分离参数法该如何解决.当xȡ0时ꎬf(x)ȡ0恒成立⇔ex-x-1ȡax2(xȡ0)恒成立.因为x=0显然成立ꎬ所以当x>0时ꎬex-x-1ȡax2恒成立ꎬ所以问题转化为当x>0时ꎬaɤex-x-1x2恒成立ꎬ只需满足aɤex-x-1x2()min(x>0).设函数g(x)=ex-x-1x2(x>0)ꎬgᶄ(x)=(x-2)ex+x+2x3.设函数h(x)=(x-2)ex+x+2ꎬx>0ꎬ则hᶄ(x)=(x-1)ex+1ꎬhᵡ(x)=xex.因为x>0ꎬhᵡ(x)>0恒成立ꎬ所以hᶄ(x)=(x-1)ex+1在(0ꎬ+ɕ)上单调递增ꎬ则有hᶄ(x)>hᶄ(0)=0在(0ꎬ+ɕ)上恒成立.所以有h(x)=(x-2)ex+x+2ꎬ在区间(0ꎬ+ɕ)上单调递增ꎬ则有h(x)=(x-2)ex+x+2>h(0)=0ꎬ所以有gᶄ(x)=(x-2)ex+x+2x3>0在区间(0ꎬ+ɕ)上恒成立ꎬ即函数g(x)=ex-x-1x2在区间(0ꎬ+ɕ)单调递增ꎬ所以g(x)=ex-x-1x2>limxң0+g(x).如何解limxң0+ex-x-1x2?ex=1+x1!+x22!+x33!+o(x3)ꎬ所以limxң0+ex-x-1x2=limxң0+12+16x+o(x)()=12ꎬ所以满足条件的实数a的取值范围为-ɕꎬ12(].(下转143页)数学学习与研究㊀2019 211)ꎬ则Fᶄ(t)=2t-1-1t2=-t2-2t+1t2<0ꎬʑF(t)在(0ꎬ1)上单调递减ꎬF(t)>F(1)=0ꎬ从而2lnt-t2-1t>0(0<t<1)ꎬʑlnx1x2>x1x2-1x1x2成立ꎬ即证得f(x1)-f(x2)x1-x2<a-2.解法四㊀从几何的角度看ꎬ不等式f(x1)-f(x2)x1-x2<a-2成立即lnx1-lnx2x1-x2<1成立ꎬ可以看成是证明函数y=lnx图像上两点A(x1ꎬlnx1)ꎬB(x2ꎬlnx2)连线斜率小于1.由解法四可引入点C(x3ꎬlnx3)ꎬ且使G(x1)=G(x3)即lnx1-x1=lnx3-x3即kAC=lnx1-lnx3x1-x3=1ꎬ依据解法四中构造的函数H(t)=t-eT及φ(t)=H(t)-H(-t)[tɪ(-ɕꎬ0)]ꎬ可证得x1x3<1ꎬ又x1x2=1ꎬ从而x2>x3>1ꎬ故从几何的角度可以证得kAB=lnx1-lnx2x1-x2<1(几何展示如图所示)ꎬ从而证得不等式f(x1)-f(x2)x1-x2<a-2成立.解法小结㊀本解法依据解法四已证的相关结论ꎬ从几何的角度证得kAB=lnx1-lnx2x1-x2<1ꎬ从而证得不等式f(x1)-f(x2)x1-x2<a-2成立.从总体上看ꎬ这些解法体现了等价转化ꎬ数形结合的数学思想ꎬ也充分强调了逻辑推理ꎬ数学运算ꎬ直观想象这三大数学核心素养的重要性.从以上几种解法可以看出前三种解法都是将证明含有三个参数x1ꎬx2ꎬa的不等式f(x1)-f(x2)x1-x2<a-2成立问题转化为证明含有一个参数的不等式成立问题ꎬ进而构造函数证明此不等式成立.不同的是ꎬ相比之下ꎬ解法四显得比较烦琐ꎬ解法四通过构造三个函数解决问题.尽管如此ꎬ解法四为解法五中的几何法提供了理论支持ꎬ解法四作为处理极值点偏移问题的重要方法ꎬ肯定是值得探究并运用于解题的.㊀(上接141页)㊀㊀2.(2016年高考全国卷Ⅰ)已知函数f(x)=(x+1)lnx-a(x-1).(2)若当xɪ(1ꎬ+ɕ)时ꎬf(x)>0ꎬ求a的取值范围.解析㊀因为当xɪ(1ꎬ+ɕ)时ꎬf(x)>0⇔(x+1)lnx-a(x-1)>0恒成立ꎬ则有a<(x+1)lnxx-1ꎬxɪ(1ꎬ+ɕ).下面考查函数gᶄ(x)=[(x+1)lnx]ᶄ(x-1)-(x+1)lnx(x-1)ᶄ(x-1)2ꎬxɪ(1ꎬ+ɕ)ꎬ化简得gᶄ(x)=-2lnx+x-1x(x-1)2ꎬx>1.设h(x)=-2lnx+x-1xꎬhᶄ(x)=-2x+1+1x2=x2-2x+1x2=(x-1)2x2ꎬ可知hᶄ(x)>0ꎬxɪ(1ꎬ+ɕ)恒成立ꎬh(x)在区间(1ꎬ+ɕ)上单调递增ꎬ所以有h(x)>h(1)=0ꎬ即gᶄ(x)>0ꎬxɪ(1ꎬ+ɕ)恒成立ꎬ则有g(x)=(x+1)lnxx-1ꎬxɪ(1ꎬ+ɕ)单调递增.下面只需求出limxң1+(x+1)lnxx-1的值ꎬ便可求出实数a的取值范围.由于y=lnx在x=1处的泰勒公式lnx=(x-1)-(x-1)22+(x-1)33+o(x-1)3有limxң1+(x+1)lnxx-1=limxң1+(x+1)(x-1)-(x-1)22+o(x-1)2[]x-1=limxң1+(x+1)-(x+1)x-12+(x+1)o(x-1)[]=2ꎬ所以实数a的取值范围为(-ɕꎬ2].以上两个例子是介绍泰勒公式在解决求最值的问题ꎬ比直接讨论参数要简单得多.这就是高等数学和中学数学的一个衔接.三㊁备考启示1.随着向量ꎬ算法ꎬ概率统计ꎬ导数等原来在大学才接触的知识渗透到高中教材ꎬ高考作为选拔性的考试ꎬ试卷中也经常出现以高等数学为背景的试题.这类题目往往就是考查学生的知识迁移能力ꎬ综合分析解决问题的能力ꎬ所以我们高中教师要更注意培养学生的数学思维能力及数学学科素养.2.