2018中考数学总复习知识点总结(最新版)

合集下载

(完整word版)2018年初中数学知识点中考总复习总结归纳,推荐文档.docx

(完整word版)2018年初中数学知识点中考总复习总结归纳,推荐文档.docx

2015 年中考数学复划第一章实数考点一、数的概念及分( 3 分)1、数的分正有理数有理数零有限小数和无限循小数数有理数正无理数无理数无限不循小数无理数2、无理数在理解无理数,要抓住“无限不循” 一之,起来有四:( 1)开方开不尽的数,如7, 3 2 等;π( 2)有特定意的数,如周率π,或化后含有π的数,如+8 等;3( 3)有特定构的数,如0.1010010001 ⋯等;( 4)某些三角函数,如sin60o等考点二、数的倒数、相反数和( 3 分)1、相反数数与它的相反数一数(只有符号不同的两个数叫做互相反数,零的相反数是零),从数上看,互相反数的两个数所的点关于原点称,如果 a 与 b 互相反数,有a+b=0, a=—b,反之亦成立。

2、一个数的就是表示个数的点与原点的距离,|a|≥0。

零的它本身,也可看成它的相反数,若|a|=a, a≥0;若 |a|=-a, a≤0。

正数大于零,数小于零,正数大于一切数,两个数,大的反而小。

3、倒数如果 a 与 b 互倒数,有ab=1,反之亦成立。

倒数等于本身的数是 1 和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根( 3— 10 分)1、平方根如果一个数的平方等于a,那么个数就叫做 a 的平方根(或二次方跟)。

一个数有两个平方根,他互相反数;零的平方根是零;数没有平方根。

正数 a 的平方根做“ a ”。

2、算平方根正数 a 的正的平方根叫做 a 的算平方根,作“ a ”。

正数和零的算平方根都只有一个,零的算平方根是零。

a ( a)a0a 2a;注意 a 的双重非性:- a(a <0)a03、立方根如果一个数的立方等于a,那么个数就叫做 a 的立方根(或 a 的三次方根)。

一个正数有一个正的立方根;一个数有一个的立方根;零的立方根是零。

2015 年中考数学复习计划注意:3a 3 a,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数( 3— 6 分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2018年中考数学知识点总结-位置与坐标一

2018年中考数学知识点总结-位置与坐标一

2018年中考数学知识点总结:位置与坐标一
1、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有”,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标
点的坐标:设点P是坐标平面内的任一点,由点P向轴作垂线,垂足对应着轴上的一个实数;由点P向轴作垂线,垂足对应着轴上一个实数,则点P的坐标就是(),其中叫点P 的横坐标,叫做点P的纵坐标.
说明:点的坐标的定义实际上给出了求点的坐标的一种非常重要的方法,要注意横坐标与纵坐标的顺序不能颠倒.。

2018中考数学知识点【五篇】

2018中考数学知识点【五篇】

2018中考数学知识点【五篇】导读:本文2018中考数学知识点【五篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇:一次函数】一次函数的定义一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

一次函数的性质一般地,形如y=kx+b(k,b是常数,且k≠0),那么y叫做x的一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数注:一次函数一般形式y=kx+b(k不为0)a).k不为0b).x的指数是1c).b取任意实数一次函数y=kx+b的图像是经过(0,b)和(-b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看做直线y=kx平移|b|个单位长度得到。

(当b>0时,向上平移;b【第二篇:有关圆的字母表示方法】有关圆的字母表示方法圆--⊙半径—r弧--⌒直径—d扇形弧长/圆锥母线—l周长—C面积—S三、有关圆的基本性质与定理(27个)1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

2018中考数学:必考知识点:代数式

2018中考数学:必考知识点:代数式

2018中考数学:必考知识点:代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1。

代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2。

整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3。

单项式与多项式没有加减运算的整式叫做单项式。

(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如,=x,=│x│等。

4。

系数与指数区别与联系:①从位置上看;②从表示的意义上看5。

同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6。

根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

7。

算术平方根⑴正数a的正的平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数;中,a为非负数。

8。

同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9。

指数⑴(—幂,乘方运算)①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)⑵零指数:=1(a≠0)负整指数:=1/(a≠0,p是正整数)二、运算定律、性质、法则1。

分式的加、减、乘、除、乘方、开方法则2。

2018中考数学知识点口诀汇总

2018中考数学知识点口诀汇总

2018中考数学知识点口诀汇总合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。

(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。

一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。

2018中考数学总复习知识点总结(最新版)

2018中考数学总复习知识点总结(最新版)

中考数学复习资料第一章 实数考点一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

2018中考数学知识点大全(2021年整理精品文档)

2018中考数学知识点大全(2021年整理精品文档)

