隧道洞内控制测量分析
公路隧道工程洞内控制测量
• 2、洞内水准测量
• 洞内水准测量方法原则等均与常规小区域地面控制常规三、四等水准测量相同,此 处不再过多描述,详细参阅相关测量学技术基础课程。 洞内三角高程测量方法原则等均与常规全站仪三角高程测量相同,此处也不再过多描 述,详细参阅相关测量学技术基础课程。注意观测垂直角、斜距、考虑地球曲率,对向 观测等相关事项。 另外当待测点在视线区域半径≤300m范围内时,同时结合运用“全站仪横轴法”进行 高程测量观测方法,并做好记录,与上述三角高程进行互相检核核对。(注:全站仪横 轴法需要事先将全站仪与准确的水准仪进行校核比对,统计数据求得仪器系统之间的高 程固定差,当观测值扣除固定差后,则可以达到全站仪高程测量,近乎 3~5毫米级误差 而接近于水准仪几何水准高程精度目的)。“全站仪横轴法”测高程,采用的也即水准 仪几何水准原理,可以在满足使用条件的前提下,直接进行高程传递,当采用对向观测 时,精度经实践验证,可以在公路工程施工测量满足常规高程测量要求,其具体操作方 法,要以具体不同品牌仪器精度而定,需在具体实践中多加检核验证,详情参阅有关测 量学书籍,此处也不再过多赘述。
• 4、常见洞内导线布设形式 • 为了提高地下导线点位精度和构成检核,避免产生任何错误,洞内导线应尽
可能避免布设成单导线,(尤其是隧道洞内导线在贯通之前,实质上属于支导线, 不可选择单支导线形式进行洞内控制,因单支导线无检核条件无平差),因而出现 多种洞内导线的布设形式。也即目前通俗称谓“单洞双导线进洞形式”。
• 三、公路隧道洞内高程控制测量
•
• •
一、概论
• • 公路隧道地下控制测量,也即洞内控制测量,包括平面控制测量和高程控制测量两个 部分。 由于现代先进的GNSS卫星定位接收机设备在隧道洞内无法获取信号,GNSS(GPS) 静态控制测量在隧道洞内无法得以实施;又由于受到隧道所在线路的平曲线形状影响,隧道 洞内的平面控制测量,当前也只能采用测量传统光电设备进行观测,只能布设成导线的形式。 隧道洞内导线和洞外导线测量的原理是相同的,不再复述,因导线是在隧道洞内布设,与地 面导线比较有一些自身的特点。在此仅结合洞内导线的特点进行分述。洞内导线是随着隧道 向前开挖掘进而逐步布设的,要遵循“分级布设,高级控制低级”的测量工作原则。 隧道洞内高程控制测量方法有水准测量和三角高程测量两种,一般也要分级布设,高级 控制低级。高程控制点位布设时可单独布设,也可以与平面控制测量导线点重合布设。 根据现行施工技术规范要求:如《工程测量规范》GB 50026-2007、《公路隧道施工 技术规范》JTG F60-2009、《公路勘测规范》JTG C10-2007等,公路隧道平面控制测量 在高速公路隧道上至少也要达到一级导线等级或者当 “1Km ≤隧道贯通长度≤ 3Km”的 长隧道要洞内达到四等导线观测精度平差计算成果;高程控制测量无论是水准测量高程还是 三角高程,其高程精度成果也至少要达到四等水准精度、甚至必要时为三等水准精度。 具体规范中的内容请随后学习阅读相关施工规范书籍中条目要求,在隧道施工测量过程 中注意工作的严谨性、以设计图纸和规范的要求进行日常测量工作。
隧道洞内控制测量方法及精度分析
隧道洞内控制测量方法及精度分析摘要:洞内控制测量的目的在于保证隧道相向开挖的精度,而开挖的精度是隧道能否正确贯通的条件。
本文分析了隧道贯通测量的误差估计,并给出了测定与调整方法及其建议。
关键词:隧道;控制测量;精度对洞外、洞内导线测量全过程实行质量控制,可保证实际测定的横向贯通误差达到预计隧道横向贯通限差的要求。
由此可见,对测量全过程实行质量控制,不仅能起到预于提高隧道贯通精度也是必要的和必需的。
一、隧道横向贯通的精度分析1、由于导线测角误差而引起的横向贯通误差为:根据误差传播定律,导线测角及测边是相互独立的两个量,可得导线测角中误差所引起的横向贯通中误差为:三、洞外控制测量洞外控制测量首先应根据控制网进行洞口的引测投点,以利施工时据以进行洞内控制测量。
投点时应结合地形地物,力求图形刚强简单,在确保精度的前提下,充分考虑观测条件,测站稳定程度,便于引测进洞,避免施工干扰。
每个洞口应设两个测点,并应纳入控制网中,洞外平面控制测量常用的方法有中线法、导线法、主副导线法、导线网法、三角锁法等。
当隧道两端有已建立的高级控制点,其精度高于隧道控制测量所需的精度时,可在两相向开挖的洞口间建立附合导线,导线应尽量布设成直伸式,以尽量减少横向贯通误差的影响。
若仅从横向贯通精度来考虑,三角锁是最理想的方案。
可布设为测角网、测边网和边交网。
四、洞内控制测量洞内观测的特殊性主要是施工干扰大,环境条件差,明亮度较差,边长较短,必须采用两次照准,当施工通风不好,烟尘严重时,不宜进行测角工作。
洞内导线应尽量选择长边。
根据总的贯通精度要求及洞外导线对贯通精度的影响值,确定洞内控制测量所需的精度和方法。
洞内导线应根据洞口投点向洞内作引伸测量,洞口投点应纳入控制网中,导线点应尽量沿路线中线布设。
洞口投点是洞外与洞内联系的主要点位,应反复测设,并经常加以校核且加以保护。
洞内导线应设成闭合导线或主副导线环。
对有平行导坑的隧道,正洞内设闭合导线,平行导坑内设单导线,当导坑延伸至2~3倍洞内导线边长时,利用横通道与正洞导线组成一个闭合环,做一次导线引伸测量。