培养学生的认知能力.就是不光要教会学生如何应对考试中的各种题型ꎬ而且要培养学生站在出题者的高度去思考他们会从哪些角度出题.这就要求我们高中教师要用新课程标准审视常规教学ꎬ提高自己的教育科研能力ꎬ注重 高观点 下的中学数学衔接问题.3.从简单到复杂ꎬ从直观到抽象是学生学习的基本认知规律ꎬ所以有一些抽象的代数问题如果能以数形结合的方式帮助学生理解ꎬ学生的学习效果肯定会更好.这就要求我们教师要注意信息技术的应用.在教学中更多地运用数学学习心理学原理来更好的规划课堂.ʌ参考文献ɔ[1]范东晖.入乎其内ꎬ出乎其外 让习题教学更有效[J].中学数学教学参考ꎬ2017(11):47-49.[2]曹世鹏.以高等数学为背景的高考数学试题的研究[J].中学数学研究ꎬ2016(6):17-20.。
泰勒公式例题
![泰勒公式例题](https://img.taocdn.com/s3/m/2bbba6fb7c1cfad6195fa765.png)
泰勒公式及其应用等价无穷小在求函数极限中的应用及推广泰勒公式及其应用1 引言泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 2 预备知识定义2.1]1[ 若函数f 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()000()()(())!n n n f x x x o x x n +-+-(1)这里))((0n x x o -为佩亚诺型余项,称(1)f 在点0x 的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2]2[ 若函数 f 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x R x n =+-+-++-+ ,(2)这里()n R x 为拉格朗日余项(1)10()()()(1)!n n n f R x x x n ξ++=++,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x R x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.)(1)1(32)1ln(1132++++-+-+-=+n n n x o n x x x x x . )(1112n n x o x x x x+++++=- +-++=+2!2)1(1)1(x m m mx x m . 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .3 泰勒公式的应用 3.1 利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简捷地求出.例3.1 求极限2240cos lim x x x e x -→-.分析:此为0型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和22x e-分别用泰勒展开式代替,则可简化此比式.解 由244cos 1()2!4!x x x o x =-++,222242()21()22x x x e o x --=-++得2444422111cos ()()()4!22!12x x ex o x x O x --=-+=-+⋅, 于是244244001()cos 112limlim 12x x x x O x x e x x -→→-+-==-. 例3.2极限1sin 2lim sin cos xx xx x x x xe →0---- .分析:此为00型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和sinx, xe分别用泰勒展开式代替,则可简化此比式.解: 由1sin 2xx x x e---=233331()())2626x x o o x x x x x ++++-1-x-(x-+=34333()()6126o o x xxx x ++=+,3233sin cos ()(1())62x x x o x o x x x x -x =-+--+33()3o xx =+于是1sin 2lim sin cos xx x x x x x x e →0----3333()162()3o o x x x x +==+例3.3利用泰勒展开式再求极限 。
泰勒公式例题
![泰勒公式例题](https://img.taocdn.com/s3/m/64c8498108a1284ac8504360.png)
