数学建模大赛一等奖作品Word 文档
数学建模大赛获奖作品
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):C题我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):山西省运城学院参赛队员(打印并签名) :1. 生命科学系:李磊2. 生命科学系:张敏3. 应用化学系:韩海龙指导教师或指导教师组负责人(打印并签名):日期: 2009 年 09 月 14 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号关于卫星或飞船如何合理设置测控点摘要:随着科学技术的发展,我们的航天事业也在蒸蒸日上。
许多的卫星被发射到太空,如气象卫星,地球资源卫星,通信卫星,侦查卫星等。
为了使这些卫星进行正常运作,我们要对它们进行监测和管理,这就要在地球上选择合适的监测点。
为解决这个问题我们需要建立相应的数学模型。
我们设监测站和卫星的运行轨道为,以O 为圆心的同心圆。
一个监测站监控到的范围为弧长BC ,运用正弦定理求出弧长BC 所对的角度α,运用n=απ2就解决了当所有测控站与都与卫星运行轨道共面得问题。
地球自转的同时,卫星的运行轨道也随着地球自转的方向转动,由于转动速度不一样,就有一个经度差量,我们设为S 。
我们若还按监测范围相切的那样分布,运行轨道的有些部分就监测不到,我们要求出在一定的经度差S 时,监测不到的部分d 。
数学建模全国一等奖论文-供参考
关于数码相机定位问题的数学模型摘要本文是关于系统标定中的双目定位问题,对靶标上面的特征点在像平面内进行标定。
我们首先对像图进行了灰度处理,然后通过sobel算子进行边缘检测,将像平面转化为边界处理,计算区域由二维降低为一维,显著的降低了计算量。
对于问题一,我们根据成像原理,得到像图中某些特征点和特征关系用以确定圆心,并由此建立了割线逼近模型,并且利用遍历搜索的算法进行求解。
同时,我们根据图像的边界点特征,建立了霍夫变换模型和基于K-平均算法的数学模型。
割线逼近模型主要依据物与像之间的不变的几何关系,通过寻找靶标的像图中的切线和切点来确定圆心,在求解过程中使用了灭点理论。
这种算法虽然在边界识别以及切线确定中存在误差,但它可以有效的避免对像平面上点集形状的认定。
霍夫变换以及K-平均算法都对像图中的像进行了假设,并认为物的圆心的像在像图中是具有几何特征的点(分别是圆的圆心和椭圆的中心),从而将问题转化为求像图的几何特征点。
霍夫变换把图形从坐标空间映射到参数空间,在参数空间搜索极值点来确定图形的实际参数,只要图形可以通过较少的参数来描述,该方法就可以在可接受的时间里获得较为精确的结果;而K-平均算法是模式识别中常用的聚类算法,利用该算法我们把图像中五个圆的点分为五类,对每一类求取重心点来获得其圆心所在位置。
K平均算法可以在极短时间内获得精确的圆心坐标,有着良好的性能,但对图像质量要求较高,需要对较为严格的预处理过程。
而霍夫变换抗干扰能力相对要强一些,但是运算时间较长,且只能用于图形近似为圆的场合,对椭圆的场合运算速度则会过慢。
我们用问题一中的三个模型和算法对问题二进行了求解计算。
结果显示,基于K-平均算法的数学模型最合适本题的求解,此时,我们到靶标在像平面内的圆心坐标为:(-187,193)、(-86,187)、(130,171)、(-225,-119)、(72,-119)。
问题三中,我们通过三维空间中的不同的摄像角度,给出了不同的像图。
东三省数学建模比赛C题一等奖
2015年东三省数学建模比赛C 题一等奖2015年东北三省数学建模一等奖论文福田红树林自然保护区湿地生态系统模型框架的构建及应用实例研究摘要目前福田红树林自然保护区湿地生态系统的健康状况日益脆弱,迫切需要建立一个完整的保护管理数字化支撑平台。
问题一,我们建立了集动态监测和健康评估及预警于一身的模型框架,该模型框架的建立基于BP-神经网络的PSR 模型,然后将EWE模型里的鱼类捕捞这一环节去掉,改为在自然条件下的水生动物数量变化,利用改进后EWE模型分析生态系统里的各级生物能量流动、物质循环等生态系统内部功能,并确立一个稳态指标。
利用各营养级之间的能量流动关系,对生态系统内的物种依存、竞争关系进行动态描述。
用层次分析法对影响生态系统的外界因素进行综合识别并建立三层权重指标体系得出相应权重指标,以单项指标的加权平均法来获取综合评价指数进行评价等级的确定,模型会自动反馈,并根据权重大小逐级查找问题来源,并根据问题来源找到合理的解决办法。
从而构建整个生态系统压力,状态,响应为一体化的监督管理系统。
问题二,基于以上模型框架,我们利用3s技术对该湿地生态系统相关数据进行监测分析评估预警,设计监测方案。
问题三,选取水污染作为迫切解决的问题,对目前相关数据代入建立好的模型框架进行分析,确定评价等级,对其未来发展趋势进行预测,给出了合理的建议。
关键词:PSR模型;改进EWE模型;层次分析法;3s技术;一、问题重述深圳福田红树林湿地自然保护区是我国唯一处于城市腹地的国家级自然保护区,保护区对调节当地环境具有极其重要的功能;但是在深圳经济高速发展的 30多年时间里,福田红树林湿地生态系统受城市扩张和环境污染影响较为严重,湿地生态系统的生态健康更加脆,为此,保护区的监测管理尤为重要。
目前的生态健康评价主要采用基于抽样监测数据和专家经验的静态方法,仅仅围绕主要生物因子开展调查而没有覆盖到噪声、大气等环境因子,而且监测点信息的时间、空间离散度较大(时间间隔较长、测点密度过于稀疏),致使难以完全满足福田红树林自然保护区科学管理的实际需要。
数学建模获奖作品范例
数学建模获奖作品范例近年来,数学建模竞赛在高中和大学生中越来越受欢迎。
数学建模是一种将实际问题转化为数学问题并求解的方法,通过建立数学模型,对问题进行分析和预测,得出有关结论和解决方案。
下面将介绍一些数学建模获奖作品的范例,以展示数学建模的应用和价值。
第一个范例是关于城市交通流量的建模。
城市交通流量是一个复杂的问题,涉及到车辆的流动、道路的拥堵、信号灯的控制等多个因素。
一支参赛团队利用数学建模的方法,通过收集城市交通数据和实地观察,建立了一个交通流量模型。
他们使用了微分方程和概率统计等数学工具,对车辆的速度、密度和流量进行了建模和预测。
通过模型的分析,他们提出了一些优化交通流量的方法,如调整信号灯的时长、增加道路的容量等。
他们的建模方法和解决方案得到了专家的肯定,并在数学建模竞赛中获得了一等奖。
第二个范例是关于物种扩散的建模。
物种扩散是生态学中的一个重要问题,研究物种的扩散过程对于了解生态系统的稳定性和保护生物多样性具有重要意义。
