[试卷合集3套]南京某大学附属中学2021届中考统考数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()
A.1200012000
100 1.2
x x
=
+
B.
1200012000
100
1.2
x x
=+
C.1200012000
100 1.2
x x
=
-
D.
1200012000
100
1.2
x x
=-
【答案】B
【解析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,
【详解】设学校购买文学类图书平均每本书的价格是x元,可得:1200012000
100
1.2
x x
=+
故选B.
【点睛】
此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.2.一个几何体的三视图如图所示,则该几何体的表面积是()
A.24+2πB.16+4πC.16+8πD.16+12π
【答案】D
【解析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.
【详解】该几何体的表面积为2×1
2
•π•22+4×4+
1
2
×2π•2×4=12π+16,
故选:D.
【点睛】
本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.3.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a +2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )
A.①②B.②③C.②④D.①③④
【答案】C
【解析】试题分析:根据题意可得:a0,b0,c0,则abc0,则①错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.
点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.
4.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –1
4
④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是( )
A.①②③B.①③⑤C.②③④D.②④⑤
【答案】D
【解析】根据实数的运算法则即可一一判断求解.
【详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中
2–2= 1
4
,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.
故选D.
5.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;
④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
A.4个B.3个C.2个D.1个
【答案】B
【解析】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;
∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确; ∵x=﹣
2b
a
=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误; ∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故选:B . 【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.
6.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )
A .AC =AD ﹣CD
B .A
C =AB+BC C .AC =B
D ﹣AB D .AC =AD ﹣AB
【答案】C
【解析】根据线段上的等量关系逐一判断即可. 【详解】A 、∵AD-CD=AC , ∴此选项表示正确; B 、∵AB+BC=AC , ∴此选项表示正确; C 、∵AB=CD , ∴BD-AB=BD-CD , ∴此选项表示不正确; D 、∵AB=CD , ∴AD-AB=AD-CD=AC , ∴此选项表示正确. 故答案选:C. 【点睛】
本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系. 7.如图,已知▱ABCD 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么S △AFE :S 四边形FCDE 为( )
A .1:3
B .1:4
C .1:5
D .1:6
【答案】C
【解析】根据AE ∥BC ,E 为AD 中点,找到AF 与FC 的比,则可知△AEF 面积与△FCE 面积的比,同时因为△DEC 面积=△AEC 面积,则可知四边形FCDE 面积与△AEF 面积之间的关系. 【详解】解:连接CE ,∵AE ∥BC ,E 为AD 中点, ∴
1
2
AE AF BC FC == . ∴△FEC 面积是△AEF 面积的2倍. 设△AEF 面积为x ,则△AEC 面积为3x , ∵E 为AD 中点,
∴△DEC 面积=△AEC 面积=3x . ∴四边形FCDE 面积为1x , 所以S △AFE :S 四边形FCDE 为1:1.
故选:C . 【点睛】
本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系. 8.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )
A .10001000
30x x -+=2 B .
10001000
30x x -+=2 C .10001000
30
x x --=2 D .10001000
30x x
--=2 【答案】A
【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.
详解:设原计划每天施工x 米,则实际每天施工(x+30)米,
根据题意,可列方程:10001000
30
x x -+=2, 故选A .
点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程. 9.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cm C .13cm ,12cm ,20cm D .5cm ,5cm ,11cm 【答案】C
【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析. 【详解】A 、3+4<8,不能组成三角形; B 、8+7=15,不能组成三角形; C 、13+12>20,能够组成三角形; D 、5+5<11,不能组成三角形. 故选:C . 【点睛】
本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.
10.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x ﹣k )2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )
A .球不会过网
B .球会过球网但不会出界
C .球会过球网并会出界
D .无法确定
【答案】C
【解析】分析:(1)将点A(0,2)代入2
(6) 2.6y a x =-+求出a 的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.