泰勒公式及其应用等价无穷小在求函数极限中的应用及推广泰勒公式及其应用1 引言泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆.作者通过阅读大量的参考文献,从中搜集了大量的习题,通过认真演算,其中少数难度较大的题目之证明来自相应的参考文献,并对这些应用方法做了系统的归纳和总结.由于本文的主要内容是介绍应用,所以,本文会以大量的例题进行讲解说明. 2 预备知识定义]1[ 若函数f 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()000()()(())!n n n f x x x o x x n +-+-(1)这里))((0n x x o -为佩亚诺型余项,称(1)f 在点0x 的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义]2[ 若函数 f 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x R x n =+-+-++-+ ,(2)这里()n R x 为拉格朗日余项(1)10()()()(1)!n n n f R x x x n ξ++=++,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x R x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.)(1)1(32)1ln(1132++++-+-+-=+n n n x o n x x x x x . )(1112n n x o x x x x+++++=- +-++=+2!2)1(1)1(x m m mx x m . 定理]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .3 泰勒公式的应用 利用泰勒公式求极限为了简化极限运算,有时可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限,就能简捷地求出.例 求极限2240cos lim x x x e x -→-.分析:此为0型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和22x e-分别用泰勒展开式代替,则可简化此比式.解 由244cos 1()2!4!x x x o x =-++,222242()21()22x x x e o x --=-++得2444422111cos ()()()4!22!12x x ex o x x O x --=-+=-+⋅, 于是244244001()cos 112limlim 12x x x x O x x e x x -→→-+-==-. 例极限1sin 2lim sin cos xx xx x x x xe →0---- .分析:此为00型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和sinx, xe分别用泰勒展开式代替,则可简化此比式.解: 由1sin 2xx x x e---=233331()())2626x x o o x x x x x ++++-1-x-(x-+=34333()()6126o o x xxx x ++=+,3233sin cos ()(1())62x x x o x o x x x x -x =-+--+33()3o xx =+于是1sin 2lim sin cos xx x x x x x x e →0----3333()162()3o o x x x x +==+例利用泰勒展开式再求极限 。
泰勒公式的几种证明法及其应用-毕业论文
![泰勒公式的几种证明法及其应用-毕业论文](https://img.taocdn.com/s3/m/6b81db66a517866fb84ae45c3b3567ec102ddc91.png)
泰勒公式的⼏种证明法及其应⽤-毕业论⽂泰勒公式的⼏种证明法及其应⽤ -毕业论⽂【标题】泰勒公式的⼏种证明法及其应⽤【作者】张廷兵【关键词】泰勒公式构造函数法数学归纳法柯西中值定理应⽤【指导⽼师】陈波涛【专业】数学与应⽤数学【正⽂】1引⾔泰勒公式在分析和研究数学问题⽅⾯有着重要的应⽤。
但是它的证明⼤多数是重复运⽤柯西中值定理来推导,这给初学者从理解到接受有⼀定的困难。
为了给不同层次的学习者理解和接受泰勒公式提供⽅便。
本⽂研究不同的证明⽅法,给学习者提供了选择的余地。
归根结底,使学习者更好运⽤泰勒公式,为此就对泰勒公式的应⽤及技巧的总结。
2 带佩亚诺型余项泰勒公式的证明⽅法在初等函数中,最简单的函数就是多项式,对于数值计算和理论分析都很⽅便。
如果将⼀类复杂的函数⽤多项式来近似表⽰出来,其误差⼜能满⾜⼀定的要求。
那么,我们就可以表⽰出此函数。