(完整版)2018中考数学知识点大全编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018中考数学知识点大全)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018中考数学知识点大全的全部内容。

2018年中考数学知识点大全第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0。

1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a |≥0.零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=—a,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1,零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

2018初中数学知识点中考总复习总结归纳[人版]

2018初中数学知识点中考总复习总结归纳[人版]

2018年初中数学知识点中考总复习总结归纳第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等第二章 整式的加减考点一、整式的有关概念 (3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

2018年中考数学知识点总结(精简版)

2018年中考数学知识点总结(精简版)

第一章实数考点一、实数的概念及分类(3 分)1 、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1 )开方开不尽的数,如等;(2)有特定意义的数,如圆周率π ,或化简后含有π 的数,如+8 等;(3)有特定结构的数,如0.1010010001 ⋯等;4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值(3 分)1 、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与b 互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥ 0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥ 0;若|a|=-a,则a≤ 0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1 ,反之亦成立。

倒数等于本身的数是 1 和-1 。

零没有倒数。

考点三、平方根、算数平方根和立方根(3—10 分)1 、平方根如果一个数的平方等于a,那么这个数就叫做 a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“”。

2、算术平方根正数a 的正的平方根叫做 a 的算术平方根,记作“”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

(0);注意的双重非负性:- (<0)03、立方根如果一个数的立方等于a,那么这个数就叫做 a 的立方根(或 a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数(3—6 分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2018中考数学知识点总结(精简版).docx

2018中考数学知识点总结(精简版).docx

中考数学复习资料第一章实数考点一、数的概念及分1、数的分( 3 分)数有理数正有理数零有理数正无理数有限小数和无限循小数无理数无限不循小数无理数2、无理数在理解无理数,要抓住“无限不循” 一之,起来有四:( 1)开方开不尽的数,如7,3 2 等;( 2)有特定意的数,如周率π,或化后含有π的数,如π+8 等;3(3)有特定构的数,如 0.1010010001 ⋯等;(4)某些三角函数,如 sin60o等考点二、数的倒数、相反数和1、相反数( 3 分)数与它的相反数一数(只有符号不同的两个数叫做互相反数,零的相反数是零),从数上看,互相反数的两个数所的点关于原点称,如果 a 与 b 互相反数,有a+b=0, a=—b,反之亦成立。

2、一个数的就是表示个数的点与原点的距离,|a|≥0。

零的它本身,也可看成它的相反数,若|a|=a, a≥0;若 |a|=-a, a≤0。

正数大于零,数小于零,正数大于一切数,两个数,大的反而小。

3、倒数如果 a 与 b 互倒数,有ab=1,反之亦成立。

倒数等于本身的数是考点三、平方根、算数平方根和立方根( 3— 10 分)1 和-1。

零没有倒数。

1、平方根如果一个数的平方等于a,那么个数就叫做 a 的平方根(或二次方跟)一个数有两个平方根,他互相反数;零的平方根是零;数没有平方根。

正数 a 的平方根做“ a ”。

2、算平方根正数 a 的正的平方根叫做 a 的算平方根,作“ a ”。

正数和零的算平方根都只有一个,零的算平方根是零。

a ( a0)a0a 2a;注意 a 的双重非性:- a(a <0)a03、立方根如果一个数的立方等于a,那么个数就叫做 a 的立方根(或 a 的三次方根)。

一个正数有一个正的立方根;一个数有一个的立方根;零的立方根是零。

注意:3a3 a ,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数( 3— 6 分)1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2018年中考数学总复习知识点总结(最新版)

2018年中考数学总复习知识点总结(最新版)

2018年中考数学总复习知识点一、知识点概述数学是中考的一门重要科目之一,其中常见的知识点有初中数学和高中数学的内容。

本文对2018年中考数学的知识点做了,可以帮助同学们更好地复习数学知识。

二、初中数学1.1 代数•代数式的概念和基本操作•四则运算及其应用•一次方程、一元一次方程组:含参数的一次方程,两个未知数的一次方程等•二次根式及其化简•平方差公式、完全平方公式1.2 几何•角•同位角、对顶角、内错角、同旁内角、同旁外角、异旁内角的性质•一次坐标系•垂线的性质•中垂线的性质•直角三角形的性质和简单的勾股定理•等腰三角形和等边三角形的性质•直角坐标系及其应用,例如计算两点间的距离和中点等1.3 数据与概率•极差、中位数、平均数、众数等统计概念•有序数列和无序数列的意义及其性质•算术平均数、几何平均数、平均数不等式及其应用•列联表的制作和分析•基本的概率概念和简单的概率计算方法三、高中数学2.1 代数•指数与对数:指数的定义及其运算法则,对数的定义及其性质•二次函数:基本概念、图像、定点、基本性质及其应用•多项式函数:定义、性质、分解因式、求根、余式定理等•不等式与绝对值:不等式的基本概念和不等式组的解法,绝对值的基本性质•反比例函数:反比例的基本概念、图像、性质及其应用2.2 几何•向量的基本运算及其应用•圆的基本性质及其相关定理•三角形的基本性质及其相关定理•平面直角坐标系与初等函数的关系•平移、翻折、旋转、对称等几何变换的概念及其性质•空间几何的基本概念及其运用2.3 数与函数•数列的基本概念、形成和性质•极限的基本概念、极限计算方法和极限存在定理•函数的极限、连续性及其应用•导数和微分的概念及其基本性质•常微分方程的基本概念及初步解法四、本篇文章对于2018年的中考数学知识点做了。

