汽液传质设备.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章汽液传质设备
本章学习要求
1.熟练掌握的内容
板式塔内气液流动方式;板式塔塔板上气液两相非理想流动;板式塔的不正常操作,全塔效率和单板效率;板式塔塔高和塔径的计算;填料塔内流体力学特性;气体通过填料层的压降;泛点气速的计算;填料塔塔径的计算。
2.理解的内容
板式塔的主要类型与结构特点,板式塔塔板上气液两相接触状况;筛板塔溢流装置的设计及踏板板面布置;筛板塔塔板校核;筛板塔负荷性能图的绘制及其作用;填料塔的结构;填料及其特性。
3.了解的内容
气液传质设备类型与基本要求;填料塔的附件;板式塔与填料塔的比较。
* * * * * * * * * * * *
§9.1 气液传质设备类型与基本要求
塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。
根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。
板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。
填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。
目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。
气液传质设备的性能通常由以下几个要素表示:
1.塔设备的生产能力或通过能力:指单位时间单位塔截面积上的处理量或气液流量。
2.传质效率:对板式塔而言,传质效率通常用塔板效率来衡量,即实际塔板与理论塔板分离能力之比;对填料塔而言,传质效率通常用传质单元高度,即完成一个传质单元所需要的填料层高度来表示。
3.流体阻力:指气体通过每层塔板或每米填料层高度的压降。
4.塔设备的操作弹性:指最大气速负荷与最小气速负荷之比,其值的大小表明塔对负荷变化的适应能力。
5.塔的设备投资与操作成本、安装及维修方便等因素。
本章重点介绍板式塔的塔板类型,分析操作特点并讨论浮阀塔的设计,同时还介绍各种类型填料塔的流体流体力学特性和计算。
§9.2 板式塔
9.2.1 板式塔主要类型的结构和特点
工业上常用的板式塔有:
泡罩塔、浮阀塔、筛板塔、穿流栅孔板塔
浮阀塔具有的优点:
生产能力大,塔板效率高,操作弹性大,结构简单,安装方便。
9.2.2 板式塔的流体力学特性
1、塔内气、液两相的流动
A 使气液两相在塔板上进行充分接触以增强传质效果
B 使气液两相在塔内保持逆流,并在塔板上使气液量相保持均匀的错流接触,以获得较大的传质推动力。
2、气泡夹带:
液体在下降过程中,有一部分该层板上面的气体被带到下层板上去,这种现象称为气泡夹带。
3、液(雾)沫夹带:
气体离开液层时带上一些小液滴,其中一部分可能随气流进入上一层塔板,这种现象称为液(雾)沫夹带。
4、液面落差
液体从降液管流出的横跨塔板流动时,必须克服阻力,故进口一侧的液面将比出口这一侧的高。此高度差称为液面落差。
液面落差过大,可使气体向上流动不均,板效率下降。
5、气体通过塔板的压力降
压力降的影响:
A 气体通过塔板的压力降直接影响到塔低的操作压力,故此压力降数据是决定蒸馏塔塔底温度的主要依据。
B 压力降过大,会使塔的操作压力改变很大。
C 压力降过大,对塔内气液两相的正常流动有影响。
压力降:ΔPP=ΔPC+ΔPL+ΔPδ
塔板本身的干板阻力ΔPC
板上充气液层的静压力ΔPL
液体的表面张力ΔPδ
折合成塔内液体的液柱高度M,则
ΔPP/L g=ΔPC/L g +ΔPL /L g +ΔPδ/L g
即hp=hc+hL+hδ
浮阀塔的压力降一般比泡罩塔板的小,比筛板塔的大。在正常操作情况,塔板的压力降以290—490 N/m2 .在减压塔中为了减少塔的真空度损失,一般约为98—245Pa 通常应在保证较高塔板效率的前提下,力求减少塔板压力降,以降低能耗及改善塔的操作性能。
6、液泛(淹塔)
汽液量相中之一的流量增大到某一数值,上、下两层板间的压力降便会增大到使降液管内的液体不能畅顺地下流。当降液管内的液体满到上一层塔板溢流堰顶之后,便漫但上层塔板上去,这种现象,称为液泛(淹塔)
如气速过大,便有大量液滴从泡沫层中喷出,被气体带到上一层塔板,或有大量泡沫生成。
如当液体流量过大时,降液管的截面便不足以使液体及时通过,于是管内液面即行升高。
上述两种情况导致液泛的情况中,比较常遇到的气体流量过大,故设计时均先以不发生过量液沫夹带为原则,定出气速的上限,在此限度内再选定一个合理的操作气速。
当气速增大到液滴所受阻力恰等于其净重时,液滴便在上升气流中处于稳定的悬浮状态。
因为d、ζ不易准确求得,
所以用C代替,即:
(1)史密斯关联图
横坐标:液气动能参数
纵坐标:C20
参数:HT-hL
(2)板间距HT
一般D<1.5m HT=0.2~0.4m
D>1.5m HT=0.4~0.6m
(3)板上液层高度hL
常压 hL=0.05~0.1m 通常取0.05~0.08m
减压 hL≤0.025m
(4)
C20:由图6—53查得的负荷稀疏值。
C:操作物系的负荷系数。
δ:操作物系的表面张力,N/m。
(5)适宜的空塔气速u,即:
u=(0.6~0.8)umax
对于直径较大、板间距较大及加压或常压操作的塔以及不易起泡物系,安全系数可取较高的数值,而对直径较小及减压操作的塔以及严重起泡的物系,安全系数应取较低的数值。
7、液沫夹带
是指板上液体被上升气流带入上一层塔板的现象。
为了保证板式塔能维持正常的操作效果,应使每千克上升气体夹埃到上一层塔板的液体联不超过0.1kg,即控制雾沫夹带量eV<0.1kg(液)/kg(气)。
影响雾沫夹带的因素很多,最主要的是空塔气速和塔板间距。对于浮阀塔板上雾沫夹带量的计算,迄今尚无适用于一般工业塔的确切公式。通常是间接地用操作时的空塔气速与发展液泛时的空塔气速的比值作为估算雾沫夹带量大小的指标。此比值称为泛点百分数或称泛点率。
在下列泛点率数值范围内,一般可保证雾沫夹带量达到规定的指标,即eV<0.1kg(液)/kg(气)。
大塔 F1<80~82%
负压塔 F1<75~77%