详解:根据题意,将点A(0,2)代入2
(6) 2.6y a x =-+, 得:36a+2.6=2, 解得:1
60
a ,=-
∴y 与x 的关系式为21
(6) 2.660
y x =--+; 当x=9时,()2
196 2.6 2.45 2.4360
y =-
-+=>,
∴球能过球网, 当x=18时,()2
1186 2.60.2060
y =--+=>,
∴球会出界. 故选C.
点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围. 二、填空题(本题包括8个小题)
11.若正六边形的内切圆半径为2,则其外接圆半径为__________. 【答案】
43
【解析】根据题意画出草图,可得OG=2,60OAB ∠=︒,因此利用三角函数便可计算的外接圆半径OA.
【详解】
解:如图,连接OA 、OB ,作OG AB ⊥于G ; 则2OG =,
∵六边形ABCDEF 正六边形, ∴
OAB 是等边三角形,
∴60OAB ∠=︒,
∴
43
sin 6033
OG OA =
==︒, ∴正六边形的内切圆半径为243
. 43
. 【点睛】
本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.
12.在△ABC 中,∠C =30°,∠A ﹣∠B =30°,则∠A =_____. 【答案】90°.
【解析】根据三角形内角和得到∠A+∠B+∠C =180°,而∠C =30°,则可计算出∠A+∠B+=150°,由于∠A ﹣∠B =30°,把两式相加消去∠B 即可求得∠A 的度数. 【详解】解:∵∠A+∠B+∠C =180°,∠C =30°, ∴∠A+∠B+=150°, ∵∠A ﹣∠B =30°, ∴2∠A =180°, ∴∠A =90°. 故答案为:90°. 【点睛】
本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.
13.如图,已知点A (a ,b ),0是原点,OA=OA 1,OA ⊥OA 1,则点A 1的坐标是 .
【答案】(﹣b ,a )
【解析】解:如图,从A 、A 1向x 轴作垂线,设A 1的坐标为(x ,y ),
设∠AOX=α,∠A 1OD=β,A 1坐标(x ,y )则α+β="90°sinα=cosβ" cosα="sinβ" sinα==cosβ=
同理cos α=
=sinβ=
所以x=﹣b ,y=a , 故A 1坐标为(﹣b ,a ).
【点评】重点理解三角函数的定义和求解方法,主要应用公式sinα=cosβ,cosα=sinβ. 14.分解因式:4m 2﹣16n 2=_____. 【答案】4(m+2n )(m ﹣2n ).
【解析】原式提取4后,利用平方差公式分解即可. 【详解】解:原式=4(224m n - )()()422m n m n =+-.
故答案为()()422m n m n +- 【点睛】
本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.
15.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x 作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x 的取值范围是_____.
【答案】12
x ≤
【解析】通过找到临界值解决问题. 【详解】由题意知,令3x-1=x ,
x=1
2
,此时无输出值 当x >1
2时,数值越来越大,会有输出值;
当x <1
2时,数值越来越小,不可能大于10,永远不会有输出值
故x≤12
,
故答案为x≤1
2
.
【点睛】
本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题. 16.将一副三角尺如图所示叠放在一起,则
BE
EC
的值是 .
【答案】
33
【解析】试题分析:∵∠BAC=∠ACD=90°,∴AB ∥CD . ∴△ABE ∽△DCE .∴
BE AB
EC CD
=. ∵在Rt △ACB 中∠B=45°,∴AB=AC . ∵在RtACD 中,∠D=30°,∴AC
CD 3AC tan30==︒
.
∴
BE AB 3
EC CD 3
3AC ===
.
17.如图,矩形ABCD 中,BC =6,CD =3,以AD 为直径的半圆O 与BC 相切于点E ,连接BD 则阴影部分的面积为____(结果保留π)
【答案】
94
π. 【解析】如图,连接OE ,利用切线的性质得OD=3,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD -S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积. 【详解】连接OE ,如图,
∵以AD 为直径的半圆O 与BC 相切于点E , ∴OD =CD =3,OE ⊥BC , ∴四边形OECD 为正方形,
∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =32
﹣
2
903360
π⋅⋅994π=-, ∴阴影部分的面积199369244ππ⎛
⎫=
⨯⨯--= ⎪⎝
⎭, 故答案为9
4
π. 【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.
