信号处理工程应用训练指导书
数字信号处理实验指导书08.10
《数字信号处理》实验指导书自动化工程学院2008年实验基本要求课程名称:数字信号处理实验开课学期:5课程总学时:10学时(课内)开课对象:测控技术与仪器专业实验目的与要求:《数字信号处理》课程是自动化、电子信息、电子信息科学与技术、通信工程等专业的重要专业基础课。
本课程以信号与系统、工程数学为基础,要求学生掌握时域离散信号和系统的基本理论、基本分析方法以及FFT、数字滤波器等数字信号处理技术。
《数字信号处理》是一门理论与实践联系紧密的课程,本课程安排5个实验,共计10个学时,以帮助学生掌握数字信号处理技术,提高学生分析问题和解决问题的能力,并通过实验培养学生的创新意识。
本实验课程的基本要求如下:1.学会用MATLAB语言编写控制系统设计与分析的程序,通过上机实习加深对课堂所学知识的理解。
2.上机前按要求把实验内容准备好,编好程序及需要改变的参数,能预计出可能出现的结果。
3.观察实验结果,得出结论。
4.实验结束后提交实验报告。
5.实验考核:采用实验操作与实验报告综合评分。
实验报告内容要求:一、实验名称二、实验目的三、实验内容四、实验所涉及到的理论知识要点五、实验方法及步骤六、实验结果及分析实验一 信号发生一、实验目的1、掌握Matlab软件使用的基本方法;2、利用MATLAB实现常见离散信号的产生和图形显示。
二、实验内容:1 单位采样序列例:利用Matlab产生64点的单位采样序列clear all;N=64;x=zeros(1,N);x(1)=1;xn=0:N-1;stem(xn,x);%离散序列图或杆图axis([-1 65 0 1.1]); %更改绘图坐标2 单位阶跃序列例:产生一个32点的单位阶跃序列。
clear all;N=32;x=ones(1,N);%产生全1矩阵xn=0:N-1;stem(xn,x);axis([-1 32 0 1.1]);3 矩形序列4 单边指数序列例使用Matlab画出a=0.7时点数为32点的单边指数序列:clear all;N=32;a=0.7;xn=0:N-1;x=a.^xn;stem(xn,x);5 正弦信号:()sin()=Ω+f t A tθ例使用Matlab产生一个周期的正弦信号。
《数字信号处理》实验指导书(完整)
《数字信号处理》实验指导书通信教研室安阳工学院二零零九年三月第1章 系统响应及系统稳定性1.1 实验目的● 学会运用MATLAB 求解离散时间系统的零状态响应;● 学会运用MATLAB 求解离散时间系统的单位取样响应;● 学会运用MATLAB 求解离散时间系统的卷积和。
1.2 实验原理及实例分析1.2.1 离散时间系统的响应离散时间LTI 系统可用线性常系数差分方程来描述,即∑∑==-=-Mj jN i i j n x b i n y a 00)()( (1-1) 其中,i a (0=i ,1,…,N )和j b (0=j ,1,…,M )为实常数。
MATLAB 中函数filter 可对式(13-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。
函数filter 的语句格式为y=filter(b,a,x)其中,x 为输入的离散序列;y 为输出的离散序列;y 的长度与x 的长度一样;b 与a 分别为差分方程右端与左端的系数向量。
【实例1-1】 已知某LTI 系统的差分方程为)1(2)()2(2)1(4)(3-+=-+--n x n x n y n y n y试用MATLAB 命令绘出当激励信号为)()2/1()(n u n x n=时,该系统的零状态响应。
解:MATLAB 源程序为>>a=[3 -4 2];>>b=[1 2];>>n=0:30;>>x=(1/2).^n;>>y=filter(b,a,x);>>stem(n,y,'fill'),grid on>>xlabel('n'),title('系统响应y(n)')程序运行结果如图1-1所示。
1.2.2 离散时间系统的单位取样响应系统的单位取样响应定义为系统在)(n 激励下系统的零状态响应,用)(n h 表示。
信号分析与处理实验指导书
实验一 信号频谱的测量一、实验目的1、掌握信号频谱的测量方法,加深对周期信号频谱特点的了解。
2、研究矩形脉冲时域周期和脉宽的变化对频谱结构的影响,了解时域和频域间的关系。
3、学习TH-SG01P 型功率函数信号发生器各旋钮、开关的作用及其使用方法。
4、学习虚拟示波器的使用方法。
二、原理及说明1、周期信号的频谱分为幅度谱、相位谱和功率谱三种,分别是信号各频率分量的振幅,初相和功率按频率由低到高依次排列构成的图形。
通常讲的频谱指幅度谱,它可选频表或波形分析仪逐个频率测试而得,也可用频率谱仪直接显示,现在更多的是应用虚拟示波器的FFT 变换来实现。
2、连续周期信号频谱的特点是离散性、谐波性和幅度总趋势的收敛性,可以通过对正弦波、三角波、方波(或矩形脉冲)频谱的具体测试而得到验证。
(1)、正弦波的频谱特别简单,即本身频率的振幅,如图1-1所示。
图1-1 正弦波及其频谱(2)、宽度为2τ,高度为A 的三角波的频谱,当2T τ=时,2()2k k A A Sa π=,如图1-2所示。