一支参赛团队通过数学建模的方法,结合实地调查和数据分析,建立了一个物种扩散模型。
他们使用了偏微分方程和随机过程等数学工具,对物种的扩散速度和扩散范围进行了建模和预测。
通过模型的分析,他们揭示了物种扩散的规律和影响因素,并提出了一些保护生物多样性的建议。
他们的建模方法和研究成果在数学建模竞赛中获得了特等奖。
第三个范例是关于金融风险管理的建模。
金融风险管理是一个重要的经济问题,涉及到金融市场的波动、投资组合的风险等多个因素。
一支参赛团队利用数学建模的方法,通过收集金融数据和分析市场趋势,建立了一个金融风险管理模型。
他们使用了时间序列分析、随机过程和蒙特卡洛模拟等数学工具,对金融资产的风险价值进行了建模和预测。
通过模型的分析,他们提出了一些风险管理的策略,如分散投资、对冲交易等。
他们的建模方法和风险管理方案在数学建模竞赛中获得了一等奖。
以上是关于数学建模获奖作品的三个范例。
这些范例展示了数学建模在不同领域中的应用和价值。
2012年数学建模C题全国一等奖作品
脑卒中发病环境因素分析及干预摘要环境因素已被证实与脑卒中的诱发密切相关,本文从定量角度给出了脑卒中的发病率与环境因素之间的关系,并提出发病预警和干预的建议方案。
问题一要求对发病人群进行统计描述,我们首先对原始数据进行再加工整理,得到不同性别、不同职业及不同年龄段的发病率数据,通过计算发病人群分布的众数、四分位差、偏度、峰度等统计指标,得到了发病人群分布的特征:如发病人群的年龄呈左偏、平峰分布等。
针对问题二,为全面分析发病率与环境因素的关系,我们增加考虑温度差、和湿度差因素,通过建立统计回归模型,得到了脑卒中发病率与气压、温度、湿度、温度差和湿度差之间的量化关系,结果分析显示拟合优度和显著性检验都令人满意。
最后,根据问题一和问题二得到的结果,我们对不同的年龄层次、职业人群,气候条件等提出了相应的预警干预方案。
关键词:众数、四分位数、偏度、峰度、统计回归问题的重述脑卒中(俗称脑中风)是目前威胁人类生命的严重疾病之一,它的发生是一个漫长的过程,一旦得病就很难逆转。
这种疾病的诱发已经被证实与环境因素,包括气温和湿度之间存在密切的关系。
对脑卒中的发病环境因素进行分析,其目的是为了进行疾病的风险评估,对脑卒中高危人群能够及时采取干预措施,也让尚未得病的健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护。
同时,通过数据模型的建立,掌握疾病发病率的规律,对于卫生行政部门和医疗机构合理调配医务力量、改善就诊治疗环境、配置床位和医疗药物等都具有实际的指导意义。
数据来源于中国某城市各家医院2007年1月至2010年12月的脑卒中发病病例信息以及相应期间当地的逐日气象资料。
根据题目提供的数据,回答以下问题:1.根据病人基本信息,对发病人群进行统计描述。
2.建立数学模型研究脑卒中发病率与气温、气压、相对湿度间的关系。
3.查阅和搜集文献中有关脑卒中高危人群的重要特征和关键指标,结合1,2中所得结论,对高危人群提出预警和干预的建议方案。
2000年全国大学生数学建模竞赛优秀论文一等奖C题(航程计算的数学模型)-3页
航程计算的数学模型摘要: 本文对飞机航线飞行距离计算的数学模型进行了概述, 并对2000 年全国大学生数学建模竞赛的C题答卷进行了评述.假定飞机保持飞行高度10 千米作匀速飞行, 忽略起飞、降落和地球自转和公转的影响, C 题可以归结为求飞越通过指定各点的球面或旋转椭球面上的短程线(或测地线) 的航线与飞越直接连结北京上空10 千米至底特律上空10 千米的经过北极圈的新航线的时间差. 又由于假设飞机作时速为980 千米/小时的匀速飞行, 问题又可归结为求相应的航程差.1地球为球体的情形取直角坐标系如下: 以球心为原点, z轴指向北极, x轴通过赤道上经度为0°和180°的两点, 正向指向0°, y轴垂直于x轴和z轴, 构成右手坐标系.在半径r= 6381 (千米) 的球面上建立球面坐标系(Υ, Η) , 由于航线在北半球, 我们取Υ和北纬度一致, Η和东经度一致.因此航线上某处的地理坐标为(f,l) , 可用以下方法得到对应的球面坐标(Υ, Η) :Υ= f×Π/180Η°= l , l为东经360 - l, l 为西经Η= Η°×Π/180应有x=r co s Υco s Η,y=r co s Υ sinΗ,z = r sin Υ若球面上两点的球面坐标为(Υ1 , Η1 ) , (Υ2 , Η2 ) , 过这两点的短程线是过这两处的大圆的劣圆弧(即长度较短的一条大圆弧). 从球心指向此两点的矢量分别为( r co s Υi co s Ηi, r co s Υi sin Ηi,r sin Υi), i= 1, 2设它们的夹角为Α, 则有co s Α= co s Υ1 co s Η1 co s Υ2 co s Η2 + co s Υ1 sin Η1 co s Υ2 sin Η2 + sin Υ1 sin Υ2从而求得Α, 进而求得过这两点的航程rΑ.多数参赛队都能正确计算航程, 从而获得节省时间大约为3191 小时的结论.由于题目未给出北京和底特律的经纬度, 有些队对两地的经纬度误差估计较大, 因此计算的误差也较大.2设地球为旋转椭球的情形此时, 飞机的航线位于方程为x=6388co s Υco s Η, y=6388 co s Υ sinΗ, z= 6367 sin Υ的旋转椭球面上, 它通过给定地理坐标的各点, 在相邻两点间为上述椭球面的短程线. 在大地测量中, 一点的地球坐标(f , l) 中的地理纬度是这样定义的: 用通过该点的子午面与椭球交得一椭圆, 过该点作椭圆的法线, 法线与水平线的夹角 f , 即为该点的纬度(见图1).由于该椭圆的方程为x = 6388 co s Υ,y = 6367 sin Υ图1该点的切向量和法向量分别为- 6388 sin Υ6367 co s Υ,- 6367 co s Υ6388 sin Υ从而tan Υ= 6367tan f , Υ= arctan6367tan f 6388得到我们所需的纬度, 文献称为归约纬度.6388在一般的有关大地测量的文献中均有对地理纬度与归约纬度之间关系的论述. 但有较多答卷直接将地理纬度作为归约纬度建模计算. 虽因长短半轴差别较小, 计算误差不算大, 但作为精确的数学模型, 这种做法是有缺陷的.就笔者所知,到现在为止尚未得到过旋转椭球面上任意两点的短程线的解析表达式. 在大地测量学和航海学的有关文献中采用个一些有效的近似公式如贝塞尔公式等. 在参赛队中采用这种方法也不在少数. 