手机天线设计

合集下载

手机天线研发流程及SAR测试介绍

手机天线研发流程及SAR测试介绍

手机天线研发流程及SAR测试介绍手机天线研发流程及SAR测试介绍手机天线是手机中的一个重要组成部分,它负责接收和发送无线信号。

手机天线的设计对于手机性能的稳定性和信号质量有着重要影响。

本文将介绍手机天线的研发流程以及SAR测试,帮助读者了解手机天线的研究与开发过程。

手机天线的研发流程通常包括以下几个关键步骤:1. 需求分析和规划:在研发手机天线之前,首先需要进行需求分析和规划。

研发团队需要确定手机天线的技术要求和性能指标,例如频段范围、天线增益等。

2. 天线设计:天线设计是手机天线研发的核心步骤。

根据需求分析结果,设计团队会采用不同的设计方法和技术来设计手机天线。

例如,常见的手机天线设计包括片上天线、贴片天线和埋入式天线等。

3. 原型制作和测试:在完成天线设计后,研发团队会制作原型并进行测试。

通过天线参数测试仪器,如网络分析仪和天线测试舱等,对手机天线进行性能测试,如驻波比、辐射效率和频率响应等。

4. 优化和迭代:根据原型测试结果,研发团队会对手机天线进行优化和迭代。

通过调整天线结构、材料和放置位置等参数,以提高天线性能和适配不同的手机尺寸和外观要求。

5. SAR测试:完成手机天线设计后,需要进行SAR(Specific Absorption Rate)测试。

SAR是一种用来衡量人体对无线电频率电磁场的吸收能力的指标,常用于评估手机对人体的辐射影响。

在SAR测试中,使用模型人体来模拟真实使用情况下人体对手机辐射的吸收程度。

SAR测试是手机天线研发的最后一步,其目的是确保手机天线在正常使用时对人体的辐射量在安全范围内。

在SAR测试中,测试人员会按照标准流程将手机放置于模型人体头部位置,并通过测量无线电频率电磁场的吸收量来计算SAR值。

根据SAR测试结果,如果SAR值高于安全标准,需要对手机天线进行再次优化或调整。

这个过程需要多次迭代,直到SAR值符合相关法规和标准。

综上所述,手机天线的研发流程涵盖了需求分析和规划、天线设计、原型制作和测试、优化和迭代以及SAR测试等多个步骤。

手机天线制作方法

手机天线制作方法

手机天线制作方法1. 简介手机天线是手机通信中不可或缺的组成部分,它负责接收和发送无线信号。

在一些特殊场合或者个人需求下,我们可能需要制作自己的手机天线。

本文将介绍一种简单且经济实用的手机天线制作方法。

2. 材料准备为了制作手机天线,我们需要准备以下材料:•灵活的电线:最好选择25-30号的铜线,颜色不限。

•SMA连接器:用于连接天线与手机的无线模块。

•热缩管:可用于增强天线的结构稳定性。

•良好的焊锡以及烙铁:用于焊接电线和连接器。

•剪刀和剥线钳:用于剪断线材和去除绝缘层。

•铅笔或其他圆柱形物体:用于卷曲天线。

3. 制作步骤3.1 准备天线长度首先,根据手机通信频段的要求,计算所需的天线长度。

通常情况下,2G网络使用的频段为824-894MHz,3G网络为1710-2170MHz,4G网络则为2300-2700MHz。

根据不同的网络选择对应的频段,然后使用以下公式计算天线长度:天线长度 (cm) = 75 / (频率 (MHz) * 频率倍数)3.2 剥离电线绝缘层使用剥线钳剥离电线两端的绝缘层,露出约1-2厘米的铜线。