浅谈长大隧道的洞内平面控制测量技术
浅谈长大隧道的洞内平面控制测量技术摘要:文章首先从导线的布设及测量等级的确定,测量方法,导线的检测及洞内导线的测角及测边等几个方面介绍长大隧道洞内平面控制测量;进而分析在控制测量中注意事项及具体要求,以供参考。
关键词:长大隧道;洞内;平面控制;测量技术一、概述隧道控制测量的主要目的,就是保证隧道在两个或两个以上开挖面的相向施工中,使其中线符合线路平面和纵断面的设计要求,在允许误差的范围内,在满足限界要求的条件下正确贯通。
隧道的平面控制测量分为洞外平面控制测量和洞内平面控制测量。
对施工单位而言,洞内控制测量精度的高低就直接影响贯通的精度,如何做好洞内平面控制测量是整个隧道控制测量工作的关键,也是测量工作的难点。
但由于受洞内狭窄空间的影响,洞内平面控制网的布设方案较少,不能采用三角测量、三边测量等检核条件,且因隧道施工在贯通之前无法通视,导线呈支导线无外部检核条件,同时受隧道内的光线和灰尘等影响,测量精度难以保证。
在此,为了保证隧洞在允许精度内贯通,文章就长大隧道洞内平面控制测量技术的相关内容进行探讨,以供参考。
二、洞内导线平面控制测量(一)洞内导线的布设及测量等级的确定长大隧道洞内测量由于环境条件的限制,一般布置成若干个彼此相连的带状闭合导线环网。
除了洞口点位外,其它导线点基本上是同一断面左右两侧成对布设,每对点是相距1~2m为宜。
每个环中点数不宜过多,以4~6点为宜;导线环的边数为4~6条。
洞口点位:距洞口20m左右,以有效地减弱观测时洞内、外光线对比度,洞内满足通视条件;洞内第二排点位:距洞口250m左右为宜,以避免因洞内、外气象条件差异和全站仪最优观测距离产生较大误差。
导线边长需根据隧道长度、线路平面形状、施工方法及断面宽度作选择。
一般,在长直隧道中,采用全断面开挖或在已扩大地段设计的导线边长一般应≤500m;相邻导线边长度应小于1:3;分部开挖的导坑地段边长应≤250m;曲线隧道地段导线设计边长按下式计算:C= 8Rf式中:R——曲线设计半径,m;f——保证最大通视距离的安全断面宽度,m;f=b—O.7m(b为断面开挖宽度,m)。
隧道控制测量及监控量测
•一、洞内外控制测量
2、隧道洞外控制测量
隧道平面独立控制网测量方法:
首先在隧道进出口各布设4个平面控制点,同时将原勘测网的部分
GPS控制点和洞口附近的线路中心点一并纳入进出洞口子网,然后通过大
地四边形联测将各洞口的GPS子网联系成一个整体的平面网,进行一等GPS
测量。
内业计算时,把独立网控制点纳入勘测网进行平差,得出坐标(也
导线的形状(直伸或曲折)完全取决于坑道的形状和施工方法;
支导线或狭长形导线环只能用重复观测的方法进行检核,定期导线点不宜保存,观测条件差,标石顶面最好比洞内地面低
2~3cm,周围用钢圈保护。
•一、洞内外控制测量
3、隧道洞内控制测量
洞内导线可以采用下列几种形式: (1)单导线 导线布设灵活,但缺乏检测条件。测量转折角时最好半 数测回测左角,半数测回测右角,以加强检核。施工中应定期检查各 导线点的稳定情况。 (2)导线环 是长大隧道洞内控制测量的首选形式,有较好的检核条 件,而且每增设一对新点,如5和5′点,可按两点坐标反算5~5′的 距离,然后与实地丈量的5~5′距离比较,这样每前进一步均有检核。
以GPS9201-GPS9209方向作为约束方向,中央子午线L0 117 °56′2.04″
,投影面高程H=332.10m。 通过解算,得出独立网坐标。独立网和勘测网在出口处存在偏差, 横向为0.104m,纵向为0.370m。横向偏差较大,应调整隧道内线路左 线坐标,或修改整个曲线在独立网坐标系的曲线要素。
边名 GPS9205-GPS9207 GPS9207-GPS9208 GPS9201-GPS9203 GPS9201-GPS9202 GPS9201-GPS9204 GPS9209-GPS9212 GPS9209-GPS9210 GPS9210-GPS9212
隧道洞内控制量测方案
xx 市轨道交通x 号线一期工程隧道及斜井洞内控制测量方案xxxxxxx 集团公司2010 年9 月25 日一、工程概况隧道,起点里程为DK9+310 ,终点里程为DK12+210 ,全长2900M。
为保证工期,本隧道设斜井两处竖井一处。
隧道较长,斜井较多,控制测量复杂。
二、洞外平面控制隧道及斜井洞外控制测量采用设计院提供的导线点位和集团公司精测队复测并进行加密的加密控制点进行严密平差后的成果。
设计院交点桩位和加密控制桩位成果,具体可见《控制点成果表》和《加密导线控制点成果表》。
三、隧道和斜井洞口埋点测设施工开始前,在洞口布设近井点,采用全站仪、精密水准仪等测量仪器采用闭合导线测设方法,精确测量控制。
洞口导线点的点位布设使用?22钢筋埋设于洞口附近坚固的稳定地面上,并用混凝土固定桩位,点与点之间通视良好。
点位布设完成后,混凝土凝固后,利用设计院交接的GPS点和集团公司精测队测量的加密点作为已知基准点,利用全站仪采用闭合导线方法测量各点的平面坐标并平差。
高程控制采用至少两个已知基准点,使用电子水准仪闭合测设各点高程并平差。
导线采用四等导线测设,要求测角中误差w 士2.5〃,测边相对中误差w 1/100000。