其中有些队从求短程线出发, 建立模型, 经合理简化得到相应的计算公式, 这是可取的; 另一些队简单生硬地套用公式, 多少偏离了数学建模竞赛的宗旨和要求, 他们的答卷不能认为是优秀的答卷.解决问题的另一方法是建立问题的变分模型. 这种方法根据航线是短程线的要求, 将过给定两点的曲线的长度表示为依原该曲线的参数方程的一个泛函, 在满足该曲线落在旋转椭球面上的约束条件下, 使该泛函达到最小. 在用L agrange 乘子法后得到Eu ler 方程, 然后对此方程用数值方法, 得到近似短程线. 有几个参赛队采用此方法, 并得到Eu ler 方程的表达式. 但因方程较复杂, 未能最终求出数值解.还有一个方法就是用微分几何知识直接获得椭球面上短程线应满足的微分方程, 利用微分方程表达式得到弧长计算公式, 并用数值积分法求得短程线的近似长度. 有的参赛队建立了这样的模型, 得到了结果.一种比较直观的方法就是直接搜索法, 即在椭球面上过给定两点的众多曲线中搜索出长度最短的一条作为短程线的近似.由于这些曲线的长度需通过数值积分,需要将Υ 和Η进行剖分, 这就将问题化为一个离散的优化问题, 可以采用优化的方法求解. 在本期发表的优秀论文中有一篇采用了在一类椭球面上过给定两点的曲线中进行搜索的方法.较多的答卷直接将地球作为球的结果移植到作为旋转椭球的情形, 简单地认为“过椭球面上给定两点的短程线即为过此两点和地心的平面与椭球面交线的劣弧(两点间较短的一条) ”. 这一结论是错误的, 有时会导致很大的误差.数学软件M athem atica 的程序库中有求近似测地线的函数, 利用这一函数不难求出各点之间的航程. 有个别参赛队没有建立合适的数学模型, 直接调用这一函数, 得到近似的结果, 不能视作好的答案.另一些队将用此软件获得的结果作为验证和评价自己模型的手段之一, 这是很值得称道的.。
数学建模国家一等奖 论文
地面搜索问题的优化模型摘要本文针对地面搜索过程中人员安排和路线选择问题,建立了优化模型,并给出了相应算法,用LINGO软件编程,在确保所有地点都不遗漏且不重复的情况下,合理安排人员和线路,使得搜索用时最短。
问题一的求解中,把20个搜索队员排成一行,向前搜索。
从局部和总体两个方面对人员行进和路线选择。
在局部方面,考虑到人员行进中90度和180度转弯的情况,给出了两种转弯策略,并计算出这两种转弯的情况需要多耗费的时间;在总体方面,把需要进行搜索的区域分割成的126个方格,利用一笔画原理,判断出这些方格可以用一条不重复的线路走完。
考虑到转弯需要多耗费时间,建立了以转弯次数最少,并且从起始点开始不重复行走到达集结点的模型,利用LINGO软件进行编程求解,得到了最少转弯的模型。
考虑到具体情况,对上述模型得到的路线进行适当调整,得到最终的搜索线路安排图。
根据图表,计算出20个队员进行搜索需要50.117小时,无法在48内完成搜索任务。
考虑到队员和组长距离不超过1000米,设计一种让20名搜索队员组成的队伍和新增人员组成的队伍进行交替行进的模型,以确保让整个搜索过程控制在48小时以内。
最后给出了该行进模型的相应算法,通过计算,得出增加2个队员可以确保搜索在48小时内完成。
问题二的求解中,首先对50名人员分3组进行分析,由于矩形区域被分割后形成的小区域恰好能被20人组成的一个队列一次搜索覆盖,以及10人组成的一个队列一个来回的搜索覆盖,于是3组可分为:2个队伍为20人,1个队伍为10人。
随后进行队伍搜索区域的划分,根据各个队伍人数确定该组分配到的方格的数量,划分出各个队伍的搜索区域。
然后对三个区域进行搜索路径的优化求解,改进问题一的模型,求出三个区域的搜索路径。
再根据实际情况,对路径进行适当修改,得出20人的2个队伍,需要19.816小时,10人的队伍需要20.294小时。
根据先完成搜索任务的队伍能否有足够的时间来帮助未完成搜索任务的队伍提早完成任务的时间要求,判断出该解是可以接受的。
获国家一等奖的数模论文之欧阳美创编
2009高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):眼科病床安排的数学模型摘 要本文解决的是医院眼科病床的安排问题,现医院安排病人入院的原则是先来先服务,这样虽然公平,但缺乏合理性以致等待住院的病人队列越来越长,为解决此问题,我们建立了三个最优化模型。
对于问题一:我们确定了三个评价指标:手术前的平均逗留时间q T ,平均每天出院人数NO ,病人手术前的准备时间g T 。
然后计算出在原来先来先服务的原则下各指标值为:13.1519q T =,7.8605NO =, 2.4413g T =。
对于问题二:我们采用优先级原则动态地对病床进行安排。
首先,统计初始数据,通过6SQ 软件进行分布的卡方拟合检验得:每类病人的到来均服从泊松分布、术后观察时间服从均匀分布。
然后,我们发现合理的调度方案必须使得病人的术前准备时间尽量短。
因此,重新制定入院规则:外伤优先级始终最高;其它病的优先级随时间的变化而变化。
接着,再以三个指标为目标函数,病人入院规则为约束建立了多目标的最优化模型,最后,根据入队与服务时间服从的分布,用计算机随机模拟,得到在队列稳定时,此规则下三个指标值为:10.311q T =,9.633NO ==9.633, 1.6526g T =;这样手术前的平均逗留时间减少21.6%,平均每天出院人数增加了22.55%,平均术前准备时间减少了32.31%。
对于问题三:在问题二的计算机随机模拟的基础上,已经可以求得对应的等待队列中病人的入院时间的模拟结果,因为存在一定随机性,我们模拟10次,取出每次所得结果中的模拟入院时间,作为病人的一个大致入院时间。
对于问题四:由于星期六与星期日不安排除了外伤手术的其它手术,故安排在周四,五住院的视网膜和青光眼病人的手术要推迟到下周二、四,以此我们同样建立了多目标的最优化模型,得出在队列稳定时,三个指标值分别为:10.436q T =,9.1667NO =, 2.017g T =;对于问题五:为便于医院的管理,可根据各类病人服从的分布按照比例给各类病人安排固定的病床数,但要先单独分配外伤类的病床,因为医院要保证有足够的床铺满足外伤类病人,据统计结果知外伤病人到达和外伤病人被服务的时间都是服从泊松分布,则先建立排队论中的M/M/C 模型求出分配给外伤病人的病床数,余下的病床按照一定的比例分配给其它类的病人。
数学建模竞赛获奖作品