3.3 卷曲天线将铅笔或其他圆柱形物体平放在电线的一端,然后用力卷曲电线,使其绕在圆柱形物体上。

卷曲的部分应该至少占天线总长度的1/4。

3.4 连接SMA连接器将电线的另一端插入SMA连接器的中心引脚中,并通过焊接连接好。

确保焊接牢固且无松动。

3.5 制作天线支架使用热缩管,将天线的卷曲部分和SMA连接器进行包裹。

然后用热风枪对热缩管进行加热,使其收缩并固定住天线。

3.6 测试天线在完成以上制作步骤后,使用测试仪器或者将天线连接到手机的无线模块进行测试。

确保天线能够正常接收和发送无线信号。

4. 注意事项1.在操作过程中,需要小心使用烙铁和热风枪,以防烫伤。

2.天线的长度和卷曲部分的设计会影响信号的接收和发送效果,因此需要根据具体的频段要求进行计算和调整。

3.天线制作过程中的焊接操作需要谨慎,确保焊接的质量和牢固性。

手机RF设计知识连载之——手机内置天线设计

手机RF设计知识连载之——手机内置天线设计

b. 布板RF模块附近避免安置一些零散的非屏蔽元件,屏蔽盒尽量规整一体,同时少开散热孔。最忌讳长条形状孔槽。含金属结构的元件,如喇叭、马达、摄像头基板等金属要尽量接地。对于折叠和滑盖机,应避免设计长度较长的FPC(FPC走线的时钟信号及其倍频容易成为带内杂散干扰),最好两面加接地屏蔽层。
c. 常见问题
一、内置天线对于手机整体设计的通用要求
主板
a. 布线 在关联RF的布线时要注意转弯处运用45度角走线或圆弧处理,做好铺地隔离和走线的特性阻抗仿真。同时RF地要合理设计,RF信号走线的参考地平面要找对(六层板目前的大部份以第三层做完整的地参考面),并保证RF信号走线时信号回流路径最短,并且RF信号线与地之间的相应层没有其它走线影响它(主要是方便PCB布线的微带线阻抗的计算和仿真)。PCB板和地的边缘要打“地墙”。从RF模块引出的天线馈源微带线,为防止走线阻抗难以控制,减少损耗,不要布在PCB的中间层,设计在TOP面为宜,其参考层应该是完整地参考面。并且在与屏蔽盒交叉处屏蔽盒要做开槽避让设计,以防短路和旁路耦合。天线RF馈电焊盘应采用圆角矩形盘,通常尺寸为3×4mm,焊盘含周边≥0.8mm的面积下PCB所有层面不布铜。双馈点时RF与地焊盘的中心距应在4~5mm之间。
三、手机内置天线形式比较
这里简单比较一下两种主流PIFA皮法和MONOPOLE单极天线,以及分别适用的机型结构:
有效面积mm2 距主板mm 天线投影下方 天线馈源 天线体积 电性能 SAR
皮法 600 7 有地 2 大 很好 低
单极 350 4 无地 1 小 好 稍高
折叠机 滑盖机 旋盖机 直板机 超薄折叠机 超薄直板机
************************************************************************

手机天线设计要求

手机天线设计要求

手机天线设计注意事项PIFA天线基本注意:1,天线空间一般要求预留空间:W (宽),L (长),H (高)其中W (15-25mm)、L (35-45mm)、H(6-8mm)。

其中H和天线谐振频率的带宽密切相关。

W、L 决定天线的最低频率。

如果天线面积如下:双频(GSM/DCS):600x6~8mm 三频(GSM/DCS/PCS):700x7~8mm 满足以上要求则GSM 频段一般可能达到-1~0dBi,DCS/PCS 可达0~1dBi。

当然高度越高越好,带宽性能得到保证。

2,2,内置天线尽量远离周围马达、SPEARKER、RECEIVER 等较大金属物体。

有时候有摄像头出现,这时候应该把天线这块挖空,尽量作好摄像头FPC 的屏蔽(镀银襁),否则会影响接收灵敏度。

尽量避免PCB 上微带、引线等与天线弹片平行。

3,3,内置天线附近的结构件(面)不要有喷涂导电漆等导电物质。

4,4,手机天线附近区域不要做电镀工艺以及避免设计金属装饰件等。

有环形的金属圈就要接地. 装饰件,通过导电布接到入件上再接到电路板的边缘,即导地。

5,5,内置天线正上、下方不能有与FPC 重合部分,且相互边缘距离3mm 以上。

6,内置天线与手机电池的间距应在5mm以上。

7,手机PCB的长度对PIFA天线的性能有重要的影响,目前直板机PCB 的长度在75-105mm 之间这个水平。

8,=馈电点的焊盘应该不小于2x3mm;馈电点应该靠边缘。

9,天线区域可适当开些定位孔!10,在目前的有些超薄滑盖机中,由于天线高度不够,可以通过挖空PIFA天线下方的地,然后在其背面再加一个金属片,起到一个参考地的作用,达到满足设计带宽的要求。