图1-2 三角波及其频谱ω12ω1k ω13ω ω1ωAk A13ω15ωω12ω 24/(5)A π24/(3)A π /2A1k ωω1ω24/A πkA(3)、矩形脉冲的频谱,122k k A A Sa Tωττ⎛⎫=⎪⎝⎭。
当为方波2T τ=时,12k k A A Sa ωτ⎛=⎝图1-3 (4)、周期型矩形脉冲的频谱按122k A Sa Tωττ⎛⎫⎪⎝⎭规律变化,它的第一个零点频率2πτ取决于脉宽τ,谱线的疏密取决于周期T 。
当脉宽τ不变时,在20πτ内谱线会增多而变密;当周期T 不变而脉宽τ减小时,其第一零点频率会增高,从而使20πτ内的谱线增多;谱线高度都会因T 增大或τ减小而降低。
因此,信号的波形和其频谱间是一一对应的,它们不过是对同一信号的两种不同描述方式罢了。
在频域中,常把20πτ的一段频率范围定义为信号的有效频带宽度,对于5T τ≥的矩形脉冲,这种定义就比较精确了。
信号与信息处理作业指导书
信号与信息处理作业指导书第一章绪论 (2)1.1 信息处理概述 (2)1.2 信号处理基础 (3)第二章信号与系统基础 (3)2.1 信号的分类与特性 (3)2.2 系统的描述与分析 (4)2.3 信号与系统的基本运算 (4)第三章采样与量化 (5)3.1 采样定理 (5)3.2 量化原理 (6)3.3 采样与量化误差分析 (6)第四章滤波器设计与实现 (7)4.1 滤波器的基本概念 (7)4.2 模拟滤波器设计 (7)4.3 数字滤波器设计 (7)第五章快速傅里叶变换(FFT) (8)5.1 傅里叶变换基础 (8)5.2 快速傅里叶变换算法 (8)5.3 FFT的应用 (9)第六章数字信号处理技术 (9)6.1 数字滤波器组 (9)6.1.1 概述 (9)6.1.2 基本原理 (10)6.1.3 常见类型 (10)6.2 小波变换 (10)6.2.1 概述 (10)6.2.2 基本原理 (10)6.2.3 常见类型 (10)6.3 数字信号处理的实现方法 (11)6.3.1 硬件实现 (11)6.3.2 软件实现 (11)6.3.3 硬件与软件结合实现 (11)第七章信号检测与估计 (11)7.1 信号检测原理 (11)7.2 估计理论 (12)7.3 信号检测与估计的应用 (12)第八章信号调制与解调 (13)8.1 调制与解调原理 (13)8.1.1 调制原理 (13)8.1.2 解调原理 (13)8.2 数字调制技术 (13)8.2.1 幅度键控(ASK) (14)8.2.2 频率键控(FSK) (14)8.2.3 相位键控(PSK) (14)8.2.4 正交幅度调制(QAM) (14)8.3 解调技术 (14)8.3.1 模拟解调技术 (14)8.3.2 数字解调技术 (14)8.3.3 现代解调技术 (14)第九章通信信号处理 (15)9.1 通信系统模型 (15)9.1.1 发送端 (15)9.1.2 信道 (15)9.1.3 接收端 (15)9.2 信号同步 (15)9.2.1 同步类型 (15)9.2.2 同步方法 (15)9.2.3 同步功能 (15)9.3 信道编码与解码 (16)9.3.1 信道编码 (16)9.3.2 信道解码 (16)9.3.3 信道编码与解码功能 (16)第十章信号处理在图像处理中的应用 (16)10.1 图像处理基本概念 (16)10.2 图像滤波与增强 (16)10.3 图像分割与识别 (17)第一章绪论1.1 信息处理概述信息处理是指对各种形式的信息进行收集、存储、传输、处理和分析的过程。
数字信号处理实验指导书
数字信号处理实验指导书实验一离散时间系统及离散卷积一、实验目的(1)熟悉MA TLAB软件的使用方法。
(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。
(3)利用MATLAB绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。
(4)熟悉离散卷积的概念,并利用MATLAB计算离散卷积。
二、实验内容1、离散时间系统的单位脉冲响应(1)选择一个离散时间系统;(2)用笔进行差分方程的递推计算;(3)编制差分方程的递推计算程序;(4)在计算机上实现递推运算;(5)将程序计算结果与笔算的计算结果进行比较,验证程序运行的正确性;2、离散系统的幅频、相频的分析方法(1)给定一个系统的差分方程或单位取样响应;(2)用笔计算几个特殊的幅频、相频的值,画出示意曲线图;(3)编制离散系统的幅频、相频的分析程序;(4)在计算机上进行离散系统的幅频、相频特性计算,并画出曲线;(5)通过比较,验证程序的正确性;3、离散卷积的计算(1)选择两个有限长序列,用笔计算其线性卷积;(2)编制有限长序列线性卷积程序;(3)利用计算程序对(1)选择的有限长序列进行卷积运算;(4)比较结果验证程序的正确性。
三、实验要求a)自编并调试实验程序,并且,给实验程序加注释;b)按照实验内容完成笔算结果;c)验证计算程序的正确性,记录实验结果。
d) 至少要求一个除参考实例以外的实验结果,在实验报告中,要描述清楚实验结果对应的系统,并对实验结果进行解释说明。
