材料断裂力学简述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料断裂力学简述

断裂力学是研究含裂纹物体的强度和裂纹扩展规律的科学。它是固体力学的一个分支,又称裂纹力学,萌芽于20世纪20年代A.A.格里菲斯对玻璃低应力脆断的研究。其后,国际上发生了一系列重大的低应力脆断灾难性事故,如第二次世界大战期间, 美国建造了2000多艘全焊接的货轮和油轮,据统计在1943~1965年期间断为两截的有20艘。50年代,北极星导弹固体燃料发动机壳体的实验发射和耐压试验时多次因破裂而爆炸。压力容器、大电机转子、桥梁等也发生过很多脆断事故。这些都促进了断裂研究工作和线弹性断裂力学的形成。通过断裂力学分析,可以确定裂纹的容许尺寸、评定零件和构件的承载能力,估算其使用寿命,从而提出零件和构件的损伤容限设计方法。传统的材料力学和结构力学都假设材料为不包含裂纹的连续体,并比较工作应力和许用应力来判断强度。然而机械零件和构件,特别是大型铸件和锻件,难免有裂纹或类裂纹缺陷的存在。断裂力学在零件和裂纹的尺寸、载荷与材料力学性能三者之间建立了定量的关系,从而可以根据试样的断裂力学试验数据,推测带裂纹机械零件和构件的抗断裂能力。

由于断裂力学兴起的年代较晚,所涉及的学科较多,现在仍处于发展阶段,因此无论其研究的对象、方法或其分类都尚未完全定型,人们认为它不仅仅是固体力学的一个分支,而且也是工程技术科学或材料科学的一个分支。但目前断裂力学总的研究趋势是:从线弹性到弹塑性;从静态断裂到动态断裂;从宏观微观分离到宏观与微观结合;从确定性方法到概率统计性方法。所以就断裂力学本身而言,根据研究的具体内容和范围,它又被分为宏观断裂力学(工程断裂力学)和微观断裂力学(属金属物理范畴)。根据所研究的裂纹尖端附近材料塑性区的大小,可将断裂力学分为线弹性断裂力学和弹塑性断裂力学;根据所研究的引起材料断裂的载荷性质,可将断裂力学分为断裂静力学和断裂动力学。断裂力学的主要任务是求得各类材料的断裂韧度;确定物体在给定外力作用下是否发生断裂,即建立断裂准则;研究载荷作用过程中裂纹扩展规律;研究在腐蚀环境和应力同时作用下物体的断裂(即应力腐蚀)问题。到目前为止断裂力学已在航空、航天、交通运输、化工、机械、材料、能源等工程领域得到广泛应用。如今在断裂力学研究方法中,又引入可靠性理论,称为概率断裂力学,使断裂力学的研究内容更加丰富,也使断裂力学的理论得到进一步的发展和完善,并在工程实际中发挥出越来越大的指导作用。

断裂力学不仅能解释各类工程构件发生脆断的原因,更重要的是它为防止脆断提出了一个定量的计算方法,建立了裂纹尺寸、应力(应变)及材料断裂韧性三者之间的定量关系。随着现代工业的飞速发展,高强度合金材料,例如高强度的钢、铝和钛等合金使用量越来越大。高强度合金的最大优点是比强度相当高,即强度与质量密度的比值较一般中低强度合金高得多。用高强度合金制成的构件通常体积小和重量轻,这个优点对宇航飞行器如火箭、太空船、航天飞机和人造卫星等特别重要。但是绝大多数高强度合金都比较脆。易发生脆断;在腐蚀性环境中,甚至在相对湿度较高的环境中就有可能萌生裂纹。因此,从设计、制造、安装和使用的角度来说,建立评定带裂纹运行构件的安全性标准,以及如何防止构件断裂事故发生,一直是科学工作者所关心的事情。目前,断裂力学在航空航天、造船、机械、石油化工、地质等部门得到越来越广泛的应用,它的研究方法也列入上述各部门的设计、制造、验收及使用规范中。

材料断裂力学在焊接工程中也有着十分重要的地位,众所周知,在锅炉、压力容器、压力管道制造和安装过程中,焊接质量是非常重要的。在焊接部位很容易产生焊裂、未熔合、未焊透、咬边、夹杂物和晶界开裂等缺陷,这些缺陷又极有可能成为裂纹源。因此正确地做好焊接缺陷等级评定工作不仅能保证产品质量,而且能保证产品的安全经济运行。但目前焊接缺陷等级评定情况却不尽人意,存在着这样那样的问题。观念的陈旧,规范的严格,安全