若函数是n次多项式令 .于是对任意⼀个函数,只要函数在a点存在n阶导数,我们就可以写出⼀个相应的多项式称为函数在a点的n次泰勒多项式,那么n次泰勒多项式与函数在在点a的邻域上有什么联系呢,下⾯的定理回答了这个问题(定理1[1] 若函数在a点存在n阶导数 ,则其中 ,则上式就为在a点的泰勒公式, 为泰勒公式的余项.2.1⽅法⼀证明:将上式改为,有分⼦是函数 ,分母是函数 .应⽤n-1次柯西中值定理[2]其中其中其中 (⾄此已应⽤了n-1次柯西定理)当根据右导数定义,有同法可证:于是 , 表⽰余项是佩亚诺型. 证毕.2.2⽅法⼆证明在的⼀个邻域内有⼀阶导数,则存在且在处连续,即有则由极限与⽆穷⼩量的关系有:( 是⽆穷⼩量),⼜则 (2—1) 从(2—1)式推出:⽐较⽆穷⼩量与== (因为⼆阶可导) ⼜由极限与⽆穷⼩量的关系有:将上边代⼊(2—1)式:设 .则在处有阶导数,且设当时仍有:+ (2—2)从(2—2)中推出⽐较与 :=则: 即将上述代⼊(2—2)得:即当时, 仍可表⽰的阶多项式与之和,故对⼀切⾃然数n均有:2.3⽅法三证:设 [3]现在只要证显然可知,并易知因为存在,所以在点a的某领域内存在n=1阶导函数 . 于是,当且时,允许接连使⽤洛⽐达法则n-1次,得到=0证毕 .3带拉格朗⽇型余项的泰勒公式的证明⽅法定理1只是给出余项的定性描述,还不能进⾏定量的估计,下⾯定理解决了定性的估计.定理2[1] 若函数在闭区间[ a , b ] 上有连续的n 阶导数,在开区间( a , b) 内存在n + 1 阶导数则对任何x ?( a , b) ,则存在 ,使得3.1⽅法四在《⾼等数学》中,泰勒公式⼀般都是⽤柯西定理证明的,然⽽拉格朗⽇定理作为泰勒公式的特殊情况,担当对泰勒公式的证明,似乎更在情理之中。
泰勒公式及其在极限运算中的运用(论文)
![泰勒公式及其在极限运算中的运用(论文)](https://img.taocdn.com/s3/m/92920c1d0b4e767f5acfceef.png)
摘要 (2)1 引言 (4)2 泰勒公式 (5)2.1 n次泰勒多项式 (5)2.2 泰勒公式 (6)2.3 泰勒公式的种类 (6)2.31 含有佩亚诺余项的泰勒公式 (6)2.32 含有拉格朗日余项的泰勒公式 (7)2.33 特殊的泰勒公式 (7)3 利用泰勒公式求极限及其应用 (8)3.1 一些常见的麦克劳林公式 (8)3.2 一些实例分析 (9)4 结论 (17)参考文献 (18)在初等函数中,多项式是最简单的函数,因为多项式函数的运算只有加、减、乘三种运算.如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而又满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义.而泰勒公式就起了很好的桥梁作用,本文将系统地阐述对一个函数具有什么条件才能用此多项式近似代替;这个多项式函数的各项系数与这个函数有什么样的关系;用多项式函数近似代替这个函数的误差又怎样;重点是怎样利用泰勒公式计算极限以及其在极限计算中的应用,对比分析出泰勒公式的优越性.关键词:泰勒公式;近似代替;极限运算AbstractPolynomial in elementary function is the most simple function, because the polynomial function is used only three kinds of add, subtract, multiply computing. If can the rational fractional function, especially the irrational function and elementary transcendental function approximation using polynomial function, and meet the requirements, obviously, the study of functional state and function value approximate calculation has important significance. And there was a very good role of bridge and Taylor formula, this article will systematically expounded is what condition for a function to substitute the polynomial approximation; The polynomial function coefficient and the function of what kind of relationship; Using polynomial function approximation instead of what the function of the error; Focuses on how to use Taylor formula calculation, the application limit and the limit analysis of the superiority of the Taylor formula.Key words:Taylor formula;and approximate replace;limit operation1 引言在数学中,泰勒公式是在级数基础上发展起来的,它是用函数在某点的信息描述其附近取值的公式.在近似计算、极限计算、函数凹凸性判断、敛散性的判断、等式与不等式的证明、中值问题以及行列式的计算等方面有重要的应用.