新余学院2011年大学生数学建模竞赛承诺书我们仔细阅读了新余学院大学生数学建模竞赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B中选择一项填写): B我们的参赛报名号为(如果设置报名号的话):24参赛队员(打印并签名) :1. 刘水根2. 游凯3. 王娟日期: 2011 年 05 月 15 日评阅编号:新余学院第二届数学建模竞赛评阅专用页最佳旅游路线设计摘要本文主要研究最佳旅游路线的设计问题。
在满足相关约束条件的条件下,实现小张的旅游愿望。
基于对此的研究,建立数学模型,设计出最佳的旅游路线和途径。
第一问没有时间的约束,要求设计合适的旅游路线。
该问题是典型的货郎担(TSP)问题。
我们建立了一个最优规划模型,在将八个旅游景点全部游完的前提下花最少的钱为目的。
从而推出交通费用、住宿餐饮费用和景点花费的函数表达式,给出相应的约束条件,使用lingo编程对模型求解。
推荐方案:新余→福建武夷山→温州梅雨潭→河南嵩山少林寺→四川九寨沟→云南丽江古城→贵州黄果树→广西桂林大漓江→宜春明月山→新余。
预计总费用为约2658.5元人名币。
第二问放松费用的约束,要求游完所有景点。
同样使用第一问的模型,改变时间约束,使用lingo编程得到最佳旅游路线为:新余→宜春明月山→福建武夷山→浙江温州梅雨潭→河南嵩山少林寺→四川九寨沟→云南丽江古城→贵州黄果树→新余。
第三问在一、二问的基础上,增加了时间和费用的先限制,要求设计合适的旅游线路,使在约束条件下,所游景点最多。
数学建模国奖作品-图文
数学建模国奖作品-图文创意平板折叠桌摘要本文研究分析了一种平板折叠桌的结构特点,这种平板折叠桌在闲置时可以折叠成一张厚30mm木板;腿由若干根木条组成,分成两组,每组各用一根钢筋将木条连接,钢筋两端分别固定在桌腿各组最外侧的两根木条上,并且沿木条有空槽以保证滑动的自由度打开后可以展开成一张桌子。
非常方便实用,而且造型新颖,美观大方。
针对第一问,本文通过对题中的图片信息以及所给的附件当中的视频信息,利用VB编程,对该创意平板折叠桌桌面进行了多次的拟合。
在满足题目的要求下,本文对圆周的直线插补做了多种方案。
在其中的一种方案加入了黄金分割比对桌面的尺寸进行了修改,得到了符合实际而且美观的尺寸。
然后在桌面上建立坐标系计算出了每个桌腿的长度,并通过几何关系计算出了开槽长度。
然后用计算出的数据制作了小桌的三维模型。
最后进行了动态模拟,用MATLAB求出线型数学描述。
针对第三问中提出开发一种折叠桌设计软件,本文根据客户任意设定的折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,给出了所需平板材料的形状尺寸和切实可行的最优设计加工参数,使得生产的折叠桌尽可能接近客户所期望的形状。
本文中针对模型提出的问题进行了详细的回答,其中创造性的提出用黄金分割比的方法来确定最边缘木条与次边缘木条的长比关系,很实用,也很方便,更是使设计美观;其次在模拟实物时使用了机械设计加工软件CATIA,作出了精美正确的模拟实物图;再者在曲线拟合上使用了CAD、MATLAB等实用性软件,使曲线更接近真实值;并且本文中所有公式都是由最基础的表达式变化而来,未引进任何专家论文公式;最后本文采用了VB程序设计来编写数学模型。
但是,本文针对问题提出的解答还有不足,如对已知任意形状桌面和高度的木板进行设计,思维和计算量过大。
A作仿真CAD草图绘制关键词:圆周拟合插补算法VB编程CATI动一、问题的提出(1).给定了长方形平板的三围尺寸:120?50?3?cm?,其中作为桌腿的每根木条宽度是2.5cm,贯穿所有桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为53cm。
国际数学建模比赛一等奖论文
Team#13193
Team#13193
Page 1 of 15
Modeling for Crime Busting
Introduction A conspiracy is found to embezzle a company’s property and to steal money from the credit cards of the company’s customers through the network. An organization, the Intergalactic Crime Modelers (ICM), has identified 7 known conspirators and 8 known non-conspirators and needs to find out the other members and the leaders. The conspirators and the possible suspected conspirators all work for the same company in a large office complex. ICM has recently found a small set of messages from 83 workers in the company. Now, the messages are denoted with a network that shows the communication links and the types of messages, where there are 83 nodes, 400 links (some involving more than one topic), over 21,000 words of message traffic, 15 topics (3 have been deemed to be suspicious). The goal of the modeling effort is to identify the most possible conspirators in the office complex. It would be ideal to give a priority list of most likely conspirators, a discriminate line separating conspirators from non-conspirators and the possible conspiracy leaders. Assumptions 1. Node 4, 10, 16 are the senior managers of the company. Variable symbol Variable P Pc Definition Possibility of being conspirator