山西省阳泉市平定县东关初级中学校2019-2020年九年级下学期3月月考数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省阳泉市平定县东关初级中学校2019-2020年九年级下学期3月月考数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 计算5-(-6)的结果是( )
A.-1 B.11 C.1 D.-11
2. “山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为()
A.56×108B.5.6×108C.5.6×109D.0.56×1010
3. 下列计算正确的是( )
A.2a2+2a3=2a5
B.2a-1=
D.-a3÷a=-a2
C.(-)0=0
4. 如图,AB∥CD,AD=CD,∠1=55°,则∠2的度数是( )
A.70°B.65°C.60°D.55°
5. 如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()
A.B.C.D.
6. 在函数y=中,自变量x的取值范围是()
A.x≥﹣2且x≠0B.x≤2且x≠0C.x≠0D.x≤﹣2
7. 用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()
A.y=(x﹣4)2+7 B.y=(x+4)2+7 C.y=(x﹣4)2﹣
25
D.y=(x+4)2﹣25
8. 北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A.B.C.D.
9. 如图,直线y=-x与双曲线y=的图象交于A、B两点,过点A作AC⊥y 轴于点C,连接BC,若S△ACB=4,则k的值为( )
A.-4 B.4
C.-8 D.8
10. 如图,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )
A.B.C.
D.
二、填空题
11. 分解因式:8a3﹣2a=_____.
12. 某水果店老板以每斤x元的单价购进草莓100斤,加价30%卖出70斤以后,每斤比进价降低a元,将剩下30斤全部卖出,则可获得利润为________元.
13. 准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为
_____米.
14. 如图是一种雪球夹的简化结构图,其通过一个固定夹体和一个活动夹体的配合巧妙地完成夹雪、投雪的操作,不需人手直接接触雪,使用方便,深受小朋友的喜爱.当雪球夹闭合时,测得∠AOB=30°,OA=OB=14 cm,则此款雪球夹制作的雪球的直径AB的长度为________ cm.(结果保留一位小数.参考数
据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)
15. 如图,已知点为线段的中点,且,连接,
,是的平分线,与相交于点,于点,交
于点,则的长为__________.
三、解答题
16. (1)计算:(-2015)0+|1-|-2cos45°++(-)-2.
(2)先化简,再求值:(-)÷-1,其中x=-3.
17. 如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与y轴交于点C,与反比例函数y=的图象交于A,B两点,过点B作BE⊥x轴于点E,已知A点坐标是(2,4),BE=2.
(1)求一次函数与反比例函数的表达式;
(2)连接OA、OB,求△AOB的面积.
18. 在“五四青年节”来临之际,某校举办了以“我的青春我做主”为主题的演讲比赛.并从参加比赛的学生中随机抽取部分学生的演讲成绩进行统计(等级:A:优秀,B:良好,C:一般,D:较差),并制作了如下统计图表(部分信
等级人数
A m
B20
C n
D10
请根据统计图表中的信息解答下列问题:
(1)这次共抽取了________名参加演讲比赛的学生,统计图中a=________,b =________;
(2)若该校学生共有2000人,如果都参加了演讲比赛,请你估计成绩达到优秀的有多少人?
(3)若演讲比赛成绩为A等级的学生中恰好有2名女生,其余的学生为男生,从A等级的学生中抽取两名同学参加全市演讲比赛,求抽中一名男生和一名女生的概率.
19. 运城有甲、乙两家葡萄采摘园的葡萄销售价格相同,中秋期间,两家采摘园推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的葡萄六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的葡萄按售价付款。
优惠期间,设游客的葡萄采摘量为(千克),在甲园所需总费用为
甲
(元),在乙园所需总费用为
乙(元),
甲
,
乙
与之间的函数关系如图所
示.
(1)求
甲,
乙
与的函数表达式;
(2)在中秋期间,李娜一家三口准备去葡萄园采摘葡萄,采摘的葡萄合在一起支付费用,则李娜一家应选择哪家葡萄园更划算?
20. 某校门口竖着“前方学校,减速慢行”的交通指示牌CD,数学“综合与实践”小组的同学将“测量交通指示牌CD的高度”作为一项课题活动,他们定好项目内容
课题测量交通指示牌CD的高度
测量示意图
测量步骤(1)从交通指示牌下的点M处出发向前走10 米到达A处;
(2)在点A处用量角仪测得∠DAM=27°;
(3)从点A沿直线MA向前走10米到达B处;(4)在点B处用量角仪测得∠CBA=18°.
考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
21. 请阅读下列材料,并完成相应的任务.
人类会作圆并且真正了解圆的性质是在2000多年前,由我国的墨子给出圆的概念:“一中同长也.”.意思说,圆有一个圆心,圆心到圆周的长都相等.这个定义比希腊数学家欧几里得给圆下的定义要早100年.与圆有关的定理有很多,弦切角定理就是其中之一.
我们把顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.
弦切角定理:弦切角的度数等于它所夹弧所对的圆周角度数.
下面是弦切角定理的部分证明过程:
证明:如图①,AB与⊙O相切于点A.当圆心O在弦AC上时,容易得到∠CAB =90°,所以弦切角∠BAC的度数等于它所夹半圆所对的圆周角度数.
如图②,AB与⊙O相切于点A,当圆心O在∠BAC的内部时,过点A作直径AD 交⊙O于点D,在上任取一点E,连接EC,ED,EA,则∠CED=∠CA D.
…
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)如图③,AB与⊙O相切于点A.当圆心O在∠BAC的外部时,请写出弦切角定理的证明过程.
22. 综合与实践:折纸中的数学
问题背景
在数学活动课上,老师首先将平行四边形纸片ABCD按如图①所示方式折叠,使点C与点A重合,点D落到D′处,折痕为EF.这时同学们很快证得:△AEF 是等腰三角形.接下来各学习小组也动手操作起来,请你解决他们提出的问题.
操作发现
(1) “争先”小组将矩形纸片ABCD按上述方式折叠,如图②,发现重叠部分△AEF恰好是等边三角形,求矩形ABCD的长、宽之比是多少?
实践探究
(2)“励志”小组将矩形纸片ABCD沿EF折叠,如图③,使B点落在AD边上的B′处;沿B′G折叠,使D点落在D′处,且B′D′过F点.试探究四边形EFGB′是什么特殊四边形?
(3)再探究:在图③中连接BB′,试判断并证明△BB′G的形
状.
23. 如图,二次函数y=x2+bx+c的图象过点B(0,1)和C(4,3)两点,与x轴交于点D、点E,过点B和点C的直线与x轴交于点A.
(1)求二次函数的解析式;
(2)在x轴上有一动点P,随着点P的移动,存在点P使△PBC是直角三角形,请你求出点P的坐标;
(3)若动点P从A点出发,在x轴上沿x轴正方向以每秒2个单位的速度运动,同时动点Q也从A点出发,以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,直接写出a的值;若不存在,说明理由.。