泰勒公式是数学分析中一个非常重要的内容,不仅在理论上占有重要的地位.通过泰勒公式和极限运算的学习,已经掌握初等函数在某一点的泰勒展式,对于一些高阶的极限运算,直接求极限不好求,利用泰勒公式能很快地求出.所以对泰勒公式的进一步研究是非常重要的.泰勒公式的证明与应用方面的研究对于科研者来说一直具有强大的吸引力,许多研究者已在此领域获得许多研究成果.例如,[1]刘玉琏、傅沛仁、林玎等人重点谈了无理函数和初等函数用多项式函数近似代替,而这时误差又能满足要求,也即是把函数写成n次泰勒多项式.[3]张筑生体统地谈了用n次多项式来研究可导n次的函数,也就是带小o余项的泰勒公式是无穷小增量公式的推广.[4]沈燮昌、邵品琮等人主要是从逼近角度对它进行介绍,并说明泰勒公式的一些应用.其中用泰勒公式来求极限就是一个应用.对于一些高阶的极限运算,要求得其极限是非常困难的.对泰勒公式的研究就是为了解决上述问题的.通过对数学分析的学习,我感觉到泰勒公式是高等数学中最重要的内容,在各个领域有着广泛的应用,例如在函数值估测及近似运算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明,求函数在某点的高阶导数值等方面.除此之外,泰勒公式及泰勒级数的应用,往往能峰回路转,使问题变得简单易解.下面主要针对泰勒公式在极限中的应用,在一些题目当中,为解题带来了很多的便捷,这同时也为求极限提供了一种很好的方法.2 泰勒公式泰勒公式是微积分学中的一个重要内容,它用n 次多项式来研究可导n 次函数,这种带o 余项的泰勒公式是无穷小增量公式的推广.因此,泰勒公式是求极限的重要方法.对泰勒公式及其种类的认识是很有必要的.2.1 n 错误!未找到引用源。
泰勒公式在高等数学解题中的应用举例
![泰勒公式在高等数学解题中的应用举例](https://img.taocdn.com/s3/m/09a62efc185f312b3169a45177232f60ddcce7b4.png)
泰勒公式在高等数学解题中的应用举例
勃朗峰公式,也称泰勒公式,指的是数学界的绝佳经典。
它的应用主要体现在
高等数学的解题中。
首先,勃朗峰公式可以应用于复习曲线的计算中。
其中,泰勒公式可以用来求
出曲线的表达式,并计算出曲线的横坐标夹角,从而空间更有效解决曲线的计算问题。
此外,泰勒公式还可应用于曲面积的计算中。
一般情况下,曲面积的计算仅限
于区分变量法,但用泰勒公式计算曲面积时,可以将它们分解为一组多元二次函数,从而实施曲面积的精确计算。
此外,泰勒公式也可以帮助我们求解多个函数的集合,比如流形的集合。
考虑
到泰勒公式有着许多简便的特性,它可以帮助我们有效地求解多个函数集合中包含的多个函数,从而有效地解决问题。
最后,泰勒公式还可以应用于对某一函数在某个区间上的多次微分和积分计算。
在某一区间上,泰勒公式可以使我们使用函数式专业积分方法,从而解决复杂的计算问题,达到准确求解函数的方式。
总之,勃朗峰公式在高等数学解题中的应用甚为广泛,能有效解决各种复杂的
计算问题,因其计算简便、精准、收敛效果明显所以被普遍应用于高等数学的解题中。
泰勒公式及其在解题中的应用毕业设计论文
![泰勒公式及其在解题中的应用毕业设计论文](https://img.taocdn.com/s3/m/1b37b33f192e45361066f52b.png)
毕业设计(论文)题目:泰勒公式及其在解题中的应用Title: Taylor formula and its application in solving problems学院:理学院专业:信息与计算科学姓名:罗书云学号:08102209指导教师:蔡奇嵘二零一二年六月摘要泰勒公式是数学分析中的重要组成部分,它的理论方法已成为研究函数极限和估计误差等方面的不可或缺的工具,它集中体现了微积分“逼近法”的精髓,在近似计算方面有着得天独厚的优势,利用它可以将复杂问题简单化,可以将非线性问题化为线性问题,并且能满足相当高的精确度要求。
它是微积分中值定理的推广,亦是应用高阶导数研究函数性态的重要工具。
泰勒公式在微积分的各个领域都有着重要的应用,而且泰勒公式“化繁为简”的功能在数学领域的研究方面也起到了很大的作用。
文章除了介绍了带佩亚诺型余项和拉格朗日型余项的泰勒公式在常用的近似计算、求极限、不等式的证明、判断函数极值上作求解证明外,特别地,对泰勒公式在函数凹凸性及拐点判断、级数和广义积分敛散性判断、行列式计算等问题的应用上做了详细系统的介绍,并且本文讨论了一种新的证明泰勒公式的方法,进一步将泰勒公式推广到更一般的形式。