初中数学内容包括代数、几何、数据与概率考点,高中数学内容包括代数、几何、数与函数考点。

大家可以根据本文中的内容进行针对性的复习,希望对同学们有所帮助。

2018中考数学重要知识点整理

2018中考数学重要知识点整理

2018中考数学重要知识点整理2018中考数学重要知识点整理一、数与代数Ⅰ、数与式1.有理数的加法、乘法运算同号相加一边倒,异号相加“大”减“小”;符号跟着大的跑,绝对值相等“零”正好。

同号得正异号负,一项为零积是零。

【注】“大”减“小”是指绝对值的大小。

2.合并同类项合并同类项,法则不能忘;只求系数代数和,字母、指数不变样。

3.去、添括号法则去括号、添括号,关键看符号;括号前面是正号,去、添括号不变号;括号前面是负号,去、添括号都变号。

4.单项式运算加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。

5.分式混合运算法则分式四则运算,顺序乘除加减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先;分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

6.平方差公式两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。

7.完全平方公式首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。

8.因式分解一提二套三分组,十字相乘也上数;四种方法都不行,拆项添项去重组;重组无望试求根,换元或者算余数;多种方法灵活选,连乘结果是基础;同式相乘若出现,乘方表示要记住。

【注】一提(提公因式)二套(套公式)9.二次三项式的因式分解先想完全平方式,十字相乘是其次;两种方法行不通,求根分解去尝试。

10.比和比例两数相除也叫比,两比相等叫比例;基本性质第一条,外项积等内项积;前后项和比后项,组成比例叫合比;前后项差比后项,组成比例是分比;两项和比两项差,比值相等合分比;前项和比后项和,比值不变叫等比;商定变量成正比,积定变量成反比;判断四数成比例,两端积等中间积。

11.根式和无理式表示方根代数式,都可称其为根式;根式异于无理式,被开方式无限制;无理式都是根式,区分它们有标志;被开方式有字母,才能称为无理式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学复习资料第一章 实数考点一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法把一个数写做n a 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

考点五、实数大小的比较1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。

(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。

考点六、实数的运算 (做题的基础,分值相当大)1、加法交换律 a b b a +=+2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 ba ab =4、乘法结合律 )()(bc a c ab =5、乘法对加法的分配律 ac ab c b a +=+)(6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

第二章 代数式考点一、整式的有关概念1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

整式的乘法:),(都是正整数n m a a a n m n m +=•),(都是正整数)(n m a a mn nm = )()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+ 2222)(b ab a b a ++=+ 2222)(b ab a b a +-=- 整式的除法:)0,,(≠=÷-a n m a a a n m n m 都是正整数 注意:(1)单项式乘单项式的结果仍然是单项式。

(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。

(5)公式中的字母可以表示数,也可以表示单项式或多项式。

(6)),0(1);0(10为正整数p a aa a a p p ≠=≠=- (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

考点三、因式分解1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2、因式分解的常用方法(1)提公因式法:)(c b a ac ab +=+ (2)运用公式法:))((22b a b a b a -+=-222)(2b a b ab a +=++; 222)(2b a b ab a -=+-(3)分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++ (4)十字相乘法:))(()(2q a p a pq a q p a ++=+++ 3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。

考点四、分式1、分式的概念一般地,用A 、B 表示两个整式,A÷B 就可以表示成BA的形式,如果B 中含有字母,式子BA就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质 (1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bcadc d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n b a b a n n n =;cb ac b c a ±=± bd bcad d c b a ±=±考点五、二次根式1、二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。

2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

4、二次根式的性质 (1))0()(2≥=a a a )0(≥a a(2)==a a 2 )0(<-a a(3))0,0(≥≥•=b a b a ab (4))0,0(≥≥=b a bab a 5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。

第三章 方程(组)考点一、一元一次方程的概念1、方程含有未知数的等式叫做方程。

2、方程的解能使方程两边相等的未知数的值叫做方程的解。

3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。

考点二、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

考点三、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

相关文档
最新文档