18.Rt △ABC 中,∠ABC=90°,AB=3,BC=4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____. 【答案】3.1或4.32或4.2
【解析】在Rt △ABC 中,通过解直角三角形可得出AC=5、S △ABC =1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.
【详解】在Rt △ABC 中,∠ACB=90°,AB=3,BC=4,
∴2
2
AB BC +=5,S △ABC =
1
2
AB•BC=1. 沿过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,有三种情况: ①当AB=AP=3时,如图1所示,
S等腰△ABP=AP
AC
•S△ABC=
3
5
×1=3.1;
②当AB=BP=3,且P在AC上时,如图2所示,
作△ABC的高BD,则BD=
·34
2.4
5
AB BC
AC
⨯
==,
∴AD=DP=22
3 2.4
-=1.2,∴AP=2AD=3.1,
∴S等腰△ABP=AP
AC •S△ABC=
3.6
5
×1=4.32;
③当CB=CP=4时,如图3所示,
S等腰△BCP=CP
AC
•S△ABC=
4
5
×1=4.2;
综上所述:等腰三角形的面积可能为3.1或4.32或4.2,
故答案为:3.1或4.32或4.2.
【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.
三、解答题(本题包括8个小题)
19.画出二次函数y=(x﹣1)2的图象.
【答案】见解析
【解析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【详解】列表得:
x …﹣1 0 1 2 3 …
y … 4 1 0 1 4 …
如图:
.
【点睛】
此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.
20.如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.
【答案】(1)1
4
;(2)
1
6
.
【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可得解.
【详解】(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,∴抽到的卡片既是中心对称图形又是轴对称图形的概率是1
4
;
(2)根据题意画出树状图如下:
一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,
所以,P(抽出的两张卡片的图形是中心对称图形)
21 126
=.
【点睛】
本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
21.如图,在等边三角形ABC中,点D,E分别在BC, AB上,且∠ADE=60°.求证:△ADC~△DEB.
【答案】见解析
【解析】根据等边三角形性质得∠B=∠C,根据三角形外角性质得∠CAD=∠BDE,易证ADC DEB. 【详解】证明:∆ABC是等边三角形,
∴∠B=∠C=60°,
∴∠ADB=∠CAD+∠C= ∠CAD+60°,
∵∠ADE=60°,
∴∠ADB=∠BDE+60°,
∴∠CAD=∠BDE,
∴ ADC DEB
【点睛】
考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.
22.已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A 关于该抛物线对称轴的对称点是B 点,且抛物线与y 轴的交点是C 点,求△ABC 的面积.
【答案】(1)y =-12
(x -3)2+5(2)5 【解析】(1)设顶点式y=a (x-3)2+5,然后把A 点坐标代入求出a 即可得到抛物线的解析式; (2)利用抛物线的对称性得到B (5,3),再确定出C 点坐标,然后根据三角形面积公式求解.
【详解】(1)设此抛物线的表达式为y =a(x -3)2+5,
将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得12a =-,
∴此抛物线的表达式为21(3) 5.2
y x =--+ (2)∵A(1,3),抛物线的对称轴为直线x =3,
∴B(5,3).
令x =0,211(3)522y x =--+=,则1(0)2
C ,, ∴△ABC 的面积11(51)3 5.22⎛⎫=
⨯-⨯-= ⎪⎝⎭ 【点睛】
考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.
23.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点.在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段11A B (点A ,B 的对应点分别为11A B 、).画出线段11A B ;将线段11A B 绕点1B 逆时针旋转90°得到线段21A B .画出线段21A B ;以
112A A B A 、、、为顶点的四边形112AA B A 的面积是 个平方单位.