MONOPOLE 天线的基本注意:内置的MONOPOLE 天线体积稍小,性能较外置天线差。

具体要求如下:1,内置天线周围3mm内不能有马达、SPEARKER、RECEIVER 等较大金属物体。

2,天线的宽度应该不小于15mm。

手机nfc天线设计原理

手机nfc天线设计原理

手机nfc天线设计原理
手机NFC(Near Field Communication,近距离无线通信)天
线设计的原理是基于电磁场感应的物理原理。

NFC天线是一
种被动元件,承载着手机与其他设备进行通信的功能。

NFC天线一般采用线圈形状的设计,由导线材料制成。

线圈
的形状和尺寸是根据手机外壳的尺寸和材质进行设计的,以确保天线在手机内部空间中的布置。

线圈中的导线通过电流激励,产生一个特定频率的交变电磁场。

当手机与其他支持NFC技术的设备(如另一部手机、NFC标
签等)进行通信时,NFC天线接收到电磁场能量的信号。


个能量激励了天线中的导线,产生一个感应电流,从而实现信息的传输。

NFC通信是一种近距离的通信方式,其有效范围一般在几厘
米或更小的距离之内。

这种设计原理使得NFC技术可以被广
泛应用于手机支付、门禁系统、数据传输等领域。

为了提高NFC的性能和稳定性,设计人员需要在电路中加入
合适的驱动电路和匹配网络,以保证天线的输入和输出阻抗匹配,并解决信号衰减和噪声问题。

此外,天线的位置和手机内部的其他组件(如电池、摄像头等)之间的相互干扰也需要被考虑到。

总的来说,手机NFC天线的设计原理是基于电磁场感应技术,
通过导线产生特定频率的交变电磁场,以实现手机与其他设备的近距离无线通信。

《2024年宽频带高隔离5GMIMO手机天线设计研究》范文

《2024年宽频带高隔离5GMIMO手机天线设计研究》范文

《宽频带高隔离5G MIMO手机天线设计研究》篇一一、引言随着5G技术的飞速发展,移动通信设备对天线性能的要求日益提高。

特别是在智能手机领域,宽频带、高隔离度的多输入多输出(MIMO)天线设计成为了研究的热点。

本文将重点研究宽频带高隔离5G MIMO手机天线的设计,分析其设计原理、优化方法及实际应用效果。

二、5G MIMO手机天线设计原理5G MIMO(Multiple-Input Multiple-Output)技术是一种通过在基站和移动设备之间使用多个天线来提高数据传输速率和可靠性的技术。

而天线的设计是MIMO技术实现的关键。

1. 宽频带设计宽频带设计可以使得天线在更宽的频率范围内工作,从而提高通信的灵活性和效率。

为了实现宽频带设计,通常采用优化天线的结构、材料和尺寸等方法。

此外,采用新型的宽带技术,如频率复用技术、极化分集技术等也可以提高天线的频带宽度。

2. 高隔离度设计高隔离度可以减少不同天线之间的相互干扰,提高通信质量。

为了实现高隔离度设计,可以采用不同的天线布局、隔离材料和隔离技术等方法。

例如,可以采用不同的天线阵列布局、引入隔离材料(如隔离膜、隔离墙等)或采用新型的隔离技术(如电磁波吸收材料等)。

三、宽频带高隔离5G MIMO手机天线设计在宽频带高隔离5G MIMO手机天线设计中,需要综合考虑天线的结构、材料、尺寸以及布局等因素。

以下是一些主要的设计步骤和优化方法:1. 确定天线类型和结构根据应用需求和设计要求,选择合适的天线类型和结构。

例如,可以采用PIFA(Planar Inverted-F Antenna)天线、倒F天线(Inverted-F Antenna)等类型,并根据需要进行组合和优化。

2. 优化天线尺寸和材料通过仿真分析和实验测试,优化天线的尺寸和材料,以实现宽频带和高隔离度的要求。

可以采用新型的材料和工艺,如柔性材料、印刷电路板等。

3. 布局设计和隔离技术合理布局天线阵列,减少不同天线之间的相互干扰。

手机天线设计汇总(飞图科技)

手机天线设计汇总(飞图科技)

效率与增益
效率与增益
手机天线的效率与增益决定了信号的传输距离和穿透能力。高效率与增益能够 提高信号的传输距离和穿透能力,使手机在复杂环境下仍能保持稳定的通信性 能。
优化技术
为了提高手机天线的效率与增益,需要采用先进的优化技术,如仿真技术、电 磁场优化算法等,对天线的设计进行精细调整和优化。
抗干扰能力
THANKS FOR WATCHING
感谢您的观看
抗干扰技术
手机天线需要具备抗干扰能力,以应对复杂电磁环境中的各种干扰源,如其他无 线通信设备、电磁噪声等。
兼容性
手机天线应具备良好的兼容性,与其他无线通信设备共存时不会产生相互干扰, 以保证通信的稳定性和可靠性。
03
手机天线的设计流程
需求分析
01
02
03
需求调研
深入了解客户对手机天线 性能的需求,包括天线增 益、效率、带宽等关键指 标。
方案优化
根据评审意见,对初步方 案进行优化,完善手机天 线的设计方案。
天线仿真与优化
建立模型
根据设计方案,使用电磁仿真软件建立手机天线的模 型。
仿真分析
对建立的模型进行仿真分析,评估天线性能是否满足 设计目标。
优化调整
根据仿真结果,对天线模型进行优化调整,提高天线 性能。
样品制作与测试
样品制作
根据优化后的天线模型, 制作手机天线的样品。
测试准备
搭建测试环境,准备测 试设备,确保测试结果
的准确性和可靠性。
性能测试
对手机天线样品进行性 能测试,包括天线增益、 效率、带宽等关键指标
的测试。
测试结果分析
根据测试结果,对手机 天线的性能进行分析和 评估,确认是否满足设

iPhone 6 6+天线设计

iPhone 6 6+天线设计

iPhone6 6+的天线设计2014/11iPhone 6/6+相较前代手机,多了NFC支持,LTE支持更多频段。

天线结构前所未有的复杂。

支持的无线通信标准:Cellular:CDMA EV-DO Rev. A (800, 1700/2100, 1900, 2100 MHz)UMTS (WCDMA)/HSPA+/DC-HSDPA (850, 900, 1700/2100, 1900, 2100 MHz)TD-SCDMA 1900 (F), 2000 (A)GSM/EDGE (850, 900, 1800, 1900 MHz)FDD-LTE (频段1, 2, 3, 4, 5, 7, 8, 13, 17, 18, 19, 20, 25, 26, 28, 29)TD-LTE (频段38, 39, 40, 41)总结一下,全部频段:Bands 1, 2, 3, 4, 5, 7, 8, 13, 17, 18, 19, 20, 25, 26, 28, 29 ;Bands 34,38, 39, 40, 41 。