高程控制采用二等水准测量测设,观测精度每公里偶然中误差士2mm,往返测量闭合差w 士 4 L (L为往返侧段路线线段长,以km计)。
平面控制采用全站仪2〃级仪器,水平角的观测正倒镜六个测回,每条导线长度往返观测各三个读数,在允许范围内取均值。
水准控制采用天宝DINI03电子水准仪按要求测设。
四、洞内控制测量隧道及斜井洞内控制测量采用导线控制的方式,从洞外近井点引入。
洞内导线点,以洞口点为起始点,沿中线布设,形成导线环。
埋点时要将点位附近虚碴清理干净,在基岩上钻眼,埋设© 22的钢筋做桩,桩顶要处理成光滑平面。
钢筋长度约30cm露出地面约5mm 用钢钉在桩顶打点或锯十字,点直径不大于1mm然后用直径15cm的钢管,高约30cm护桩。
特长隧道洞内控制测量实施方案
特长隧道洞内控制测量实施方案隧道洞内的控制测量是为实现隧道内的比例分配,保证规定的洞内精度而实施的技术手段。
它包括三个主要的技术环节:1)建设前的方案设计;2)施工期间的控制测量;3)施工结束后的控制测量校核。
本文将从以上三个主要环节,探讨特长隧道洞内控制测量实施方案。
一、建设前的方案设计1.1调查依据实施控制测量必须结合本施工段隧道洞内比例分配、洞内要求精度等调查依据,制订出综合性的控制测量计划,指导施工控制测量实施。
1.2建立控制测量的控制网络控制测量的控制网络是由测量点、参考点和连接点等构成,其中测量点主要是洞口、洞尾、隧道中部和隧道周边的各个角点,参考点包括地面参考点和空中参考点,连接点主要是引用参考点以及测量点之间的连接点。
1.3确定测量点的量测方法此处要确定具体测量点的量测方法,可根据施工隧道洞内环境及本施工段要求的洞内精度,考虑采用哪种水平、垂直或全站(含水平、垂直)的测量方法。
1.4确定控制测量的量测时机根据监理工程师提出的技术要求及洞内精度要求确定控制测量的量测时机,以便在施工中及时调整洞内设计尺寸。
二、施工期间的控制测量2.1准备控制测量施工要素施工前要准备两套测量仪器及各种配件,并将其运送至测量点。
此外,还要准备其它控制测量施工要素,如单位参考点、测量点及洞内参考线、洞内各类标志物,等等。
2.2定位参考点将测量仪器布置于洞口或洞尾,同时确定参考点的位置,将参考点坐标定位到施工绘图或综合测量系统中,确定控制测量的网络体系。
2.3施工特殊点控制测量施工特殊点要采用特殊的测量方法,例如洞口浇筑底部、中部、洞体围拱及高出洞体的洞顶部、施工前洞体的顶部、洞内塞口位置等等,都必须采取特殊的测量方法进行控制测量。
2.4测量过程中的调整在施工过程中,发现任何偏差都要立即进行调整,以保证控制测量的准确性。
三、施工结束后的控制测量校核3.1校核测量数据完成施工后,对洞内控制测量数据进行校核,确认与洞内设计精度是否符合要求,或者可能存在较大误差时,进行修正校核。
隧道洞内控制测量及精度预计方法
隧道洞内控制测量及精度预计方法摘要:纵观我国道路行业发展较快且取得成绩较为优秀的是隧道建设。
隧道建设的发展打破了我国因各区域间地理位置、地势以及山坡等因素而隔断的交通线。
隧道为我国经济的飞速发展奠定了强大的基石,是我国经济发展的必经之路。
与此同时,关于隧道洞内的控制测量及精度预计方法成为目前我国的重点研究项目之一。
在本文中,我们将会论述隧道洞内控制测量及精度预计的重要作用,并且总结隧道洞内控制测量及精度预计方法,提出相关的注意事项,以此促进我国隧道的进一步发展,为我国带来更大的经济效应。
关键词:隧道洞;测量及精度预计;重要性及方法;注意事项引言:隧道洞的工作是极富有危险的,因此在如此危险环境下如何安全有效合理完成隧道洞内测量以及精度预计方法成为了当前的难题,在不断的工作实践中,我们对日常中常用的测量及精度预计方法进行了总结归纳。
1.隧道洞内控制测量及精度预计的重要作用隧道通常都处于地势复杂、险要的地带,周边山峰达到300米,并且树木众多,有各种岩石层存在。
在实际的工作中,为了让隧道洞工作的顺利进行,会对施工周边环境进行数字化分析,以免因对当地地势的不了解造成周边植被破坏,因此对于隧道洞内的测量及精度的估计工作就显得尤为重要。
隧道洞内测量以及精度估计将会在很大程度上影响隧道洞内施工的工作计划。
在进行具体施工前,我们会对隧道洞内情形进行多次勘察,以确保洞内测量数据和关于精度的预估工作尽可能准确到位。
另一方面,隧道洞内控制测量以及精度预估的工作将会决定该项目工程在成本造价中的问题,如若因隧道洞内控制测量和精度预估过少,将会导致该工程项目在前期成本预估中偏差较大,以致后期工程的停工,为此将会造成巨大的经济损失。
2.隧道洞内控制测量以及精度预计的方法2.1隧道洞内测量的方法2.1.1平面测量方法隧道洞内控制测量的方法最常用的就是平面测量方法。
该方法的特点是简单、实用、便捷。
平面测量方法主要是用在隧道洞前期的工程中,在开挖隧道之前要对其进行科学测量与区域划分,为开挖做好精确的数据准备工作。
隧道工程洞内测量控制方法及精度控制方法分析
隧道工程洞内测量控制方法及精度控制方法分析摘要:随着城市化进程的速度不断推进,大量人口涌入市区,加快公共交通建设刻不容缓,为了满足生活需要,更多的地下工程必须建设,就服务于工程建设的测绘而言地面下的工程测量方法等同于地上。
隧道施工对测量要求比较高,本文主要讲述了隧道工程洞内测量控制方法和精度控制方法。