关键词:泰勒公式;佩亚诺型余项;拉格朗日型余项;应用ABSTRACTTaylor's formula is an important part of mathematical analysis, the theory has become an indispensable tool of the research function limits and estimation error, which embodies the essence of calculus "approximation method", It have an unique advantage in the approximate calculation, it also can make complex issues into simplistic, non-linear problem into a linear problem, and can meet the very high accuracy requirements. It is the promotion of the mean value theorem in calculus, is also an important tool for the application of higher order derivatives of the functional state. Taylor formula in the calculus of the various fields have important applications, and the Taylor formula for complex simple "function in the mathematical field of research has played a significant role. This article in addition introdution Peano remainder and Lagrange remainder term of Taylor formula commonly used in approximate calculation, the limit inequality proof to determine the function extremum for solving prove, in particular, A detailed introduction of the Taylor formula in the application of the function bump and the inflection point judgment, the judgment of convergence and divergence of series and generalized integral, determinant calculation, and the article discusses a new method to prove that the Taylor formula, further Taylor formula to the more general form.Keywords: Taylor formula; Peano more than; Lagrange remainder; application东华理工大学毕业设计(论文)目录目录1. 绪论 (1)1.1综述 (1)1.2泰勒公式的研究背景 (2)1.3泰勒公式的研究意义 (2)1.4泰勒公式的研究目的 (2)1.5本论文所做的工作 (3)1.6本论文的基本思路与采用的方法 (3)2. 泰勒公式 (4)2.1泰勒公式的建立 (4)2.2泰勒公式的定义 (6)2.2.1 带有佩亚诺(Peano)型余项的泰勒公式 (6)2.2.2 带有拉格朗日(Lagrange)型余项的泰勒公式 (7)3. 泰勒公式的新证明及其推广 (8)3.1罗尔中值定理的两种推广形式 (8)3.2泰勒公式的新证明 (10)3.3泰勒公式的推广 (11)4. 泰勒公式在解题中的应用 (15)4.1利用泰勒公式求近似值 (15)4.2利用泰勒公式求极限 (16)4.3泰勒公式在判断级数和广义积分的敛散性中的应用 (17)4.3.1 判断级数的敛散性 (17)4.3.2 判断广义积分的敛散性 (18)4.4泰勒公式在判别函数的极值中的应用 (19)4.5泰勒公式在不等式证明中的应用 (20)4.6泰勒公式在判断函数凹凸性及拐点中的应用 (22)4.6.1 判断函数凹凸性 (23)4.6.2 判别函数拐点 (24)4.7泰勒公式在行列式计算方面的应用 (25)结论及展望 (27)致谢 (28)参考文献 (29)东华理工大学毕业设计(论文) 绪论11. 绪 论1.1 综述十七世纪中叶,随着近代微积分的蓬勃发展,极限作为数学中的一个概念也就被明确地提了出来。
浅谈泰勒公式高中数学中的应用
![浅谈泰勒公式高中数学中的应用](https://img.taocdn.com/s3/m/26147f51b84ae45c3b358c47.png)
们很容易看出,分母是 x 的四次方,那么我们就得将分子中展
开为 x 的四次方形式,抵消掉分母中为零的部分一样可以解
决。因此通过麦克劳林展式可知,
cos2x
=
1
-
(2x)2 2
+
(2x)4 24
+ ο[(2x)4 ];
e -2x2
=
1
+
(-
2x2 )+
(- 2x2 )2 2!