【答案】(1)画图见解析;(2)画图见解析;(3)20
【解析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;
(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;
(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.
【详解】(1)如图所示;
(2)如图所示;
(3)结合网格特点易得四边形AA1 B1 A2是正方形,
AA1=22
4225
+=,
所以四边形AA1 B1 A2的面积为:()2
25=20,
故答案为20.
【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点
的对应点是作图的关键.
24.解方程(2x+1)2=3(2x+1)
【答案】x1=-1
2
,x2=1
【解析】试题分析:分解因式得出(2x+1)(2x+1﹣3)=0,推出方程2x+1=0,2x+1﹣3=0,求出方程的解即可.
试题解析:解:整理得:(2x+1)2-3(2x+1)=0,分解因式得:(2x+1)(2x+1﹣3)=0,即2x+1=0,2x+1
﹣3=0,解得:x1=﹣1
2
,x2=1.
点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大.
25.如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P 的度数.
【答案】65°
【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,
∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.
∵AP平分∠EAB,
∴∠PAB=12∠EAB.
同理可得,∠ABP=1
2
∠ABC.
∵∠P+∠PAB+∠PBA=180°,
∴∠P=180°-∠PAB-∠PBA=180°-1
2
∠EAB-
1
2
∠ABC=180°-
1
2
(∠EAB+∠ABC)=180°-
1
2
×230°=65°.
26.为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物
8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:
药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药
物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?
【答案】(1)()3084{?48(8)x x y x x
≤≤=>;(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的. 【解析】(1)药物燃烧时,设出y 与x 之间的解析式y=k 1x ,把点(8,6)代入即可,从图上读出x 的取值范围;药物燃烧后,设出y 与x 之间的解析式y=2k x
,把点(8,6)代入即可; (2)把y=1.6代入反比例函数解析式,求出相应的x ;
(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x ,两数之差与10进行比较,大于或等于10就有效.
【详解】解:(1)设药物燃烧时y 关于x 的函数关系式为y=k 1x (k 1>0)代入(8,6)为6=8k 1 ∴k 1=34
设药物燃烧后y 关于x 的函数关系式为y=2k x (k 2>0)代入(8,6)为6=2k 8
, ∴k 2=48 ∴药物燃烧时y 关于x 的函数关系式为3y x 4=
(0≤x≤8)药物燃烧后y 关于x 的函数关系式为48y x =(x >8) ∴()30x 84y 48(8)x
x x ⎧≤≤⎪⎪⎨=⎪>⎪⎩ (2)结合实际,令48y x =
中y≤1.6得x≥30 即从消毒开始,至少需要30分钟后生才能进入教室.
(3)把y=3代入3y x 4=
,得:x=4 把y=3代入48y x
=
,得:x=16 ∵16﹣4=12
所以这次消毒是有效的.
【点睛】
现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
x x+=的根是()
1.方程(2)0
A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=2
【答案】C
【解析】试题解析:x(x+1)=0,
⇒x=0或x+1=0,
解得x1=0,x1=-1.
故选C.
2.下列图案中,是轴对称图形的是()
A.B.C.D.
【答案】B
【解析】根据轴对称图形的定义,逐一进行判断.
【详解】A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.
故选B.
【点睛】
本题考查的是轴对称图形的定义.
3.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()
A.B.C.D.
【答案】C
【解析】根据左视图是从左面看所得到的图形进行解答即可.
【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.
故选:C.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
4.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,
若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )
A .22x=16(27﹣x )
B .16x=22(27﹣x )
C .2×16x=22(27﹣x )
D .2×22x=16(27﹣x )
【答案】D
【解析】设分配x 名工人生产螺栓,则(27-x )人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x ),故选D.