关键词:控制测量;精度控制;误差一、引言在我国隧道施工中有很多的测量方法,每个方法对精度的要求都很高,相对测量来说控制测量误差和提高测量精度是可以直接影响隧道工程质量,一般来说中长隧道工程是比较常见的隧道工程,为了达到隧道工程测量规范所要求的,在进行施工前就需要提前设计好比较合理的测绘方法,确定好精度指标,制定好测量方案。
二、隧道工程的误差贯通误差是指隧道贯通点在水平面的横向误差和竖直面上的纵向偏差。
在隧道施工中,由于地面控制测量、联系测量、地下控制测量及细部放样的误差的影响,使得两个相向施工的贯通面、单向施工的贯通面与预留面的施工中线不能理想衔接,从而产生错开现象—贯通误差。
贯通误差反映在平面位置上包括横向贯通误差及纵向贯通误差,反映在高程上为高程贯通误差。
三、隧道工程洞内控制测量与精度控制在隧道工程洞内控制测量精度的高低就直接影响到贯通的精度,为保证隧道在允许误差范围内贯通,我们要做得第一件是就是对隧道里面的控制测量进行规划设计,在隧道没有贯通之前根据已经测试的结果进行精度评估,不同的控制测量要采用不一样的测量方案,隧道工程施工过程中,利用测量控制隧道挖掘的正确方向,贯通控制在误差的范围内,确保隧道工程顺利完工。
在洞内进行控制测量洞内和洞外联合在一起同时展开的,这些措施主要有:隧道内平面控制测量、隧道贯通精度要求和隧道高程控制测量。
贯通误差测量评定标准及相关要求平面和高程贯通误差必须满足:平面横向贯通误差≤100mm,纵向L/5000(L 为两开挖洞口之间的距离);高程贯通误差≤50mm。
总贯通中误差的允许值取极限误差的一半。
隧道洞内控制点虚拟双导线测量浅谈
隧道洞内控制点虚拟双导线测量浅谈发布时间:2022-11-21T03:43:20.302Z 来源:《建筑设计管理》2022年13期作者:蒲博[导读] 通常情况下,隧道的施工过程比较复杂,为了提高施工的安全性,所以在整个过程中,都要实施的进行数据和实际环境变化的测量,重点测量挖掘、二衬、仰拱过程中的洞口边仰坡放样以及隧道贯通等参数数据是否符合标准,这些是测量工作的重点。
蒲博中交二公局第六工程有限公司陕西西安 710000摘要:通常情况下,隧道的施工过程比较复杂,为了提高施工的安全性,所以在整个过程中,都要实施的进行数据和实际环境变化的测量,重点测量挖掘、二衬、仰拱过程中的洞口边仰坡放样以及隧道贯通等参数数据是否符合标准,这些是测量工作的重点。
从上述分析角度探究本研究为保证测量精确性所作出的一些探究首先介绍了测量方法和优化的措施,然后分析了其它的测量方法,并详细介绍了测量的流程,最后对本文的内容进行了总结,确定本研究所存在的不足及其研究关键点,以便后续研究可以就此展开理论性参考和研究。
关键词:控制点复测;放样;新技术一、隧道洞内控制点测量方法改进方向1、隧道内控制点布设隧道中设置了双导线,并形成了一个闭合环,但是选点难度大,埋设点位也相对多,因此整个布设成本相对较高。
2、隧道内数据采集隧道内测量效率很低,这是由于视线和场地受限,需要清理障碍物、使用照明设备等工作导致测量施工效率受到影响。
3、内业成果处理当前的测量软件已经相对成熟,尤其是EIXEL软件中的平差功能与南方测绘软件平差功能并无明显的结果差异。
本研究重点探究隧道内控制方案,采用虚拟化双导线测量方法,既能够解决技术缺陷,也能够对控制网进行精准控制,缩小隧道贯通误差,为施工提供保障。
二、隧道内虚拟双导线测量关键控制要点技术及创新1、关键控制要点在进行测量的过程中,通常情况下,将传统的和业内虚构的支导线进行结合,按照相应的标准组成一根虚拟双导线,然后在相关的规则下进行外部结构的测量,同时对得到的数据进行及时的处理,得到更加准确的数据和控制的效果,提高了测量的灵活性,大大降低了测量的成本,同时得到的测量结果也更加的准确,能够客观公正的结局在测量过程中,遇到的测量问题,提高测量的精确性,大大促进施工过程的顺利进行,提高整个施工技术的快速发展,保障了施工过程的顺利进行。
隧道控制测量技术方案
隧道控制测量技术方案1. 引言隧道建设是现代交通基础设施建设中的重要组成部分,隧道的安全和控制是保障交通安全的关键。
本文将介绍一种针对隧道控制的测量技术方案,该方案能够实时监测隧道内部的状态,并根据实时数据采取相应的控制措施,以确保隧道的安全运行。
2. 技术原理隧道控制测量技术方案主要基于传感器的应用,通过采集各种传感器所测得的数据,并对数据进行处理和分析,从而实现对隧道内部环境的监测和控制。
首先,需要部署一系列传感器来收集隧道内部各种参数的数据,例如温度、湿度、气压、烟雾等。
传感器可以采用多种技术,例如红外线传感器、压力传感器、光敏传感器等,以满足不同的测量需求。
接下来,收集到的数据将被传输到数据处理单元,该单元可以是一个专门的服务器或控制器。
在数据处理单元中,数据将被分析和处理,以确定隧道的状态和变化趋势。
例如,利用温度传感器数据可以检测到隧道内部是否有异常高温的情况,利用烟雾传感器数据可以检测到是否有火灾发生。
最后,根据分析得到的数据结果,可以采取相应的控制措施来确保隧道的安全运行。
例如,当检测到异常高温时,可以立即启动通风系统来降低温度,或者触发火灾报警系统通知相关人员进行应急处理。
3. 技术方案的关键点在实施隧道控制测量技术方案时,需要注意以下几个关键点:3.1 传感器的选择和布置传感器的选择和布置直接影响到数据采集的准确性和可靠性。