进一步整合一下:(B38/B40差距较大,一般不整合)TX:Bands 1, 3, 4, 7, 8, 13, 17, 20, 25(2), 26(5、18、19),28;34, 38,39,40, 41 。

RX:Bands 1, 3, 4, 7, 8, 13/17, 20, 25(2), 26(5、18、19),28, 29;34, 38,39,40, 41。

RX又可分为:PRX:Bands 1, 3, 4, 7, 8, 13,17, 20, 25(2), 26(5、18、19),28;34, 38,39,40, 41。

DRX:Bands 1, 3, 4, 7, 8, 13/17, 20, 25(2), 26(5、18、19),28, 29;38,39,40, 41。

即发射TX 16个通道(11 FD + 5 TD)加上GSM HB/LB的2个通道,共18通道。

手机结构设计

手机结构设计

手机结构设计标准(详细分类珍藏版)字体: 小中大| 打印发表于: 2007-7-02 07:13 作者: wildfire 来源: SupeSite/X-Space社区门户一.天线的设计1,PIFA双频天线高度≥7mm,面积≥600mm2,有效容积≥5000mm3 PIFA2,三频天线高度≥7.5mm,面积≥700mm2,有效容积≥5500mm33,PIFA天线与连接器之间的压紧材料必须采用白色EVA(强度高/吸波少)4,圆形外置天线尽量设计成螺母旋入方式非圆形外置天线尽量设计成螺丝锁方式。

5,外置天线有电镀帽时,电镀帽与天线内部外壳不要设计成通孔式,否则ESD难通过。

6,内置单棍天线,电子器件离开天线X方向10(低限8),天线尽量*壳体侧壁,天线倾斜不得超过5度,PCB天线触点背面不允许有金属。

7,内置双棍天线如附图所示,效果非常不好,硬件建议最好不要采用8,天线与SIM卡座的距离要大于30MM GUHE电工天线,周围3mm以内不允许布件,6mm以内不允许布超过2mm高的器件,古河天线正对的PCB板背面平面方向周围3mm 以内不允许有任何金属件二.翻盖转轴处的设计:1,尽量采用直径5.8hinge,2,转轴头凸出转轴孔2.2,5.8X5.1端与壳体周圈间隙设计单边0.02,2D图上标识孔出模斜度为03,孔与hinge模具实配,为避免hinge本体金属裁切毛边与壳体干涉,4,5.8X5.1端壳体孔头部做一级凹槽(深度0.5,周圈比孔大单边0.1),5,4.6X4.2端与壳体周圈间隙设计单边0.02,,2D图上标识孔出模斜度为0,6,孔与hinge模具实配,hinge尾端(最细部分)与壳体周圈间隙设计0.17,深度方向5.8X5.1端间隙0,4.6X4.2端设计间隙≥0.2,试模适配到装入方便,翻盖无异音,T1前完成8,壳体装配转轴的孔周圈壁厚≥1.0 非转轴孔周圈壁厚≥1.29,主机、翻盖转轴孔开口处必须设计导向斜角≥C0.210,壳体非转轴孔与另壳体凸圈圆周配合间隙设计单边0.05,不允许喷漆,深度方向间隙≥0.2,试模适配到装入方便,翻盖无异音,T1前完成11,凸圈凸起高度1.5,壁厚≥0.8,内要设计加强筋(见附图)12,非转轴孔开口处必须设计导向斜角≥C0.2,凸圈必须设计导向圆角≥R0.213,HINGE处翻盖与主机壳体总宽度,单边设计0.1,试模适配到喷涂后装入方便,翻盖无异音,T1前完成14,翻转部分与静止部分壳体周圈间隙≥0.315,翻盖FPC过槽正常情况开到中心位,为FPC宽度修改留余量16,转轴位置胶太厚要掏胶防缩水17,转轴过10万次的要求,根部加圆角≥R0.3(左右凸肩根部)18,hinge翻开预压角5~7度(2.0英寸以上LCM双屏翻盖手机采用7度);合盖预压为20度左右19,拆hinge采用内拨方式时,hinge距离最近壳体或导光条距离≥5。