Suspicious rate of one’s messages. Pc equals to the rate of the number of one’s messages involving topics 7, 11, 13 (they are considered conspiratorial in the following text) to the number of his/her total messages. Weight determined based on the suspicious degree of a certain message topic Equivalent weight. It denotes the sum of the weights of all one’s message topics divided by the number of his/her total messages. Value of network centrality Revised Cnc A set of keywords A set of words. Any word i. It’s an element of A. Any sentence i Sentence similarity of words ai and aj Sentence similarity of sentences Si and Sj Word distance between words a1 and a2 Number of words in sentence Si
华中数学建模一等奖优秀论文
第四届文鼎创杯华中地区大学生数学建模邀请赛承诺书我们仔细阅读了《第四届文鼎创杯华中地区大学生数学建模邀请赛的选手须知》。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们的竞赛编号为:90005009我们的选择题号为: B参赛队员(打印并签名):队员1:蔡时茂队员2:李风光队员3:王琨(以下内容参赛队伍不需要填写)评阅编号:武汉工业与应用数学学会第四届文鼎创杯华中地区大学生数学建模邀请赛竞赛组委会一种基于直方图统计与多帧平均混合算法的车流量检测模型摘要新一代智能视觉监控技术的研究是一个极具挑战性的前沿课题,它旨在赋予监控系统观察分析场景内容的能力,实现监控的自动化和智能化,因而具有巨大的应用潜力。
在智能视频监控系统中,对包含运动目标的图像序列进行的分析处理主要由运动目标检测、分类、跟踪和视频内容分析等几个基本环节组成。
其中目标检测技术作为系统的最底层,是进行各种后续处理的基础。
本文通过建立数学模型采用统计直方图和多帧平均混合的算法解决如何从视频图像中提取出高质量的背景图像和车辆图像的问题,为车辆的外形、速度、流量等一系列参数的处理提供前提,并根据附录视频中提取的背景图像进一步应用,建立了计算车流量的模型。
具体地讲,针对问题一,我们利用统计直方图和多帧平均混合的方法,提取出背景图像,并考虑到环境的光线等因素的不断变化,及时对背景进行更新。
对于不同光线背景下的差分图像,采用Otsu求阈值技术,得到车辆的二值化图像。
如下图所示:图1 (a)实时路况图像(b)对应背景图像(c)二值化图像针对问题二,我们以问题一中得到的背景为基础,运用虚拟线检测法,在采集到的视频图像帧中,在每条车道上人为地设置一条横向的虚拟线,利用检测线处产生的颜色灰度变化是否超过设定的阈值来检测车辆是否通过并计数,得到如下结果:车道程序数车人工数车漏数多数漏检率/% 虚警率/% 准确率/%1 68 702 0 2.86 0 97.142 22 22 0 0 0 0 1003 44 43 0 1 0 2.27 97.734 43 43 0 0 0 0 1005 28 28 0 0 0 0 1006 13 14 1 0 7.14 0 92.867 55 53 0 2 0 3.64 96.36总计273 273 3 3 1.10 1.10 97.80表1 实验检测数据关键词:目标检测技术;背景提取与更新;虚拟线车流量检测法;统计直方图和多帧平均;Otsu阈值技术11 问题重述问题重述:传统的视频监控由人工进行视频监测发现安全隐患或异常状态,或者用于事后分析,这种应用具有其固有的缺点,难以实现实时的安全监控和检测管理。
全国大学生数学建模竞赛一等奖论文-高等教育学费标准探讨(word版)
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):1910所属学校(请填写完整的全名):华南农业大学参赛队员(打印并签名) :1. 关继杰2. 刘文彬3. 许润萍指导教师或指导教师组负责人(打印并签名):聂笃宪日期: 2008年 9 月 21 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):高等教育学费标准探讨摘要教育是关系国计民生的大事,本文建立了教育-社会贡献转化优化规划模型,贫困生生活质量改善优化规划模型和助学补助函数模型来对高等教育学费标准进行探讨。
文中首先对2006年中国教育公报历史数据进行因子分析,根据不同省份的地方政府生均拨款、培养费用的总量和增长比例,得到省份的综合实力得分排名和发展潜力得分排名,初步得到各个省份教育实力的差异。
接着根据城镇居民人均可支配收入进行聚类分析,选取8个代表性地区,建立学费走廊构造模型,得到政府对地区城镇居民学费补贴的金额。
由于高等教育事业关系国家社会的发展和家庭个人的前途,国家在社会与家庭个人都应当承担一定的教育成本费用,因此国家在发展教育事业上应该做到三个“合理”:承担合理的教育成本,制定合理的学费标准,并给予贫困生合理的助学补助。
宁夏回族自治区大学生数学建模大赛作品
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载宁夏回族自治区大学生数学建模大赛作品地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容中阿博览会影响力的定量评估摘要2013年中阿博览会在宁夏举行,这对于宁夏的经济发展、我国与阿拉伯国家的文化技术交流、国际间的经济贸易来往都具有十分重要的意义。
因此对中阿博览会的影响力进行定量评估显得尤为重要。
在本题中,我们选取中阿博览会对宁夏旅游业经济效益的影响,用三种不同方法对中阿博览会的影响力进行了定量评估。