实验二 离散傅立叶变换与快速傅立叶变换一、实验目的1、加深理解离散傅立叶变换及快速傅立叶变换概念;2、学会应用FFT 对典型信号进行频谱分析的方法;3、研究如何利用FFT 程序分析确定性时间连续信号;4、熟悉应用FFT 实现两个序列的线性卷积的方法。
二、实验原理在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier 变换(DFT)。
这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N 时,它的DFT 定义为()()[]()∑==-=10N n nk NWn x n x DFT k X 10-≤≤N k反变换为()()[]()∑==-=-101N n nk N Wk X Nk X IDFT n x 10-≤≤N n有限长序列的DFT 是其Z 变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。
数字信号处理实验指导书78447
数字信号处理实验指导书实验一 时域离散信号的产生一、实验目的1、了解常用时域离散信号及其特点;2、掌握MATLAB 程序的编程方法;3、熟悉MATLAB 函数的调用方法。
二、实验原理在时间轴上的离散点取值的信号,称为离散时间信号。
离散时间信号只在某些离散的瞬时给出函数值,而在其他时刻无定义。
它是时间上不连续按一定先后次序排列的一组数的集合,称为时间序列,用x(n)表示,n 取整数代表时间的离散时刻。
在MA TLAB 中用向量来表示一个有限长度的序列。
常用离散信号: 1、单位抽样序列10()(00n n n δδ =⎧⎧= ⎨⎨≠ ≠⎩⎩0001n=n 或n-n )=0n n 2、单位阶跃序列0110()(-)000n n u n u n n n n ≥ ≥⎧⎧= = ⎨⎨ < <⎩⎩00n 或n3、实指数序列()n x n a =4、复指数序列()()j t x n e αω+=5、正(余)弦序列0()sin()m x n U n ωθ=+6、随机序列在利用计算机进行系统的研究时,经常需要产生随机信号,MATLAB 提供一个工具函数rand 来产生随机信号。
7、周期序列()()x n x n N =+三、实验用函数1、stem功能:绘制二维图形。
调用格式:stem(n,x);n为横轴,x为纵轴的线性图形。
2、length功能:计算某一变量的长度或采样点数。
调用格式:N=length(t);计算时间向量t的个数并赋给变量N。
3、axis功能:限定图形坐标的范围。
调用格式:axis([x1,x2,y1,y2]);横坐标从x1—x2,纵坐标从y1—y2。
4、zeros功能:产生一个全0序列。
调用格式:x=zeros(1,n);产生n个0的序列。
5、ones功能:产生一个全1序列。
调用格式:y=ones(1,n);产生n个1的序列。
四、参考实例例1.1 用Matlab产生单位抽样序列。
%先建立函数impseq(n1,n2,n0)function [x,n]=impseq(n1,n2,n0)n=[n1:n2];x=[(n-n0)==0];%编写主程序调用该函数[x,n]=impseq(-2,8,2);stem(n,x)程序运行结果如图1-1所示:图1-1 单位抽样序列例1.2实数指数序列(运算符“.^”)Matlab程序如下:n=[0:10];x=0.9.^n;stem(n,x)程序运行结果如图1-2所示图1-2 实数指数序列例1.3复数指数序列((0.10.3)()(1010)j nx n en -+= -≤≤)Matlab 程序如下:n=[-10:10]; alpha=-0.1+0.3*j; x=exp(alpha*n); real_x=real(x); image_x=imag(x); mag_x=abs(x); phase_x=angle(x); subplot(2,2,1); stem(n,real_x) subplot(2,2,2); stem(n,image_x) subplot(2,2,3); stem(n,mag_x) subplot(2,2,4); stem(n,phase_x) 程序运行结果如图1-3所示图1-3 复数指数序列例1.4正、余弦序列(0()sin()m x n U n ωθ=+)Matlab 程序如下: n=[0:10];x=3*cos(0.1*pi*n+pi/3); stem(n,x)程序运行结果如图1-4所示图1-4 正、余弦序列例1.5随机序列rand(1,N)产生其元素在[0,1]之间均匀分布长度为N的随机序列randn(1,N)产生均值为0,方差为1,长度为N的高斯随机序列例1.6周期序列如何生成周期序列1、将一个周期复制p次;2、借助矩阵运算、matlab下标能力。
数字信号处理实验指导书