+
ο[(-
2x2 )2 ]
θx)-
5 2
x3
> 0 ,0
<
θ
<1
有因为 x
> 0 所以
1 2
(1
+
θx)-
5 2
x3
> 0 ,所以 1 + x -
x2 2
< 槡(1 + 2x) 四、泰勒公式在求解微积分方程中的应用
例
3
:解方程∫
1 0
(e2x
2
- 1)dx
解:e2x 2 = 1 + 2x2 + 4x4 + … + 2n x2n + …
=
3
2+…
2n
+…
7 × 3! (2n + 1)n!
五、判断复杂级数的敛散性
在学习过程中,我们知道调和级数是发散的,但我们不能
全部否定所有带调和级数的级数都是发散的。例如下题。
∑ 例 4:判断级数 ∞ (1 i=1 n
-
ln
n
+ n
1)的敛散性。
解:因为
ln
n
+ n
1
= ln(1 +
论坛
浅谈泰勒公式高中数学中的应用
文 / 尚佳琪
摘要:泰勒公式是现代分析数学的重要内容,在研究和分析各种数学问题中有重要作用,其理论是研究函数极限和估 计误差等方面的重要工具。其应用十分广泛,灵活正确的使用泰勒公式,可以使得解题更加方便,达到事半功倍的效 果。本文将主要探讨泰勒公式在求极限、近似计算、不等式证明以及微积分等知识领域的应用。 关键词:泰勒公式 极限 比较大小 微积分方程 判断级数的敛散性
泰勒公式及应用
![泰勒公式及应用](https://img.taocdn.com/s3/m/80405971cc7931b765ce159c.png)
泰勒公式及其应用摘要本文论述了泰勒公式的一些基本内容,并着重介绍了它在数学分析中的一些应用。
泰勒公式是数学分析中的重要知识,在某些题目中运用泰勒公式会达到快速解题的目的。
本文主要从六个方面对泰勒公式进行综合论述利用泰勒公式求极限、证明中值公式、证明不等式、估计、在方程中的应用、在近似计算的的应用。
关键词:泰勒公式佩亚诺余项拉格朗日余项泰勒级数一、泰勒公式及其余项1:泰勒公式对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构造一个n 次多项式,n n x x n x f x x x f x x x f x f x Tn )0(!)0()0(!2)0('')0(!1)0(')0()0()(2-++-+-+= 称为函数f 在点0x 处的泰勒(Taylor)多项式,)(x Tn 的各项系数),,2,1(!)0()(n k k x f k =称为泰勒系数。
2:泰勒余项定理1:若函数f 在点0x 存在直到n 阶导数,则有))0(()()(nx x n T x f -+= ;即))0(()0(!)0()0(!2)0('')0)(0(')0()()(2n n n x x x x n x f x x x f x x x f x f x f -+-++-+-+= 其中)()()(x Tn x f x Rn -=称为泰勒公式的余项。
形如))0((nx x - 的余项称为佩亚诺型余项。
特殊的当0=x 时;)(!)0(!2)0('')0(')0()()(2n nn x x n f x f x f f x f +++++= 称为(带有佩亚诺型余项的)麦克劳林(Maclaurin)公式。
定理2:(泰勒定理) 若函数f 在],[b a 上存在直至n 阶的连续导函数,在),(b a 内存在)1(+n 阶导函数,则对任意给定的],[0,b a x x ∈,至少存在一点∈ξ(a,b)使得+-++-+-+=n n x x n x f x x x f x x x f x f x f )0(!)0()0(!2)0('')0)(0(')0()()(21)1()0()!1()(++-+n n x x n f ξ其中=-=)()()(x Tn x f x Rn 1)1()0()!1()(++-+n n x x n f ξ, )10(),0(0<<-+=θθξx x x ,称为拉格朗日型余项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。