一、运用假设对比法,先以宁夏不举办中阿博览会为假设,建立出一套投入产出模型,预测出2013年宁夏GDP总额,并与该年实际GDP总额进行对比,同时又对2000年至2013年固定投入与生产总值进行分析,从而得出在中阿博览会期间的投入对宁夏2013年旅游业的发展及以后旅游业的发展具有持续性的影响。
二、通过回归分析法,得出2007年到2012年宁夏旅游接待人数和旅游从业人数具有很强的相关性,并预测出了2013中阿博览会给宁夏旅游业带来了将近一千个就业岗位,同时也得出了中阿博览会对宁夏旅游从业产生了直接和间接的影响,以及给宁夏的第三产业和现代服务业乃至整个社会的经济发展带来不可忽视的冲击。
三、旅游业是中阿博览会产生经济效应影响的重要方面之一。
通过对宁夏历年统计年鉴的数据进行统计,我们利用灰色关联分析模型从宁夏旅游业收入,进出口总额,接待国际游客人数,国际旅游收入,旅游人数五个方面,分析出2013年的综合评价值要明显高出往年,从而得出中阿博览会对宁夏旅游人数是有明显影响的,同时它也带动了宁夏旅游业、旅游文化的发展。
不管是从宁夏GDP总额预测与实际GDP总额的对比分析,还是从宁夏旅游接待人数和旅游从业人数来讲,2013中阿博览会对宁夏旅游业产生的影响都是不可忽视的。
数学建模全国赛一等奖作品
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):024A005所属学校(请填写完整的全名):山东科技大学参赛队员(打印并签名) :1. 孟肖肖2. 杜磊3. 华爽指导教师或指导教师组负责人(打印并签名):程惠东日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):葡萄酒质量的分析与评价摘要确定葡萄酒质量时一般是通过聘请一批有资质的品酒员进行品评打分,从而确定葡萄酒的质量。
由于品酒员的打分,具有一定的随机性,因此该方法得到的对于葡萄酒质量的评定不一定准确的.我们现在对酿酒葡萄与葡萄酒的理化性质作分析,从而建议应用葡萄酒理化指标与品酒员的打分综合考虑评价葡萄酒的质量。
在问题1中,我们将第一、二两组的评酒员分别设为总体X和Y,每个评酒员作为随机变量Xi 与Yj在对葡萄酒进行品尝后对其各个指标打分,由于随机变量Xi与Yj的打分具有随机性。
首先对附件1中的数据先进行处理,即将Xi 与Yj中品酒员的打分去掉一个最高分和最低分,加权求和得到各个样品葡萄酒的总分。
数学建模优秀论文模板(全国一等奖模板)之欧阳与创编
Haozl觉得数学建模论文格式这么样设置时间:2021.03.08 创作:欧阳与版权归郝竹林所有,材料仅学习参考版权:郝竹林备注☆※§等等字符都可以作为问题重述左边的。
一级标题所有段落一级标题设置成段落前后间距13磅二级标题设置成段落间距前0.5行后0.25行图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体Excel中画出的折线表字体采用默认格式宋体正文10号图标题在图上方段落间距前0.25行后0行表标题在表下方段落间距前0行后0.25行行距均使用单倍行距所有段落均把4个勾去掉注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前Dsffaf所有软件名字第一个字母大写比如Excel所有公式和字母均使用MathType编写公式编号采用MathType编号格式自己定义公式编号在右边显示农业化肥公司的生产与销售优化方案摘要要求总分总本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。
针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。
我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。
针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。
并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-⨯,这充分说明残差波动不大。
数学建模获奖作品范例
数学建模获奖作品范例数学建模是一种通过数学模型来解决实际问题的方法。
许多学生和研究人员都参与了数学建模竞赛,通过自己的努力和创新,获得了获奖的机会。
本文将以数学建模获奖作品范例为主题,介绍一些获奖作品的内容和方法,以期激发更多人对数学建模的兴趣和热情。
一、基于人口增长的城市规划优化在城市规划过程中,人口增长是一个重要的考虑因素。
一组学生在数学建模竞赛中提出了一种基于人口增长的城市规划优化模型。
他们首先收集了一座城市的人口数据,并通过数学方法对未来的人口增长进行预测。
然后,他们建立了一个优化模型,考虑了城市的土地利用、交通网络和公共设施等因素,以最大化城市的可持续发展和居民的生活质量。
通过对模型的求解和分析,他们得出了一些关于城市规划的有价值的结论,并在竞赛中获得了一等奖。
二、基于数据挖掘的股票预测模型股票市场是一个充满不确定性的领域,许多投资者希望能够通过分析历史数据来预测未来的股票走势。
一组研究人员在数学建模竞赛中提出了一种基于数据挖掘的股票预测模型。
他们首先收集了大量的股票市场数据,并通过数学方法对这些数据进行分析和挖掘。
然后,他们建立了一个预测模型,可以根据历史数据预测未来的股票走势。
通过对模型的验证和比较,他们发现这个模型在股票预测方面具有一定的准确性和可靠性,因此在竞赛中获得了特等奖。
三、基于运筹学的物流优化模型物流是现代经济中一个重要的环节,对于企业的运营效率和成本控制都起着至关重要的作用。
一组学生在数学建模竞赛中提出了一种基于运筹学的物流优化模型。
他们通过收集一家物流公司的运输数据和成本数据,建立了一个数学模型来优化物流网络和运输路径。
通过对模型的求解和分析,他们得出了一些关于物流优化的有益结论,为物流公司提供了一些建议和改进措施。
他们的工作得到了评委的认可,获得了一等奖。
四、基于图论的社交网络分析模型社交网络在当今的互联网时代中扮演着重要的角色,许多人希望能够通过分析社交网络的结构和关系来了解人际关系的特点和演变规律。
2010A 数学建模国家一等奖
储油罐的变位识别与罐容表标定问题的探讨摘要通常加油站都有多个储存燃油的地下储油罐。
许多储油罐在使用一段时间后,由于 种种原因,罐体的位置会发生变位,从而导致罐容表发生改变,给计量工作带来一定误 差。
因此用数学建模方法研究解决储油罐的变位识别与罐容表标定问题具有重要意义。
对于问题一,分别进行了精确理论推演与数值模拟求解,均取得很好效果。