三. 实验主要仪器设备和材料 计算机,MATLAB6.5 或以上版本 四. 实验方法、步骤及结果测试 关于 MATLAB 它是由美国的 Math Works 公司推出的一个科技应用软件,它的名字 是由 MATRIX(矩阵)和 LABORATORY(实验室)的前三个字母组合而 成 MATLAB 是一种高性能的、用于工程计算的编程软件,它把科学计 算、结果的可视化和编程都集中在一个使用方便的环境中 优势在于能很容易求解复数 数值问题,速度快且容易扩展创建新的 命令和函数 主要组成部分: (1)编程语言:以矩阵和数组为基本单位的编程语言 (2)工作环境:包括一系列的应用工具,提供编程和调试程序的环 境
I
目录
目录
前言 ......................................................................................................................................I 目录 .................................................................................................................................... II 实验一 学习使用 MATLAB............................................................................................. 1 一. 实验目的 ................................................................................................. 1 二. 实验内容和要求 ..................................................................................... 1 三. 实验主要仪器设备和材料 ..................................................................... 1 四. 实验方法、步骤及结果测试 ................................................................. 1 五. 实验报告要求 ....................................................................................... 23 六. 思考题 ................................................................................................... 23 实验二 用 FFT 做谱分析 ............................................................................................... 24 一. 实验目的 ............................................................................................... 24 二. 实验内容和要求 ................................................................................... 24 三. 实验主要仪器设备和材料 ................................................................... 25 四. 实验方法、步骤及结果测试 ............................................................... 25 五. 实验报告要求 ....................................................................................... 37 六. 思考题 ................................................................................................... 37 实验三 用双线性变换法设计 IIR 数字滤波器 ............................................................. 38 一. 实验目的 ............................................................................................... 38 二. 实验内容和要求 ................................................................................... 38 三. 