金属框手机天线设计总结

金属框手机天线设计总结
覆盖范围
金属框手机天线有助于扩大手机的信 号覆盖范围。在某些特定情况下,例 如在地下室或电梯内,金属框手机天 线的性能优势更加明显,可以保证稳 定的通信。
抗干扰能力
外部干扰
金属框手机天线具有较强的抗外部干扰能力。在存在大量电磁波的环境中,如 机场、火车站等,金属框手机天线能够减少信号中断和通话质量下降的情况。
选择合适的方案
根据设计目标和市场需求,选择 合适的设计方案,如采用何种结 构、材料、工艺等。
仿真与优化
建立模型
根据设计方案,建立金属框手机天线的电磁仿真模型。
仿真分析
通过仿真分析,了解天线的性能参数,如增益、效率、 方向性等。
优化设计
根据仿真分析结果,对设计方案进行优化,以提高天 线的性能。
实际制作与测试
问题三:设计复杂度与成本
01
总结词
金属框手机天线设计过程较为复杂,且成本较高。
02 03
详细描述
金属框手机天线设计需要考虑多种因素,如天线的尺寸、形状、材料、 位置等,设计过程较为复杂。同时,由于金属框的制造成本较高,也增 加了整个手机的生产成本。
解决方案
可以采用模块化设计、标准化生产等方法来简化设计过程并降低成本。 同时,也可以考虑使用替代材料或优化制造工艺来降低制造成本。
兼容性问题
不同地区和运营商的信号频段可能 存在差异,金属框手机天线可能需 要针对不同地区和运营商进行定制 和优化。
02
金属框手机天线设计过 程
设计方案的确定
确定设计目标
明确金属框手机天线的设计目标, 如提高信号接收能力、减小尺寸、 降低成本等。
调研市场需求
了解市场需求和竞争态势,以便 更好地满足用户需求和提高产品 竞争力。

5G移动通信天线的研究与设计

5G移动通信天线的研究与设计

5G移动通信天线的研究与设计随着信息技术的不断发展,移动通信已经成为人们生活中不可或缺的一部分。

从最初的 1G 模拟通信到如今的 5G 高速通信,每一次技术的变革都带来了巨大的影响。

在 5G 时代,天线作为移动通信系统的关键组成部分,其研究与设计变得尤为重要。

5G 移动通信对天线提出了更高的要求。

与以往的通信技术相比,5G 需要支持更高的频段、更大的带宽、更多的天线端口以及更复杂的波束赋形技术。

这意味着 5G 天线需要具备更高的性能、更小的尺寸、更低的成本以及更好的适应性。

在频段方面,5G 不仅使用了传统的低频段,还引入了毫米波频段。

毫米波频段具有丰富的频谱资源,可以提供极高的传输速率,但同时也带来了巨大的挑战。

由于毫米波信号的传播损耗较大,天线需要具备更高的增益和方向性,以保证信号的有效覆盖。

此外,毫米波天线的尺寸较小,加工精度要求高,这对天线的设计和制造工艺提出了新的要求。

为了满足 5G 移动通信对带宽的需求,天线需要具备宽带特性。

传统的天线设计方法往往难以实现宽频带,因此需要采用新的技术和结构。

例如,多频段天线、宽带匹配网络以及新型的天线辐射单元等技术的应用,可以有效地拓展天线的工作带宽。

在天线端口数量方面,5G 采用了大规模多输入多输出(MIMO)技术,天线端口数量大幅增加。

这要求天线能够实现多个端口之间的良好隔离,以避免信号之间的干扰。

同时,大规模 MIMO 技术需要天线能够灵活地调整波束方向,实现对用户的精准覆盖和跟踪,这就需要采用先进的波束赋形算法和天线阵列设计。

5G 移动通信天线的设计面临着诸多技术难题。

首先是天线的小型化问题。

随着移动设备的轻薄化发展,天线的尺寸受到了严格的限制。

如何在有限的空间内实现高性能的天线是一个亟待解决的问题。

其次是天线的集成化问题。

5G 通信系统需要将天线与射频前端、基带处理等模块集成在一起,以实现系统的小型化和高性能。

这就需要解决天线与其他模块之间的电磁兼容问题,以及优化整个系统的性能。

手机天线设计讲义

手机天线设计讲义
PIFA天线(翻盖或滑盖)(二)
“手的影响”是指用户的手的握持将会引起共振频率的偏移,发射和接受也会变的不稳定。 “头的影响”包括共振频率的偏移以及SAR的增加。 线的长度对于天线与PCB之间的信号传输的损耗有影响。线的长度较长的时候,信号的功率就变低。 上表显示,天线的最佳位置是“键盘部分的顶端”。
典型PIFA形式,GSM/DCS(/PCS) 位于手机顶部 面向Z轴正向,与电池同侧(Bottom面)。
PIFA天线(直板机)(二)
L=35~40
1
w=15~25
2
H=6~8
3
Feed pin
4
short pin
5
Ground
6
Antenna
7
PIFA最重要的三个参数 W,L,H,其中H和天线谐振频率的带宽密切相关。W、L决定天线最低频率。
Stamping (金属) Stamping热熔到Housing内侧,Stamping伸出spring与手机PCB连接 Stamping + Support (金属) Stamping热熔到Support上,连接用spring Stamping + Support + Pogo pin (正、反) (金属) Stamping热熔到Support上,连接用Pogo Pin。 正向使用Pogo Pin一般适合于带support的结构,反向使用都可以。
翻盖手机,LCD部分和键盘部分都有PCB,通过FPC连接。有4个区域可以放置内置天线。下表列出了每种方式的优缺点:
PIFA天线(翻盖或滑盖)(三) 右二图为合、开两种状态下天线S11参数的Smith圆图。右上图为合盖,右下为开盖。 由右图可见两种状态下天线工作状态发生较大变化。通常低频谐振降低。