在选择传感器时,需要考虑其测量范围、精度、响应速度等因素,并根据实际情况进行合理布置,以确保能够全面监测到隧道内部的状态。
3.2 数据处理和分析算法数据处理和分析算法对于准确判断隧道状态和变化趋势至关重要。
在设计数据处理单元时,需要选择合适的算法来对收集到的数据进行处理和分析,从而准确判断隧道的安全状态,并及时采取相应的控制措施。
3.3 控制系统的响应速度由于隧道内部环境可能会发生突发变化,控制系统的响应速度对于保障交通安全至关重要。
在设计控制系统时,需要考虑响应速度,并采用高效的控制算法和传输方式,以确保在最短时间内采取相应的控制措施。
长大隧道洞内控制测量
长大隧道洞内控制测量曾力锋(中铁五局测量队)摘要以西康公路秦岭终南山特长隧道中铁五局管段东线洞内控制测量为例,介绍长大隧道洞内控制测量的布网、施测和内业计算等方法,以及如何提高洞内控制测量精度。
关键词长大隧道洞内控制测量1 概述西康公路秦岭终南山隧道位于陕西省长安与柞水两县之间的秦岭山区,毗邻西康铁路Ⅱ线右侧,是西康公路的咽喉工程,其长度居亚洲公路隧道之首。
隧道全部在直线上,东线北口里程K64+796,与铁路Ⅱ线隧道中线间距约为120m,东线南口里程K82+816,与铁路Ⅱ线隧道中线间距约30m,全长18.020km。
中铁五局施工东线第一标段(K64+796—K67+796)正洞进口端3000m隧道,与从铁路平导施工的中铁一局第三标段(K67+796—K71+320)贯通,贯通面里程K67+796。
东线从中铁一局第三标段终止里程K71+320—K72+320为中铁五局的续建段,出口方向中线在K72+320与中铁一局衔接。
2 GPS控制网随着全球定位系统GPS测量理论与设备的不断发展,其测量功能更加完善,应用面更为广泛,几乎所有的特长隧道都以GPS作地表控制。
秦岭终南山公路隧道GPS控制网的测设由铁一院承担,采用三台Trimble4000SSE双频接收机进行,作业执行标准为《公路全球定位系统(GPS)测量规范》(JTJ/T066-98)。
控制网观测采用静态定位模式,按一级网精度进行观测,共设6个GPS点,包括铁一院原测控制点QL04、QL07,增设J1、J2、C2、Z835,其中QL04、J1、J2位于隧道进口端,QL07、C2、Z835位于出口端,相当于隧道地表控制在两洞口的投点,复测成果坐标系采用原西康铁路秦岭Ⅰ、Ⅱ线隧道的铁路施工坐标系(投影面高程976m)。
由于公路隧道平均高程与铁路隧道平均高程面接近,边长投影改正变化值很小,且便于从铁路平导施工的单位进行后续工作,因此,公路隧道的控制网采用该坐标系。
隧道洞内测量
隧道洞内测量1前言1.1工艺工法概况洞内测量的主要目的是使隧道各开挖面之间正确贯通,洞内各结构物建筑界限满足规范要求,主要测量内容有洞内控制测量、贯通测量、施工测量。
70年代以前,洞内控制测量多采用钢尺量距导线,中线测量多采用偏角法、正倒镜穿线法,断面测量一般采用皮尺花杆进行测量。
70年代以后,随红外测距仪、全站仪广泛应用于测量领域,洞内控制测量采用光电测距导线,中线放样多采用极坐标法,断面测量采用全站仪极坐标法进行测量。
1.2工艺原理在隧道洞内布设导线点,自洞外控制网向洞内导线点引测坐标、高程,保证洞内外导线点成果为统一的坐标系统,利用洞内导线点成果指导隧道的开挖、衬砌,确保相邻贯通面正确贯通,隧道几何尺寸满足界限要求。
2工艺工法特点应用全站仪导线测量测设洞内控制点坐标,水准测量或者光电测距三角高程测量测量洞内水准点高程,采用全站仪极坐标法进行施工放样和断面测量,利用常规测量仪器即可完成洞内测量任务,测量原理简单,测量工艺经济合理。
3 适用范围适用于铁路、公路、地铁、水利、水电、矿山等隧道工程洞内测量。
4 主要引用标准《铁路工程测量规范》TB10101《高速铁路工程测量规范》TB 10601《城市轨道交通工程测量规范》GB50308《公路勘测规范》JTG C10《水利水电工程测量规范(规划设计阶段)》SL 197《工程测量规范》GB 500265 洞内测量施测方法洞内控制测量采用闭合环导线施测,导线环边数为4~6条,导线环随开挖向前推进,对中短隧道洞内导线布设为平面、高程三维网,对于特长隧道,洞内高程采用高精度几何水准测量施测,中线放样和断面测量采用全站仪极坐标法施测,贯通误差的调整采用导线平差法或中线调整法进行调整。
6 工艺流程及操作要点6.1洞内测量工艺流程洞内测量主要包含洞内控制测量、贯通测量、施工测量三大部分,测量流程如下图。
图1 洞内测量工艺流程图6.2操作要点6.1.1收集资料应收集与洞内控制测量、施工放样有关的规范、标准、作业指导书等,作为测量工作的技术依据。
高速铁路长大隧道洞内导线控制测量技术分析
高速铁路长大隧道洞内导线控制测量技术分析摘要:长大隧道作为高速铁路常见的结构形式,通常会采取从两侧施工贯通方式进行施工处理,防止出现施工风险问题。
其中,测量控制作为隧道施工贯通的重要导向,通过选择合理的测量方法可以及时获取隧道相关施工数据,严加控制以及应对处理,保障高速铁路长大隧道工程建设质量安全。
针对于此,本文主要以长大隧道洞内导线控制测量为研究对象,研究分析常用的控制测量技术,对导线控制对导线控制测量重点以及注意事项,以供参考。