实验主要仪器设备和材料 ................................................................... 38 四. 实验方法、步骤及结果测试 ............................................................... 38 五. 实验报告要求 ....................................................................................... 43 六. 思考题 ................................................................................................... 43 实验四 用窗函数法设计 FIR 数字滤波器 .................................................................... 44 一. 实验目的 ............................................................................................... 44 二. 实验内容和要求 ................................................................................... 44 三. 实验主要仪器设备和材料 ................................................................... 45 四. 实验方法、步骤及结果测试 ............................................................... 45 五. 实验报告要求 ....................................................................................... 51 六. 思考题 ................................................................................................... 51
信号处理综合设计指导书
信号处理综合设计指导书一、实习的目的和意义DSP课程设计是对《数字信号处理》、《DSP原理及应用》等课程的较全面练习和训练,是实践教学中的一个重要环节。
通过本次信号处理综合设计,综合运用数字信号处理、DSP技术课程以及其他有关先修课程的理论和生产实际知识去分析和解决具体问题,并使所学知识得到进一步巩固、深化和发展。
初步培养学生对工程设计的独立工作能力,掌握电子系统设计的一般方法。
同时,通过课程设计完成基本技能的训练,如查阅设计资料和手册、程序的设计、调试等,提高学生分析问题、解决问题的能力。
二、信号处理综合设计内容概述:在DSP实验板硬件平台上搭建一个实时的音频信号干扰抑制系统。
该系统包括接收从PC 机平台播放的有干扰的音频信号,经过模/数转换后送给DSP处理器,由DSP处理器完成原始信号的缓冲存储、频谱分析和滤波,再对滤波后的信号进行频谱分析和数/模转换,滤波后的信号通过耳机播放。
三、信号处理综合设计要求本综合设计通过DSP处理器控制TLV320AIC23采集音频信号(可以由上位机一个带有噪声的音源,也可以通过mic录带有噪声的声音),平台为ICETEK-VC5509-A 实验箱(或ICETEK 仿真器、ICETEK–VC5509-A系统板和相关连线及电源线)。
在CCS软件中分析音频信号的频谱图,使用Matlab设计相应的IIR数字滤波器(低通、带通或带阻等滤波器中的一种)并得到滤波器H(z)的系数,然后根据这些系数,编写DSP程序(C语言或汇编)对已采集信号进行处理,在CCS软件中得到处理后音频信号的频谱图,比较滤波前后信号的频谱图,最后将滤波后的声音信号输出至耳机,并通过声音的质量来判断滤波器的效果。
设计步骤包括:1、DSP与TLV320AIC23接口电路的原理图绘制;2、DSP控制TLV320AIC23的程序编写与调试;3、TLV320AIC23模拟量到数字信号的转换,实现声音的采集,查看并记录幅频图;4、使用Matlab对IIR滤波器的设计;5、编写IIR滤波处理的DSP程序,查看并记录处理后的信号幅频图6、用TLV320AIC23实现数字量到模拟量的转换,回放处理后的声音;7、按要求编写课程设计报告书,正确、完整的阐述设计和实验结果;8、在报告中绘制程序的流程图,并文字说明。
实验一数字信号分析与处理实验指导书
数字信号分析与处理实验指导书实验一用FFT做频谱分析一、实验目的:1.进一步加深对DFT算法原理和基本性质的了解。
2.学习用FFT对连续时域信号进行频谱分析的方法。
了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。
二、实验内容:1.用FFT对连续信号进行频谱分析,先对Xa(t)进行时域采样得到X(n)=Xa(nt)。