手机天线设计汇总PPT课件

手机天线设计汇总PPT课件

6
三、天线的类型
按外观分类: 1、外置天线 2、内置天线(重点介绍)
按手机通讯制式分为: 1、GSM:850MHz/900MHz 2、DCS:1800MHz 3、PCS:1900MHz 4、CDMA1X:800MHz 5、WCDMA:2100MHz
23.09.2020
7
内置天线主要种类
PIFA Antenna Monopole Antenna Chipset Antenna
23.09.2020
4
手机天线主要技术指标
手机频率:指手机的频段,GSM,DCS…… 回波损耗:当天线和馈线不匹配时,也就是天线 阻抗不等于馈线特性阻抗时,负载就只能吸收馈 线上传输的部分高频能量,而不能全部吸收,未 被吸收的部分能量将反射回去形成反射波。 TRP/TIS:指天线的辐射功率和天线的全向接收灵 敏度。 驻波比:指模块输入的驻波系数和天线反射的驻 波系数之间的比值。驻波比值要≤1.5最好。 SAR:每千克的物质在单位时间内人体头部接受的 电磁能量。
23.09.2020
13
Monopole天线设计参考
1、天线垂直PCB装配
23.09.2020
14
2、天线平行PCB装配
23.09.2020
15
手机内置天线比较
PIFA和单极天线的综合比较
有效面积 mm²
距主板器 件位置
mm
天线投 影下方
天线 馈源
天线 体积
天线 性能
SAR
PIFA 约为600
7
有地
2
大 很好 低
单极 约为300
5
无地
1



PIFA和单极天线适合机型比较

手机天线设计汇总

手机天线设计汇总
针对特定应用场景和需求,通过优化材料选择和制造工艺,可以实现天线性能的提升和成 本降低。例如,采用轻质高强度的复合材料可以减小天线重量,提高便携性;采用精密注 塑成型工艺可以提高塑料天线的生产效率和一致性。
05 手机天线设计挑战及解决 方案
多频段兼容问题探讨
频段覆盖需求
手机天线需覆盖多个频段,包括 2G、3G、4G和5G等,设计具有
重要性
天线性能的好坏直接影响到手机的通 信质量,包括通话效果、数据传输速 率等。因此,手机天线设计对于手机 整体性能至关重要。
手机天线类型及特点
内置天线
外置天线
内置于手机内部,不占用外部空间,外观 整洁。但可能受到手机内部其他元件的干 扰,影响信号接收和发送。
安装于手机外部,信号接收和发送效果较 好。但占用外部空间,易受到损坏。
智能化、自动化生产趋势
1 2
智能化天线设计
利用人工智能和机器学习等技术,实现天线设计 的智能化和自动化,提高设计效率和准确性。
自动化生产线
自动化生产线可降低生产成本和提高生产效率, 同时保证天线产品的一致性和稳定性。
3
智能检测与调试
智能检测和调试技术可实现对手机天线性能的实 时监测和调整,提高天线产品的质量和可靠性。
挑战性。
宽带天线技术
采用宽带天线技术,如单极子、偶 极子和倒F天线等,实现多频段覆 盖。
可调谐天线技术
利用可调谐元件,如变容二极管或 MEMS开关,实现天线频段的动态 调整。
小型化、集成化趋势应对策略
空间限制
手机内部空间有限,天线设计需满足 小型化、集成化要求。
天线与芯片集成
多天线技术
采用多天线技术,如MIMO和波束赋 形等,提高系统容量和信号质量,同 时满足小型化要求。

手机天线设计

手机天线设计

由于手机内置天线对其附近的介质比较敏感,因此,外壳的设计和天线性能有密切关系。

外壳的表面喷涂材料不能含有金属成分,壳体靠近天线的周围不要设计任何金属装饰件或电镀件。

若有需要,应采用非金属工艺实现。

机壳内侧的导电喷涂,应止于距天线20mm处。

对于纯金属的电池后盖,应距天线20mm以上。

如采用单极(monopole)天线,面板禁用金属类壳体及环状金属装饰。

电池(含电连接座)与天线的距离应设计在5mm以上。

二、手机内置天线的分类1.PIFA皮法天线a.天线结构辐射体面积550~600mm2,与PCB主板TOP面的距离(高度)6~7mm。

天线与主板有两个馈电点,一个是天线模块输出,另一个是RF地。

天线的位置在手机顶部。

PIFA皮法天线如按要求设计环境结构,电性能相当优越,包括SAR指标,是内置天线首选方案。

适用于有一定厚度手机产品,折叠、滑盖、旋盖、直板机。

b.主板天线投影区域内有完整的铺地,同时不要天线侧安排元器件,特别是马达、SPEAKER、RECEIVER、FPC排线、LDO等较大金属结构的元件和低频驱动器件。