关键词:高速铁路;长大隧道;洞内导线;控制测量;技术分析1 高速铁路长大隧道洞内导线控制测量技术方法分析1.1全站仪测量全站仪测量方法作为高速铁路长大隧道洞内导线控制测量技术常用的方法,主要对三角测量进行充分应用,获取精确科学的数据。
在实际测量过程中,需要以GPS为首要测量边,同时还需要对隧道洞口三角网点进行布设测量,必须详细检查已知的GPS点,确认结果测定无误后才可以进一步开展洞内延伸测量工作。
其中,为确保洞内测量数据的精确性,测量人员需要对所获取到的测量数据进行详细检查。
需要注意的是,测量人员要严格控制测量时间,最好可以采用两测回以及六测回方式进行测量处理,如果是短距离测量,应优先选择两测回方式。
除此之外,整个测量过程需要加强对气压以及温度等影响因素的高度重视,必须全力排查影响因素,保障数据精确度[1]。
1.2陀螺定向测量陀螺定向测量需要借助陀螺经纬仪测量方式实现精准测量过程,通过实施一系列测量处理,可以加强对陀螺方位角的全面控制。
经过换算操作后,可以获取相对精确的隧道施工数据。
然而需要注意的是,陀螺定向测量容易受到子午线收敛角的干扰影响,导致方位角存在偏差问题。
针对于此,对于长大隧道洞内导线测量工作而言,利用完陀螺定向测量技术之后,测量人员应该对所获取到的数据进行整合处理,尽量消除子午线收敛角所带来的偏差影响[2]。
由于受陀螺经纬仪精度影响,实际作业时一般不采用这种方法。
隧洞洞内的控制测量探析
隧洞洞内的控制测量探析本文将对洞内控制测量设计进行简要的介绍,并在此基础上对提高洞内控制测量精度提出合理的建议。
标签:隧洞;控制测量;精度0 引言隧洞工程的开挖需要满足各项规范要求,除此之外,隧洞开挖对其精度方面也有严格的要求。
为了保证隧洞的贯通能够满足其精度要求,我们首先需要做的工作就是预先设计洞内的控制测量方案,在隧洞开挖且未贯通时要进行实时的测量,根据测量的结果对其精度进行估算,并根据估算结果适时地调整测量方案.本文将结合这些内容对隧洞的控制测量进行探讨。
1 洞内控制测量设计1.1 平面控制测量设计在隧洞未成功贯通之前,对洞内的平面控制测量通常采用支导线的测量方法。
在准备开挖隧洞时,首先要了解贯通精度对隧洞的方向机长度等方面的要求,并根据这些设计内导线,同时还需要估算预期误差,根据实际的测量结果和估算结果确定测量的等级,以确保隧洞贯通精度的准确性,并以此为标准对测量设备和测量方案进行合理的选择。
根据洪差传播定律,分别计算导线的测角和测方这两个独立的量。
在导线测角中,横向贯通中导线测角引起的误差myB可以表示为:在以上公式中,测角误差由mB表示,单位为S;代表的是观测点到贯通面的垂直距离平方的总和,单位为m2。
在导线测边中,横向贯通中的误差洪差为mys:在上述公式中:表示导线边长相对误差,单位是mm;表示导线边在贯通面上的投影长度平方和的总和,单位是m2。
所以,由上述的分析可以知道,导线测量中的横向贯通误差my可以表示为:上述公式是隧洞工程中用于估算横向贯通误差常用的公式。
在隧洞施工图纸上,各导线点和贯通面之间的距离Rx以及导线边在贯通面上产生的投影长度Dx,同时结合该项目工程中使用的仪器设备的精度确定测量角和边的精度mB和ms/s,代入my公式中进行计算,当my在误差允许的范围内时可以进行隧洞开挖工作,否则就要选择更加精准的仪器进行测量或是改变施工路线和相应的测量方案来重新进行计算,直到计算值满足贯通精度要求为止。
隧道洞内平面控制测量的几种方法
隧道洞内平面控制测量的几种方法
1.三角测量法:这是最常用的一种方法。
它利用三角形的性质来进行
测量,通过在隧道洞内的不同位置放置测量仪器,并测量不同位置之间的
夹角和距离,从而确定隧道洞内的平面位置和形状。
这种方法需要具备一
定的测量仪器和技术,并且需要在不同位置进行多次测量来提高测量精度。
2.高程测量法:这种方法主要用于测量隧道洞内的高程信息。
通过在
不同位置设置水平基准面,然后利用水准仪等测量仪器进行高程测量,从
而确定隧道洞内的高程位置。
这种方法需要对测量仪器和技术有一定的了解,并且需要在不同位置进行多次测量来提高测量精度。
3.平差测量法:这种方法是一种比较精确的测量方法,用于确定隧道
洞内的平面位置和形状。
它通过设置多个测量点,并利用平差原理进行数
据处理,从而确定隧道洞内的平面位置和形状。
这种方法需要对平差原理
和测量仪器有一定的了解,并且需要进行复杂的数据处理和计算。
4.增量测量法:这种方法是一种相对简单的测量方法,用于确定隧道
洞内的平面位置和形状。
它通过在不同位置放置固定测量标志物,并利用
测量仪器进行距离和角度测量,从而确定隧道洞内的平面位置和形状。
这
种方法比较适用于具有良好视野的隧道洞内。
总的来说,隧道洞内平面控制测量的方法有很多种,每种方法都有其
适用的场景和特点。
在实际工程中,通常会根据具体的情况选择合适的测
量方法,并结合多种方法进行综合测量,以达到较高的测量精度和可靠性。
隧道工程测量学习资料-洞内控制测量
洞内导线的起点通常都设在隧道洞口、平行坑道口、横 洞或斜井口等处,它们的坐标在进行地面控制测量时测定。 导线控制的形式灵活,点位易于选择,测量工作也较简单, 而且有多种检核方法;当组成导线闭合环时,角度经过平差 ,还可提高点位的横向精度。