第一步,在罐体无变位时,利用元素法用定积分求出油位高度与油量体积之间的关 系式 )] 1 / ( ) 1 / ( 1 2 / ) 1 / arcsin( [ 2 - - - + + - = b h b h b b b h b al v p ,用其计算的理论值与实验 测量值之间有偏差(测量误差),于是分析建立了测量误差和油位高度之间的显著回归 函数: h e 13493 . 0 01203 . 0 + - = ,将函数对上述关系式进行修正得到无变位的数学模型, 模型的精确度可以达到99.5%。
第二步,给定倾角纵向变位时,根据油位高度的不同,分三种情形建立了油量与油 位高度之间二重积分模型。
利用 MATLAB 求解得到表达式,然后给出了测量误差与油位 高度之间的显著回归函数: 2 2 39739 . 0 58340 . 0 12424 . 0 h h e - + -= ,将其对上述表达式进 行修正,从而建立出精确度可达到99.6%的数学模型。
第三步,对于罐体变位后对罐容表的影响,我们认为有两部分:其一是理论公式计 算上的变化,通过对有变位与无变位的积分表达式做差,结合泰勒公式,得到体积改变 量与油高和倾角的关系式;其二是测量误差的变化。
对前面的表达式进行分析,给出测 量误差 e v D 与油高h 和倾角a 的函数关系形式,然后确定函数中的参数,最后得到了在 任意纵向倾角情况下的误差项模型:01203 . 0 30852 . 4 ) 6511 . 30 13493 . 0 ( 9435 . 38 7611 . 11 2 / 3 2 - - + + - = D a a a a h h h v e 此模型对前两种有无变位的测量误差都具有显著回归效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模论文高速公路道路交通事故分析预测摘要我国目前的道路交通安全状况相对于世界水平要差得多,高速公路道路交通事故所造成的损失非常高。
因此,改善交通安全状况、预防和减少高速公路交通事故具有重大的现实意义。
针对这样的现状,我们必须进行高速公路交通事故的预测,从而及早采取措施进行预防工作,从而减少事故发生次数及损失程度。
针对此次建模的要求,在对此问题的深入研究下,我们提出了合理的假设,将本问题归结为一个预测分析的问题,其基本思想是通过聚类分析、SPSS软件求解、GM(1,1)灰色预测模型、多元线性回归分析,组合模型等方法的运用得到最优的预测结果。
针对问题一,我们首先运用了聚类分析的思想,建立了基于聚类分析的模型Ⅰ,通过聚类分析方法对给定的信息的筛选、加工、延伸和扩展,从而将评价对象确定在某一范围内,通过了该方法,最终得到了各类评价等级方法,为科学预测交通事故提供了依据。
针对问题二,本文选取受伤人数这一单项指标作为预测的对象,首先运用了GM(1,1)灰色预测模型,建立模型Ⅱ,通过对给定的事故原始数据,通过MATLAB 软件预测了五年内的交通事故受伤人数;运用多元线性回归方法建立模型Ⅲ,在模型Ⅱ和模型Ⅲ的基础之上,通过基于组合模型思想的模型Ⅳ,求解得出了交通事故受伤人数在五年内的预测。
关键词:SPSS聚类分析 GM(1,1)灰色预测模型组合预测模型 MATLAB目录一.问题重述 (3)二.问题的分析 (4)三.模型假设与符号系统 (5)3.1模型假设 (5)3.2符号系统 (6)四.模型的建立及求解 (7)4.1 问题一 (7)4.1.1建立模型Ⅰ (7)4.1.2模型Ⅰ的求解及结果 (8)4.1.3实验结果的分析说明 (9)4.2 问题二 (12)4.2.1建立GM(1,1)模型Ⅱ (12)4.2.2 用MATLAB求解模型Ⅱ (16)4.2.3 建立模型Ⅲ (19)4.2.4 建立优化模型Ⅳ (20)4.2.5最优组合模型的求解 (21)五.模型的评价 (22)参考文献 (23)附录 (24)一.问题重述随着道路交通事业的发展,高速公路交通事故也在不断增加,对人类的生命和财产安全构成了极大的威胁。
我国目前的道路交通安全状况相对于世界水平要差得多,高速公路道路交通事故所造成的损失非常高。
因此,改善交通安全状况、预防和减少高速公路交通事故具有重大的现实意义。
高速公路交通事故往往造成人员伤亡,车辆损毁、道路堵塞等严重后果,为探索高速公路道路交通事故发生的规律,分析现有道路交通条件下未来高速公路交通事故的发展趋势,以便及早采取措施进行预防,减少事故发生次数及损失程度,必须进行高速公路交通事故预测。
另外,高速公路道路交通事故分析预测是道路交通安全规划,决策及高速公路交通工程项目效益评价中的一个关键性问题,分析预测正确与否直接关系到高速公路交通设施的建设,高速公路交通管理政策的制定和高速公路交通建设资金的投资分配,具有重要的现实意义。
为了解决此问题,现利用已收集到的A省高速公路交通事故数据(见附件)、建立针对该省具体情况的数学模型,预测该省未来的交通事故情况,解决下面几个问题:1、目前国内外用于统计道路交通事故状况的四项绝对指标为交通事故次数、死亡人数、受伤人数以及直接经济损失,这四项统计指标既是认识交通事故的起点,又是构造其它交通事故统计指标的基础,基本涵盖了道路交通事故所造成各种损害的主要方面,因此选用这四项指标,试探讨以聚类分析作为理论基础的高速公路公路交通事故统计分析方法,然后从附件中所给A省高速公路交通事故四项指标的历史统计数据出发,对该省公路交通事故进行聚类分析研究,以期该省获得该省高速公路交通事故基于四项指标的时间、空间分布规律。
2、高速公路交通事故预测是高速公路安全评价、规划及决策的基础,国内外关于道路交通事故的预测有多种方法,鉴于高速公路交通事故具有复杂性、随机性和灰色性的基本特征,对高速公路公路交通事故预测时选用时间序列分析,灰色分析、神经网络等分析方法。
根据高速公路交通事故的分布规律,构建高速公路交通事故发生次数、死亡人数、受伤人数、直接经济损失的预测模型。
以A省公路交通事故的历史统计数据为基础,就模型精度等级的划分和预测的准确性作进一步的分析,探讨建立组合模型或提高预测准确性的其它解决方案,最后对A省公路交通事故未来五年的发展趋势做出科学预测,为高速公路交通安全管理部门提前预防和控制交通事故提供决策依据。
二.问题的分析2.1(问题一)本小问主要解决对该省公路交通事故四项指标进行的聚类分析。
此小问属于统计问题,因此由附件的相关数据信息,我们首先将附件中高速公路事故24时分布、月统计、辖区统计进行整理,得出四项指标在六年中小时段、月份、辖区分布总量。
本问题主要解决该省高速公路交通事故基于四项指标的时间、空间分布规律。
本问题为聚类分析的思想,由题目可以知道对于A省高速公路交通事故分布规律需要分别对四项指标进行聚类分析,找出各个指标内的能够度量不同小时段、不同月份、不同辖区之间的相似度的统计量。