它们对天线的电性性能有很大的负面影响.c.天线的馈源位置和间距一般建议设计在左上方或右上方;间距在4~5mm之间。

2. PIFA天线的几种结构方式a.支架式天线由塑胶支架和金属片(辐射体)组成。

金属片与塑胶支架采用热熔方式固定。

塑胶常用ABS或PC材料,金属常用铍铜、磷铜、不锈钢片。

也可用FPC,但主板上要加两个PIN,这两项的成本稍高。

b.贴附式直接将金属片(辐射体)贴附在手机背壳上。

固定方式一般用热熔结构。

也有用背胶方式的,由于结构不很稳定,很少采用。

FPC也如此。

荣耀腔体天线原理

荣耀腔体天线原理

荣耀腔体天线原理
荣耀腔体天线是一种用于无线通信设备(如智能手机)中的天线设计技术。

腔体天线通常利用金属腔体结构来谐振并放大特定频段的无线电波,从而提高天线的辐射效率和方向性。

在手机等小型设备中,腔体天线因其占用空间相对较小且易于集成到产品内部而受到青睐。

荣耀腔体天线原理概括如下:
1. 谐振腔设计:腔体天线内部设计有特定形状和尺寸的空腔,当电磁波进入腔体后,会在腔体内来回反射形成驻波,达到共振状态,从而增强在所需频段的信号发射和接收能力。

2. 匹配网络:为了保证天线与手机射频前端的阻抗匹配,通常会在天线设计中加入匹配网络,以便最大限度地将射频能量从发射源传输到天线,并从天线传输回接收器,减少能量损失,提高通信效率。

3. 多频段支持:通过调整腔体的几何形状、尺寸和材料,可以设计出支持多个频段的腔体天线,满足手机在不同通信网络(如2G、3G、4G、5G)下工作的需求。

4. 小型化与集成化:荣耀等品牌手机的腔体天线设计还注重小型化和集成化,通过精细的结构设计和新材料的使用,实现在有限的空间内整合多个天线单元,以适应越来越紧凑的手机内部结构。

请注意,实际的荣耀手机腔体天线设计会根据具体机型和市场需求
有所不同,以上内容为一般性的腔体天线原理概述。

手机内置天线设计通用规则

手机内置天线设计通用规则

手机内置天线设计的通用规则1.通用设计要求手机天线性能与外形大小有密切关系。

通常会使用以物理长度的频率波长制定的规格化电气性长度,一般是将电气性长度为低于1/2波长以下的天线定义为小型天线(以下简称为小型天线)。

小型天线,它的缺点是低效率、窄频宽,为了确保天线的性能,因此天线小型化有一定的极限。

所幸的是天线使用的元件大多是可以创造空间的导体,若与波长比较的话,只要导体具备一定大小,基本上就可以当作小天线使用。

目前手机使用频率大多介于800MHz~2GHz之间,波长相当于150~350mm左右,因此100~200mm的终端尺寸对小型天线非常有利,也就是说只要巧妙应用移动终端的机壳,就可以获得小型、高性能的天线功能。

2.天线选型原则从手机整个性能的角度来考虑,天线设计在尽可能早的参与到设计过程中,因为这可确保所有的电气元件都放在可能的最佳位置上,以最大限度地优化设备的性能。

这意味着设备制造商必须重新估计设备中天线的作用,并在考虑了其它关键元件和成本的前提下明确地得出一个最优的尺寸与性能之比。

手机天线选型规则:有效面积mm2 距主板mm 天线投影下方 天线馈源 天线体积 电性能 SAR皮法 600 7 有地 2 大 很好 低单极 350 4 无地 1 小 好 稍高折叠机 滑盖机 旋盖机 直板机 超薄折叠机 超薄直板机皮法 适用 适用 适用 适用 不适用 不适用单极 不适用 不适用 不适用 适用 适用定制 适用以前天线作为一个电结构元件,长期以来一直是在开发过程硬塞进去的一个元件。