5.如图,在△ABC 中,∠C=90°,点D 在AC 上,DE ∥AB ,若∠CDE=165°,则∠B 的度数为( )
A .15°
B .55°
C .65°
D .75°
【答案】D 【解析】根据邻补角定义可得∠ADE=15°,由平行线的性质可得∠A=∠ADE=15°,再根据三角形内角和定理即可求得∠B=75°.
【详解】解:∵∠CDE=165°,∴∠ADE=15°,
∵DE ∥AB ,∴∠A=∠ADE=15°,
∴∠B=180°﹣∠C ﹣∠A=180°﹣90°﹣15°=75°,
故选D .
【点睛】
本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键.
6.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )
A .0abc >
B .20a b +<
C .30a c +<
D .230ax bx c ++-=有两个不相等
的实数根
【答案】C 【解析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2b a
-=1,可得2a+b=0;当x=-1时图象在x 轴
下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.
【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误;
∵对称轴x=2b a
-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确;
∵抛物线的顶点为(1,3),
∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误,
故选C.
【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2b a
-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.
7.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米
A 5
B 3
C 5
D .3
【答案】C 【解析】由题意可知,AC=1,AB=2,∠CAB=90°
据勾股定理则2222125AC AB +=+=;
∴AC+BC=(5m.
答:树高为(5
故选C.
8.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )
A .平均数
B .中位数
C .众数
D .方差
【答案】D
【解析】解:A .原来数据的平均数是2,添加数字2后平均数仍为2,故A 与要求不符;
B .原来数据的中位数是2,添加数字2后中位数仍为2,故B 与要求不符;
C .原来数据的众数是2,添加数字2后众数仍为2,故C 与要求不符;
D .原来数据的方差=22
2(12)2(22)(32)4-+⨯-+-=12, 添加数字2后的方差=222(12)3(22)(32)5
-+⨯-+-=25, 故方差发生了变化.
故选D .
9.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )
A .
B .
C . D
【答案】D
【解析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x 的取值范围,然后选择即可.
【详解】由题意得,2x+y=10,
所以,y=-2x+10,
由三角形的三边关系得,()2210210x x x x x -+--+⎧⎨⎩
>①<②, 解不等式①得,x >2.5,
解不等式②的,x <5,
所以,不等式组的解集是2.5<x <5,
正确反映y 与x 之间函数关系的图象是D 选项图象.
故选:D .
10.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )
A .4个
B .3个
C .2个
D .1个
【答案】B 【解析】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;
∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确;
∵x=﹣2b a
=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;
∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.
故选:B .
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.
二、填空题(本题包括8个小题)
11.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m ,两侧离地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞的高度为_______m .(精确到0.1m )
【答案】9.1
【解析】建立直角坐标系,得到二次函数,门洞高度即为二次函数的顶点的纵坐标
【详解】如图,以地面为x 轴,门洞中点为O 点,画出y 轴,建立直角坐标系
由题意可知各点坐标为A (-4,0)B (4,0)D (-3,4)
设抛物线解析式为y=ax 2+c (a≠0)把B 、D 两点带入解析式 可得解析式为2464y 77x =-
+,则C (0,647) 所以门洞高度为647
m≈9.1m
【点睛】
本题考查二次函数的简单应用,能够建立直角坐标系解出二次函数解析式是本题关键
12.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.
【答案】4.4×1
【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.
详解:44000000=4.4×1,
故答案为4.4×1.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.
13.如果抛物线y =(k ﹣2)x 2+k 的开口向上,那么k 的取值范围是_____.
【答案】k >2
【解析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数k ﹣2>1.
【详解】因为抛物线y =(k ﹣2)x 2+k 的开口向上,
所以k ﹣2>1,即k >2,
故答案为k >2.
【点睛】
本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.
14.因式分解:3x 2-6xy+3y 2=______.
【答案】3(x ﹣y )1
【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x 1﹣6xy+3y 1=3(x 1﹣1xy+y 1)=3(x ﹣y )1.
考点:提公因式法与公式法的综合运用
15.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.。