尼龙6性能及其分子量对力学强度影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郑州大学
姓名:田富成学号: 20110680226
学院:力学与工程科学学院
专业:工程力学
论文题目:尼龙6性能及其分子量对力学强度影响指导教师:李倩职称:教授
2013年11月08日
摘要
尼龙6(PA6)是一种综合性能优良的工程塑料。本文主要叙述了尼龙6纳米复合材料的性能和制备方法,以及插层剂对复合材料的综合性能影响。对不同分子量尼龙6纳米复合材料的力学性能、结晶性能、流变性能进行了综述。介绍了蒙脱石/尼龙6纳米复合材料制备、性能。
关键词:纳米复合材料尼龙6 分子量蒙脱石
介绍
尼龙6又叫PA6,聚酰胺6,其结构式为
1力学性能
聚合物/粘土纳米复合材料的力学性能优于纤维增强聚合物体系,因为层状粘土可以在二维方向上起到增强作用,无需特殊的层压处理。它比传统的聚合填充体系质量轻,只需少量的粘土即可具有很高的强度、韧性及阻隔性能。而常规纤维、矿物填充的复合材料需要高得多的填充量,且各项指标还不能兼顾。在粘土含量很少的情况下(小于5%),日本丰田中央研究所合成的尼龙/粘土纳米复合材料(NCH)、尼龙与粘土共混物(NCC)的强度和模量均比PA6显著提高,并且材料的冲击强度并没有象传统填充聚合物那样下降川。当加人二胺后,材料的
断裂伸长和冲击强度增大,并随着二胺含量的增加而增加,而材料的强度和模量稍有下降(和NCH相比)。这主要是因为加人二胺后,部分粘土片层由于二钱离子的作用而成柱状排列,因此降低了粘土片层和PA6的相互作用面积,所以材料的机械性能有所下降。
2结晶性能
PA6是一种多晶型聚合物,粘土对PA6的晶型影响很大。Dsc结果表明PA6cN中纳米层状粘土起成核剂的作用。粘土的加人影响成核的机理和PA6晶体的生长。且PA6CN的结晶度随冷却速率的增大而增大。粘土在PA6中能促进下晶型的生成,而且随着粘土含量的增加,下晶型的结晶衍射峰逐渐增强。
3流变性能
PA6CN的熔体粘度取决于母体树脂PA6的相对分子质量和粘土的加入量。一般剪切速率小时(剪切速率小于1),不仅PA6的相对分子质量影响大,而且粘土的加人量影响显著,加人量增加,熔体粘度显著增大;而在高剪切速率范围,加人量在6%以下时,粘土对熔体粘度几乎没有影响。即纳米复合材料具有良好的成型加工性。王建华等[1]采用毛细管流变仪测定了原位聚合的以6CN及PA6的流变性能。结果表明:在实验条件下,PA6CN属于假塑性流体,其非牛顿指数小于PA6。在240℃时,当剪切速率大于肠O。一’时,PA6cN的表观粘度小于PA6,且随
土含量的增加而逐渐降低。当剪切速率小于932s一’时,以6CN的粘流活化能大于PA6,说明PA6CN对温度更敏感。
尼龙6/蒙脱土纳米复合材料是最早出现的聚合物基纳米复合材料之一,在工业上已有应用。其应用主要有两个方面,一是基于其优异的阻隔性能, 用于制造多层聚酯瓶和食品包装膜等包装材料中的阻隔层。这方面三菱气体化学品公司(生产Imperm N系列)、Honeywell专业聚合物公司(生产Aegis系列)、Alcoa CSI Crawfordsville公司等处于领先地位。二是基于其优异的力学性能,用于制造发动机部件、车身结构部件和驱动控制部件等汽车零部件。这方面日本的丰田汽车公司、宇部兴产公司(生产nc-PA6)和尤尼奇卡公司(生产M1030D、M1030B、M1030DG20、M1030DT20系列),美国的Nanomer公司(生产Nanomer系列)和南方粘土产品公司(生产Cloisite系列)等开发较早尼龙6/蒙脱土纳米复合材料一直是人们的研究热点之一,其制备、结构和性能均得到了大量的研究。
尼龙6纳米复合材料的性能
尼龙6 (PA6)是一种应用广泛的工程塑料,具有优良的综合性能,但存在着耐强酸强碱性差、干态和低温冲击强度低、吸水率大,从而影响其制品的尺寸稳定性和电性能,以及容易燃烧等缺陷,限制了它的应用范围。因此通常采用填充、增强、共聚、共混、分子复合等方法对PA6进行改性。近年来采用纳米粒子制备PA6纳米复合材料的研究十分活跃, PA6纳米复合材料的应用更加广泛,并获得了良好的发展。【1】
制备方法
制备PA6 /无机纳米粒子复合材料主要采用溶胶-凝胶法和原位聚
合法,而熔融共混法经常用于聚烯烃体系,在PA6体系中应用极少。(1)溶胶-凝胶法 Z.W.E.Van【2】等选用甲酸为共溶剂,通过控制适当的pH值,采用溶胶-凝胶法制备了PA6 /SiO2纳米复合材料。TEM分析表明SiO2以约30 nm的粒径分散在PA6基体中;力学性能测试表明,此种纳米复合材料的冲击强度和弹性模量比纯PA6有所提高。
(2)原位聚合法此法最常用于PA6 /无机纳米粒子复合体系。Ou Yuchun【3】等将纳米SiO2直接分散于己内酰胺熔体中,然后引发原位聚合制备了PA6 /SiO2纳米复合材料。研究表明,纳米SiO2的引入,提高了基体PA6的Tg和结晶速率;力学性能测试表明,未经偶联剂处理的纳米SiO2导致纳米复合材料的力学性能随其含量的增加而降低,而经偶联剂处理的纳米SiO2则呈现出相反的结果,当纳米SiO2质量分数为5%时纳米复合材料的力学性能达到最大值。LiYing[1]等采用不同的偶联剂对纳米SiO2进行表面处理,从界面层的角度探讨了纳米SiO2对复合材料性能的影响。结果表明,经表面处理的纳米SiO2因其柔性界面层的作用能一定程度地提高体系的刚性和韧性,但对基体PA6的结晶行为并没有产生太大的影响。然而绝大多数研究都采用水解开环聚合的PA6作为复合材料基体,而且通常要先对无机纳米材料进行表面处理后再与PA6进行复合,而有关无机纳米材料改性浇铸(MC)尼龙6的研究工作还较少见。因此,在该领域进一步开展相关的研究工作无论在理论研究上还是在实际应用中都具有重要的意义。笔者所在的实验室在此领域作了一些有益的探索。纳米SiO2表面含有丰富的羟基,呈强极性。为实现对纳米SiO2的有效润湿,我们直接选