不过,为了避免被看作是“事后诸葛亮”,今天天线正逐步呈现出在设计过程中的中心作用。

随着体积尺寸继续变得越来越小,以及越来越多的连接标准需要在同一个设备中实现,天线制造商承担的在一个引人注目的设备上满足这些挑战的压力将是非常巨大的。

3. 对结构设计的要求3.1 使用尽可能大的空间:对天线性能来说,尺寸越大越好。

GSM(900/1800/1900)三频天线推荐的尺寸是20×40×8mm(PIFA,PCB单侧),或14×40×4mm(Monopole,PCB 双侧)。

手机天线设计讲义

手机天线设计讲义
喷涂
在天线表面喷涂一层绝缘材料,以提高天线的辐射效率和防止电磁 干扰。
抗氧化处理
在金属表面形成一层抗氧化膜,提高天线的耐候性和使用寿命。
04 手机天线测试与优化
天线性能测试
辐射性能测试
包括天线增益、波束宽度、前后比等,用于 评估天线辐射效果。
阻抗匹配测试
检查天线输入阻抗与传输线阻抗是否匹配, 以降低信号反射。
多频段兼容
支持多种通信频段,满足不同 运营商和地区的需求。
尺寸与重量
合理控制天线尺寸和重量,以 适应手机整体设计。
耐用性与可靠性
确保天线在各种环境和使用条 件下都能稳定工作。
02 手机天线设计流程
设计准备
需求分析
明确手机天线设计的需求,包括 性能指标、应用场景和限制条件
等。
技术调研
了解当前手机天线设计的技术现状 和发展趋势,为后续设计提供参考。
制定计划
根据需求和技术调研结果,制定详 细的设计计划,包括时间安排、人 员分工和预期成果等。
方案设计
初步方案
根据需求和技术调研结果,制定 初步的手机天线设计方案,包括 天线类型、尺寸、性能指标等。
方案评估
对初步方案进行评估,分析其可 行性和优缺点,并提出改进意见。
方案优化
根据评估结果,对初步方案进行 优化,提高其可行性和性能。
效率测试
测量天线传输效率,确保天线能量有效传输。
方向图测试
通过测量天线在不同角度的辐射强度,得到 天线方向图,评估天线覆盖范围。

优化方法
调整天线尺寸
改变天线结构参数,如振子长度、宽 度和间距等,以改善天线性能。
选用高性能材料
使用导电性能良好的材料,如铜、银 等,提高天线效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

手机结构天线设计注意事项
A、外置天线空间要求
CDMA: 线圈尺寸Ø5.2*14mm
GSM&DCS: 线圈尺寸Ø5.2*14mm
GSM&DCS&PCS: 线圈尺寸Ø5.2*15mm
GSM&DCS&PCS&WCDMA:
线圈尺寸Ø5.2*15mm
CDMA&GSM&DCS&PCS&WCDMA:
线圈尺寸Ø5.2*15mm
B、PIFA天线空间要求
PHS: H>6.5mm A>200mm²
CDMA: H>7.0mm A>400mm²
GSM&DCS: H>7.0mm A>450mm²
GSM&DCS&PCS: H>7.0mm A>550mm²
GSM&DCS&PCS&WCDMA: H>7.5mm A>650mm²
CDMA&GSM&DCS&PCS&WCDMA:
H>8.0mm A>750mm²
超薄直板手机应用PIFA的方案把PCB在天线区域截断,用一块良好接地的金属片紧贴手机Top面,使得PIFA的地降低;PIFA的patch则贴近Bottom面,这样可以充分利用手机内部的厚度。

PIFA的高度要求还是不难满足的。

此种方案的缺点在于LCD的位置偏低,如果ID设计的卖点是大LCD且位置偏高,则不适合这种设计。

超薄直板手机应用单极天线的方案
采用单极天线方案的要点是有一块净空区域在板的端部,净空区域一般宽8mm。

该区域没有地,且一般没有器件进入。

考虑ID设计要求出音孔不能太低,speaker或者receiver势必要进入上述的净空区域。

折中的设计是不可避免的。

问题在于寻求一个两方面都可接受的平衡点。

根据我们的实验判断认为,磁声器件在单极天线的净空区域内,在手机厚度方向拉远器件和天线的垂直距离没有明显的好处且增加手机厚度;而沿手机主板长度方向移动器件是有巨大作用的,2mm的距离足以增加1dBi的增益。

此种结构布局LCD可以放得较高,ID设计都比较符合时尚,但单极天线的性能可能由于较少的净空区,其它器件的影响,会大幅度的降低。

Speaker和Receiver的影响
Speaker和Receiver中间是一个线圈,长度约在40-50mm左右,加上不同长度的信号线可在不同的频段产生谐振,降低天线性能。

Speaker和Receiver本身的高频音频信号会在低频段产生干扰。

一般在两根信号线上各串联一个100nH电感,可有效消除其影响。

Motor和Camera的影响
Motor对天线性能影响很大,特别是在工作状态(震动)下。

因此一般要求其距离天线馈点在
10mm以上,同时为了提高天线效率等,天线在Motor上方周围区域尽量不布线。

Camera正常情况下影响很小,但有时Flash的引线FPC过长,会干扰到天线,故FPC长度越短越好。

装饰件的影响
机壳周框(上盖和下壳)和天线附近经常会有金属装饰件或电镀装饰件,如果它们的尺寸和工作频段波长成比例,会对天线产生极大干扰。

图一周框电镀层使功率和灵敏度下降3dB,故在两肩部分截断。

图二为Camera周围的装饰件,尺寸较大,灵敏度下降了5dB,后整体尺寸减小一圈后影响消失。

Moto V3面世后,很多Design House仿照其进行设计,出来的结果GSM功率很差,不是其机板设计问题,而是出在Ground的延伸上。

类似手机天线都位于下端,打开状态时,上板和下板连接起来长度太长,约160mm,影响了GSM频段的辐射。

研究V3手机可以发现,即使连接前后板的FPC断开,两者的Ground也是连通的,整个金属外壳和板子的Ground 是一体的,这样电流回流实际上就缩短了板子实际尺寸,保证了GSM 频段的性能。

类似手机设计时,不仅要保证FPC连接前后板,还要在板子另一侧把Ground也连通。

相关文档
最新文档