洞内导线与洞外导线相比,具有以下特点:洞内导线是 随着隧道的开挖逐渐向前延伸的,故只能敷设支导线或狭长 形导线环,而不可能将全部导线一次测完;导线的形状完全 取决于隧道的形状;导线点的埋石顶面应比洞内地面低20~ 30 cm,上面加设护盖,填平地面,以免施工中遭受破坏。
图4-6 隧道底板上导线点标志
图4-7 隧道内施工导线点标志
图4-8 隧道边墙施工Байду номын сангаас制导线点固定标志
图4-19 盾构隧道地下导线点布设
4.1.5 导线作洞内控制时的注意事项
采用导线形式作洞内控制,测量时,应注意以下几点。 (1)每次在建立新点之前,必须检测前一个老点的稳定性 ,只有在确认老点没有发生变动时,才能用它来发展新点。 (2)尽量形成闭合环、两条路线的坐标比较、实量距离与 反算距离的比较等检查条件,以免发生错误。 (3)导线应尽量布设为长边或等边,一般直线地段不短于 200 m,曲线地段不宜短于70 m。 (4)洞内丈量工具在使用前应与洞外控制网丈量工具比长。
图4412水准点在洞顶时测定高程当隧道贯通之后应在贯通面附近设立一个水准点求出相向两条水准路线的高程贯通误差如在允许范围内则可按以水准路线长度的倒数为权的加权平均值作为该水准点的最后高程并在未衬砌地段进行调整
洞内平面控制测量 洞内高程控制测量
地面控制测量完成后,通过竖井联系测量,把 地面控制点的坐标和方位及高程传递到隧道内,随 着隧道开挖向前延伸,洞内布设的控制点也向前延 伸,需要进行洞内控制测量来指导施工放样测量。 一般情况下洞内控制测量分为洞内平面控制测量和 洞内高程控制测量。
浅谈长大隧道洞内短边控制测量技术
浅谈长大隧道洞内短边控制测量技术摘要]长大隧道洞内控制测量理应严格按照测量设计进行。
但实际施工中,往往由于地质条件、施工环境等特殊原因,导致洞内控制网布设无法按照测量设计开展。
本文以某铁路隧道洞内遇大型溶洞设迂回导坑绕过溶洞进行的洞内控制测量为例,浅谈短边导线控制长大隧道测量技术。
[关键词]长大隧道;双导线;旁点导线;短边随着“十二五综合交通运输体系规划”的出台,国内铁路建设进入高速发展期,尤其对交通资源相对落后的大山地区,铁路建设步伐逐步加快,越来越多的长大隧道参与建设,长大隧道控制测量技术成为一门较热的研究课题。
近年来,长大隧道洞外控制网测量已经有高精度GPS 控制网,且洞外GPS 控制网点数量较少,引起的贯通误差越来越小,因此,长大隧道洞内控制网精度的高低对隧道的贯通起着举足轻重的作用。
一、工程概况某直线隧道进口里程K34+650,出口里程K40+946,全长6296m,为单洞单线隧道,设平行导坑。
隧道埋深最浅2.3m,最深180m。
在平行导坑K35+319 处有一特大溶洞,采用迂回导坑绕过溶洞施工方案。
图一、迂回导坑示意图二、问题提出隧道贯通时,会存在横向、纵向和高程三维贯通误差,贯通误差由洞外控制网和洞内控制网误差综合引起。
直线隧道的横向贯通误差更多的由方位角传递,一般采取增长导线边长的方法来减少方位角传递误差,所以导线边长不应短于测量设计,且要兼顾照准视线清晰,往往边长取300 米~400 米为宜。
长大隧道洞内控制测量传统方法通常是布设旁点导线或双导线。
双导线由多个多边形闭合环构成,每个环由4~6 条边构成,通过检测闭合环的角度闭合差和导线全长相对闭合差,来检验导线观测数据的可靠性。
长大隧道传统控制网布设形式如下图:图二:常用长大隧道洞内控制网示意图而在该隧道里,当平行导坑掘进离进口约700 米处,遇一特大溶洞,因处理溶洞时间漫长,特设迂回导坑绕过溶洞后再进入平行导坑继续向前掘进。
当采用传统洞内双导线测量方法测量到溶洞处时,导线需折入迂回导坑再向前推进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
隧道洞内控制测量分析
摘要:本文探析为了保证隧道的贯通精度而进行的洞内控制测量的设计、精度估算及提高贯通精度的测量方法。
关键词:控制测量、设计、精度估算、方法
1引言
对隧道工程的开挖,在各种规范中的要求很多,精度也要求比较高,特别是对有些管道及特种工程的隧道。
对施工单位而言,洞内控制测量精度的高低就直接影响到贯通的精度,为保证隧道在允许精度内贯通,我们首先要对洞内控制测量进行设计,在未贯通前对已施测的测量成果要进行相应的精度估算,为保证相应的控制测量精度还要采取相应的测量方案,下面就这几方面结合我分部管区内的重点控制工程“紫岭隧道”进行相应的探析。
2洞内控制测量设计
2.1平面控制测量设计
洞内平面控制测量在未贯通前都是支导线和或附合导线环。
当接到隧道工程开挖任务时,首先要根据洞室单向、对向或多向开挖长度及设计贯通精度要求,对洞内导线进行设计,估算预期的误差、确定导线施测的等级,以保证洞室开挖轴线的正确性,即贯通精度,更为合理、经济的选择测量设备及测量方案。
根据隧道设计开挖图,按一定比例尺在CAD或图纸上绘出隧道开挖平面图及贯通面位置,充分考虑开挖施工时洞内的测量环境(如通视条件及出渣等对测量的影响)、以及测量精度的提高,合理的选出导线点位置,并展于图上。
支导线的终点是支导线精度的最弱点,横向贯通中误差是由导线测角误差及导线边长误差所引起,而横向贯通中误差主要影响隧洞的贯通精度,下面主要分析横向贯通中误差。
根据误差传播定律,导线测角及测边是相互独立的两个量,则可得导线测角中误差所引起的横向贯通中误差m yβ为:
m yβ= ±mβ/ρ∑R X2 2.1.1
式中:mβ—导线测角中误差(s);
∑R x2—观测角度的导线点到贯通面的垂直距离平方的总和(m2)。
导线测边误差所引起的横向贯通中误差为m yl:
m yl= ±m l/L√∑Dy2 2.1.2 式中:m l/L—导线边长相对中误差( mm);
∑Dy2—各导线边在贯通面上的投影长度平方和的总和(m2)。
那么,导线测量误差在贯通面上所引起的横向贯通中误差my为:
m y=±√m yβ2+m yl2 2.1.3
在绘制好的略图上量取各个导线点到贯通面的距离Rx和各导线边在贯通面上的投影长度Dx,再根据本工程项目所投入的仪器设备精度确定测角中误差mβ和测量边长的精度m l/L,代入2.1.3式中计算,当m y小于隧洞横向贯通中误差允许值时则可进行,否则应选择符合精度要求的仪器设备或调整线路及测量方案等重新计算,直至满足贯通精度要求。
2.1.3式也可根据本单位的仪器设备及技术水平,假设其中的一个mβ或m l/L值来求另外一个参数。
根据选定的mβ和m l/L值来确定导线测量的等级,并严格按确定的等级技术要求进行施测,来指导隧道的断面位置开挖。
我分部负责紫岭隧道出口1800m的施工任务(全长2424m),由于洞外控制导线的强度本身不高,为保证施工精度,同时考虑到测量与施工的交叉影响,洞内平面布设为主、副导线相闭合的导线环,其中主导线为控制导线,副导线只参与精度评定。
以下是模拟贯通测量的精度估算计算过程:
2.1.1仪器选用
按四等导线要求选用J2级全站仪对平面角度进行不小于4 测回观测,使其测角精度小于2.5秒,测距精度小于1/5000。
2.1.2布点
紫岭隧道为双线铁路隧道,曲线半径大(6000),且洞内衬砌后半径不小于12M,故主导线点布于隧道中线附近,边长控制在300米左右。
贯
通
面
2.1.3精度估算
洞内导线测量误差对横向贯通精度影响值计算表
将以上数据及测角中误差mβ=±2.5",测边相对中误差m l/L=1/5000代入2.1.1及2.1.2 可得:m yβ=±2.5/206265√11800100=±42mm
m yl=±1/5000√320,5=±4mm
将两数代入2.1.3 则:
m y=±√(m yβ2+ m yl2)=±42.2mm
根据《测规》要求,两开挖洞口的长度小于4km时,其横向贯通误差应小于±50mm,现估算值为±42.2mm,故可认为设计的施测精度能够满足贯通精度的要求,设计是比较合理的,若想进一步提高精度,可通过提高仪器等级、采用更多的测回数来提高横向贯通误差。
2.2高程控制测量设计
高程贯通误差通常是根据水准测量或三角高程测量误差引起的,一般引用竖向贯通中误差来确定高程控制测量的等级。
m h=±m△√L 2.2.1
式中:mh--竖向贯通中误差;
L—洞内高程测量路线的全长,km;
m△--按测段往返测的高差不符值计算的每公里高差中数的偶然中误差,mm;
由2.1.1式得:
m△=mh/√L 2.2.2 式中L可根据图上拟定的路线量取或取1.5~2倍洞轴线的长度。
根据测规要求,其高程贯通误差均为±50mm,并取L=4.8 (2倍的洞长),得:
m△ = ±50/√4.8=±22.3mm
确定水准路线方案后,在表1中查取大于或等于根据2.2.2式计算出m△的数值,选取相应的高程控制测量等级。
表1:水准测量的精度(摘录)
故五等水准能满足紫岭隧道洞内的高程贯通误差要求。
确定高程测量的等级后,选取方便施测、经济合理,又能保证高程传递精度的测量方法,如水准测量、三角高程测量,严格按相应的技术要求进行施测。
以上分析的洞内控制测量设计计算方法适应于相向开挖长度为8km以内的隧道开挖,也可作为相向开挖长度超过8km洞内平面控制测量的专门技术设计,但为保证设计贯通精度要求,洞内导线还应进行提高精度的特别技术设计,如采用陀螺经纬仪加测方位角,检测测角中的粗差及控制测角误差的累积;选取合理的导线路线方案;改善测量环境、测量设备等方法。
3提高洞内控制测量精度的几点建议
3.1严格按设计的控制测量等级相关技术要求进行施测,施测中尽量采用三联脚架法,但要注意各基座与棱镜及仪器有无隙动、气泡有无偏离、对中偏离是否较大等等,如有上述情况则要对仪器进行检修校正,找出问题所在;
3.2隧道每开挖到一定长度时要及时增设基本导线点,指导开挖的临时点要控制在2至3个以内,且要进行经常性的检测其正确性,确保洞室开挖的正确;
3.3隧道每开挖到一定阶段或一定长度时要及时对导线进行检测、复测及精度估算,对因其它原因而改变设计路线方案时要对精度进行估算;
3.4导线要尽可能布设成近似等边直伸型导线,在测量环境允许范围内尽可能的选长边;
3.5要严格进行边长的投影计算,正确计算各点平面坐标;
3.6三角高程测量时,要严格按操作程序进行,如垂直角的观测要同测距在同一次照准时完成,对于三角高程等级在四等或高于四等时则要采取一些提高精度的措施进行施测,如隔点设站法、提高对中精度等等;
3.7对贯通面较多的隧道,要考虑到隧洞全部贯通后的轴线情况,对洞内有二次衬砌时,还要对相向开挖的两条导线进行附合,并进行贯通误差分配或平差处理,保证洞内二次衬砌形体的正确。
参考资料:
《新建铁路工程测量规范》 TB10101—99
《铁路工程测量》西南交通大学。