与经济的矛盾,不利于无损检测工作的进一步开展。缺陷等级评定要科学化,就得有科学的理论作先导,断裂力学正肩负着这一重任。断裂力学是将缺陷尺寸、应力水平以及材料抵抗破坏的能力三者联系起来,进行综合研究材料和构件被破坏的一门新学科。近年来,国外把断裂力学的研究成果应用于工程实际,取得了可喜的应用成果。而我国也在断裂力学的基础之上,以“合于使用”为原则,制定了《压力容器缺陷评定》规范,对含缺陷的在役压力容器进行了综合性评定,使得断裂力学的优势在我国的工程事业中得到了充分的发挥,取得了显著的经济效益。

断裂力学的应用是基础理论在实际工作中的应用,断裂力学理论为焊接缺陷等级评定指明了光辉的前景。在实际应用中,我们可根据工件的材质、厚度、使用条件、探伤目的以及缺陷状况分门别类,对典型缺陷进行断裂评定计算,积累数据,进行科学分析,总结一般规律,制定接近实际的科学的缺陷等级评定标准。这些为焊接行业的进一步发展和进步提供了十分有利的条件和保证。

断裂力学以控制和防止结构物体的断裂破坏为目的,主要研究工程结构上裂纹尖端的应力场和应变场,并由此分析裂纹扩展的条件和规律,因此在结构、机械、岩土、抗震等工程领域中已得到越来越广泛的应用。在断裂力学中,裂纹尖端的应力场、应变场以及表示裂纹尖端的应力场强弱程度的应力强度因子的求解都是重要的研究内容. 但是,只有极少数简单、特殊的断裂力学问题存在解析解,绝大多数工程实际中所遇到的断裂力学问题都要借助于数值分析的方法才能得到解决. 事实上,数值计算已经和理论、实验一起成为科学研究的三大支柱。数值计算对于各种问题的适应性强,应用范围广,它能详细给出各种数值结果,通过图像显示还可以形象地描述力学过程. 它能多次重复进行数值模拟,比实验又省时又经济. 由于裂纹尖端附近的应力场存在奇异性,以致直接应用常规数值方法分析断裂力学问题的效果往往较差,因此需要结合断裂力学的特点发展更有效的数值计算方法. 随着断裂力学研究的日益深入,需要求解的问题日趋复杂化和多样化,使得如何建立高效、高精度的计算方法成为学者们研究的热点. 由于计算机科学、计算数学和力学等学科的不断发展,用于解决断裂力学问题的数值计算方法不断涌现,从早期的有限差分法、有限元法、边界元法到现在的无网格法、数值流形法、小波数值法、非连续变形分析等,它们正成为推动断裂力学研究不断发展的重要工具。

无网格法亦称为无单元法,直到近几年,才得到工程界的广泛关注。该方法将整个求解域离散为独立的节点,而无须将节点连成单元,它不需要划分网格,从而克服了有限元法在计算过程中要不断更新网格的缺陷. 位移场的近似采用了基于节点的函数拟合,可以保证基本场变量在整个求解域内连续. 计算过程中可以实时跟踪裂纹尖端区域进行局部细化. 将连续的裂纹扩展过程看作多个线性增量,每一个增量内裂纹扩展角根据应力强度因子确定. 通过在裂纹尖端细化节点引入外部基函数提高计算精度. 因为脱离了单元约束,所以在处理裂纹扩展这类具有动态不连续边界时具有很高的精度和效率. 无网格法只需要计算域的几何边界点及计算点,不需要单元信息,因此具有边界元法的优点,且可在裂间布置可移动加密节点以跟踪裂纹扩展,又因为无网格法基本方程的数学基础与有限元法相同,所以它也有有限元法相同的优点,比边界元法应用更广泛.

数值流形方法是一种新兴的数值计算方法,基本思想是将微分几何的流形原理引入材料分析,以拓扑流形与微分流形为基础,同时吸收有限元中插值函数构造方法与非连续变形分析中块体运动学理论两方面的优势,把连续和非连续变形力学问题统一起来. 传统的有限元法一般适用于连续介质问题,但难于分析非连续介质问题. 数值流形方法则通过考虑块体运动学或几何学理论,运用张开—闭合迭代,可以自然地处理连续与非连续问题,且适合任意复杂边界条件,同时可以直接应用局部解析解,是经典解析法与现代数值计算方法的有机结合. 这种数值计算方法已成为计算力学中的一个研究热点. 目前,数值流形方法研究的重点集中在

相关文档
最新文档