导航论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惯性导航系统发展综述报告
学号:姓名:
摘要:本文介绍了惯性导航系统的主要组成、基本原理、分类以及优缺点。列举了惯性导航系统在当前的主要应用领域及发展趋势。
关键词:惯性导航系统、陀螺仪、加速度计、GPS、组合导航
一.引言
美国《防务新闻》网站报道称,美军正在研制新型导航定位设备,以替代现在广泛使用的GPS卫星定位导航系统。GPS之所以被美军诟病,主要是由于该系统过于依赖脆弱的天基卫星系统。卫星在战时极易被干扰、破坏,或受到网络攻击,自身安全性难以得到有效保证。为有效解决GPS安全性问题和美军对精确定位、导航、授时服务的需求之间难以调和的矛盾,美军开始积极寻求GPS 的替代品。据称,基于现代原子物理学最新成就的微型惯性导航技术是未来代替GPS的一个重要的技术解决方案。
惯性导航系统是人类最早研发明的导航系统之一。早在1942年德国在V-2火箭上就率先应用了惯性导航技术。从2009年,美国国防部先进研究项目局就深入进行新一代微型惯性导航技术的研发与测试工作。据悉,这种新一代导航系统主要通过集成在微型芯片上的三个原子陀螺仪、加速器和原子钟精确测量载体平台相对惯性空间的角速率和加速度信息,利用牛顿运动定律自动计算出载体平台的瞬时速度、位置信息并为载体提供精确的授时服务。
美军也对该系统的未来发展充满信心。安德瑞·席克尔认为,就像30年前人们没有预想到GPS会发展到目前如此程度一样,在未来20年新一代微型惯性导航系统的发展程度也是无可限量的。
从此报道中可以看出研究惯性导航技术的重要作用。
二.惯性导航系统的概念
惯性导航(inertial navigation)是依据牛顿惯性原理,利用惯性元件(加速度计)来测量运载体本身的加速度,经过积分和运算得到速度和位置,从而达到
对运载体导航定位的目的。组成惯性导航系统的设备都安装在运载体内,工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰,是一种自主式导航系统。惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。惯性导航涉及到控制技术、计算机技术、测试技术、精密机械工艺等多门应用技术学科,是现代高精尖技术的产物,但其基本定位原理并不复杂。
三.惯性导航技术的发展史
1942年德国在V2火箭上首先应用了惯性导航原理,即采用两台陀螺仪和一台横向加速度表,再加上一台模拟计算机来调整火箭飞行的方位。根据测量数据,模拟计算发出信号调整4个位于垂直尾翼上的外部方向舵来控制火箭的飞行。这是闭环导航系统的一个创新。
二战结束之后,以冯•布劳恩为首的500多名德国火箭科学家,加上他们的设计图纸、实验设备都去了美国,1945年他们在德克萨斯的布利斯空军基地开始了在美国的火箭研制工作,1950年到达了阿拉巴马州的亨茨维尔市,继续从事火箭研究。
在50年代早期,美国空军的西部研发中心邀请麻省理工学院(MIT)的仪器仪表实验室(即后来的德雷伯实验室)设计一种独立的导航系统,该导航系统将安装在康维尔公司的新一代Atlas洲际弹道导弹上,在MIT该项目的负责人是吉姆•弗莱彻(Jim Fletcher),他后来成为NASA的负责人。Atlas导航系统当中首先包含了机载自主导航系统与地基跟踪指挥系统。后来这两种导航系统还导致了长期的争论,最后在洲际导弹上主要采用自主导航系统,而在空间探索过程中,则是采用两种导航系统的混合物。
1952年夏天,Richard Battin和J. Halcombe Laning, Jr两位博士开始在IBM 650计算机上进行利用MAC语言进行导航计算,直到1958年他们才完成了第一个惯性导航计算模型,而MAC语言作为第一种可以人工阅读的计算机语言也在航天方面得到广泛应用,现在的航天飞机上主系统的开发语言HAL/S就来自MAC语言。
1954年,这两位科学家完成了针对Atlas惯性导航系统的最初的分析工作,而这个项目的技术负责人Walter Schweidetzky曾经是冯•布劳恩的手下,参与
过V2火箭的研制。1954年惯性导航系统在飞机上试飞成功。基本原理是将现在的运行轨迹与预先设置的运行轨迹进行比较,然后调整火箭的姿态保证实际运行轨迹与预先设置的运行轨迹重合,不过由于当时计算机的处理能力和惯性导航系统的测量精度问题,火箭的偏差非常大。后来在三角洲(Delta)火箭当中的Q系统才真正解决了这个问题。Q系统最大的特点是可以利用自导驾驶仪当中的速度与方向信号直接进行计算,获得相关导航参数,该系统是在1956年6月21日首次公诸于众,该系统到现在仍然在导弹当中广泛使用。
1958年舡鱼号潜艇依靠惯性导航在北极冰下航行21天,证明了惯性导航不但可以在火箭、飞机上使用,也可以在船舶、潜艇、车辆上使用。
1961年2月,NASA委托MIT为阿波罗登月计划设计导航系统,而对于航天飞机来说,从航天飞机起飞到固体火箭助推器(SRB)分离这个阶段采用开环导航,而固体火箭助推器分析之后,则采用一种叫做PEG4的导航系统。PEG4实际上是将Q系统与Delta系统当中的PEG导航系统结合在一起,并加上了预测校正功能。虽然在过去30年里航天飞机的导航系统多次升级,并加上了GPS导航系统,但是航天飞机与空间探索导航的核心系统还是惯性导航。
四.惯性导航技术的原理
惯性导航系统属于推算导航方式,即从一已知点的位置根据连续测得的运动体航向角和速度推算出其下一点的位置,因而可连续测出运动体的当前位置。惯性导航系统中的陀螺仪用来形成一个导航坐标系,使加速度计的测量轴稳定在该坐标系中,并给出航向和姿态角;加速度计用来测量运动体的加速度,经过对时间的一次积分得到速度,速度再经过对时间的一次积分即可得到距离。
五、惯性导航系统的组成
1.惯性测量仪表:用来测量载体运动的线加速度和角速度信息。常用的惯性测量仪表有陀螺仪和加速度仪。
a.陀螺仪
陀螺仪主要用于获取运动体角运动信息。陀螺仪具有两大特性:一是定轴性,在不受外力矩作用时,陀螺转子的方向始终指向初始恒定方向。二是进动性,在