并将其聚合到不同类中。
因此,用SPSS的K-means Cluster过程即逐步聚类法,按照预定的分类数量,按照既定的原则选择凝聚点,得到一个初始分类方案,并计算出各个初始分类的中心位置(均值);最后,使用计算出的中心位置重新进行聚类,因此在该方法中,各指标的分类情况会在运算中不断改变,分类完毕后再次计算各类的中心位置。
如此反复循环,直到凝聚点位置改变很小为止。
2.2 (问题二)由对题目的第二问分析,可知第二问分为两小问。
第一小问:选用灰色分析、多元线性回归分析等分析方法构建高速公路交通事故受伤人数预测模型。
交通事故作为一个随机事件,其本身具有相当大的偶然性和模糊性;具有明显的不确定性特征。
因此可以认为一个地区的道路交通安全系统是一个灰色系统,可以应用灰色系统的理论进行研究。
用G(1,1)灰色建立受伤人数指标的预测模型,在GM(1,1)模型及相关模型灰色预测过程中要大量进行数列和矩阵运算将MATLAB软件和GM(1,1)结合,实现灰色预测算法;建立多元线性回归模型。
第二小问:本小问为优化问题,就模型精度等级的划分和预测的准确性作进一步的分析,探讨建立组合模型或提高预测准确性的其它解决方案,最后对A 省公路交通事故未来五年的发展趋势做出科学预测。
对四项指标分别用灰色分析和多元线性回归模型结果进行精确度比较,并且构建最优组合预测模型。
利用以上两种不同的单项预测法对受伤人数指标进行预测,然后对各个单独的预测结果做适当的加权平均,最后取其加权平均值作为最终的预测结果。
本文采用简单实用的求方差极小值法,获得组合预测模型。
三.模型假设与符号系统3.1模型假设(1)假设在受伤人数统计时,以伤残等级三级以上归为受伤。
(2)假设在财产损失统计时,所损失的物资、费用等均按现社会流通价值或社会人力服务成本的平均值进行统计。
(3)根据其同一指标中的个体有较大的相似性,不同类中的个体差异较大,用聚类方法聚合时,将其聚合在3类中。
(4)假设高速路上行驶的车辆状况、驾驶员心理状态良好。
3.2符号系统X表示第i个指标在第j年的给定值;ijx实际给定的第k年的死亡人数:其中k=1,2,…6;()0(k)X)1(的一次累加生成序列;z)1(为X)1(的紧邻均值生成序列待定参数列;B为数据矩阵α,μ为待估参数;Y为数据向量;∧a为待定参数列;()k q为生成残差;q为残值均值;2s为原始数据的方差;12s为残值的方差;2C为后验差比值;P为小误差概率;3f 为组合模型使用;2f 为多元线性回归预测值;1f 为灰色理论预测值;2ε为多元线性回归预测的预测误差;1ε为灰色理论预测的预测误差;2ω多元线性回归的相应权系数;1ω灰色理论模型的相应权系数;MSPE 为均方百分比误差;四.模型的建立及求解4.1 问题一4.1.1建立模型Ⅰ聚类分析法是根据实物本身的特性来定量研究分析问题的一种统计分析方法。
其基本思想是同一类中的个体有较大的相似性,不同类中的个体差异较大,于是更具一批样品的多个观测指标,找出能够度量样品(或变量)之间相似度的统计量,并以此为依据,采用聚类发将所有的样品(或变量)分别聚合到不同的类中。
将分析评价中的n 个待评样本作为聚类对象(Xi)(i=1,2,…,n);m 个;评价指标作为聚类指标(Uj )(j=1,2,…,m),s 个评价标准作为评价等级(Zk )(k=1,2,…,s).则根据第i 个聚类独享对于第j 个聚类指标的样本值X ij ,确定聚类样本矩阵为X :11121314152122232425313233343541424344455152535455X X X X X X X X X X X X X X X X X X X X X X X X X ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦以一年十二个月的数据分析为例:在对给定的原始收据通过Excel 整理的基础上我们建立了针对交通事故每月的聚类分析模型。
将分析评价中的12个待评样本作为聚类对象(Xi)(i=1,2,…,12);4个;评价指标作为聚类指标(Uj )(j=1,2,3,4),我们设定为三类分类标准,则聚类样本矩阵为:452641101239441275111301264022437525804535501263204463057977874493260108697455365812571015337619461245140551052758412643900581362736738204413146767496⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦4.1.2模型Ⅰ的求解及结果 在建立了聚类分析的模型的基础上,我们采用了SPSS 软件来对模型进行求解,SPSS 的优点是计算量较小,从而可以有效的处理多变量、大样本数据而不会占用过多的内存空间和计算时间;同时在分析时用户可以人为地制定初始中心位置,或者将曾做过的聚类分析结果作为初始位置引入分析。
通过计算得得出下面的实验数据结果: 表4.1初始聚类中心聚类 1 2 3次数 45.00 45.00 36.00死亡人数 26.00 35.00 27.00受伤人数 41.00 50.00 36.00经济损失 1012394.00 1263204.00 738204.00表4.2最终聚类结果案例号 月份聚类 距离 1 一月1 2867.6002 二月1 114864.429 3 三月3 180.0684 四月2 3051.507 5 五月1 37387.572 6 六月1 71712.429 7 七月2 3051.507表4.1初始聚类中心聚类123次数45.0045.0036.00死亡人数26.0035.0027.00受伤人数41.0050.0036.00表4.2最终聚类结果案例号月份聚类距离1一月12867.6002二月1114864.4293三月3180.0684四月23051.5075五月137387.5726六月171712.4297七月23051.5078八月169137.5729九月137496.43010十月1114680.57211十一月314556.0018八月169137.5729九月137496.43010十月1114680.57211十一月314556.00112十二月314736.001表4.4每个聚类中的案例数聚类17.0002 2.0003 3.000有效12.000缺失.0004.1.3实验结果的分析说明(1)表2.2显示的是将样品分为三类的聚类结果,这三类分别是:一月、四月、十一月。