再对X(n)进行FFT变换得到Xk(k)。
2.观察和分析泄露原因;改变程序参数观察混叠现象。
3.如何将频谱的横坐标定为频率刻度?三、实验设备与材料:PC计算机;MATLAB软件。
四、实验程序:T1=0.01;N1=40;n1=0:(N1-1);t1=n1*T1;X1=2*s i n(4*p i*t1)+5*c o s(8*p i*t1);X k1=f f t(x1,N1);M1=a b s(X k1):K1=(0:l o n g t h(M1)-1)*N1/l e n g t h(M1)’s u b p l o t(2,4,1);p l o t(t1,x1);a x i s([0,0.4,-7.5.,7]);Ti t l e(‘T1=0.01s,t1=0.4s’);y l a b e l(‘x1(t)’);s u b p l o t(2,4,5);s t e m(k1,M1);t i t l e(‘T1=0.01s,N1=40’);y l a b e l(‘x1(k));T2=0.01;N2=50;n2=0:(N2-1);t2=n2*T2;X2=2*s i n(4*p i*t2)+5*c o s(8*p i*t2);X k2=f f t(x2,N2);M2=a b s(X k2):K2=(0:l o n g t h(M2)-1)*N2/l e n g t h(M2)’s u b p l o t(2,4,2);p l o t(t2,x2);a x i s([0,0.4,-7.5.,7]);Ti t l e(‘T2=0.01s,t2=0.5s’);y l a b e l(‘x2(t)’);s u b p l o t(2,4,6);s t e m(k2,M2);t i t l e(‘T2=0.01s,N2=40’);y l a b e l(‘x2(k));T3=0.005;N3=40;n3=0:(N3-1);t3=n3*T3;X3=2*s i n(4*p i*t3)+5*c o s(8*p i*t3);X k3=f f t(x3,N3);M3=a b s(X k3):K3=(0:l o n g t h(M3)-1)*N3/l e n g t h(M3)’s u b p l o t(2,4,3);p l o t(t3,x3);a x i s([0,0.4,-7.5.,7]);Ti t l e(‘T3=0.005s,t3=0.2s’);y l a b e l(‘x3(t)’);s u b p l o t(2,4,7);s t e m(k3,M3);t i t l e(‘T3=0.005s,N3=40’);y l a b e l(‘x3(k));T4=0.005;N4=50;n4=0:(N4-1);t4=n4*T4;X4=2*s i n(4*p i*t4)+5*c o s(8*p i*t4);X k4=f f t(x4,N4);M4=a b s(X k4):K4=(0:l o n g t h(M4)-1)*N4/l e n g t h(M4)’s u b p l o t(2,4,4);p l o t(t4,x4);a x i s([0,0.4,-7.5.,7]);Ti t l e(‘T4=0.005s,t4=0.25s’);y l a b e l(‘x4(t)’);s u b p l o t(2,4,8);s t e m(k4,M4);t i t l e(‘T4=0.005s,N4=50’);y l a b e l(‘x4(k));。
数字信号处理实验指导书
注意此书用的时候N要先付值数字信号处理实验指导书目录前言 (1)第一章MATLAB基础知识 (1)第二章MATLAB基本数值运算 (4)第三章MATLAB的图形处理功能 (8)第四章MATLAB的程序设计 (11)第五章常用数字信号处理函数 (16)第六章MATLAB在数字信号处理中的应用 (23)实验一常见离散信号的MATLAB产生和图形显示 (33)实验二离散系统的频率响应分析和零、极点分布 (37)实验三序列线性卷积、圆周卷积的计算及其关系的研究 (39)实验四利用DFT分析信号的频谱 (41)实验五信号时间尺度变换的研究 (43)实验六快速傅里叶变换及其应用 (47)实验七IIR滤波器的实现与应用 (56)实验八FIR滤波器的实现与应用 (61)第一章MATLAB基础知识§1-1 MA TLAB软件简介MATLAB,Matrix Laboratory的缩写,是由Mathworks公司开发的一套用于科学工程计算的可视化高性能语言,具有强大的矩阵运算能力。
它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个界面友好的用户环境,在这个环境中,问题与求解都能方便地以数学的语言(主要是矩阵形式)或图形方式表示出来。
与大家常用的Fortran 和C等高级语言相比,MA TLAB的语法规则更简单,更贴近人的思维方式,被称为“草稿纸式的语言”。
§1-2 MA TLAB应用入门1.MATLAB的安装与卸载MATLAB软件在用户接口时具有较强的亲和力,其安装过程比较典型,直接运行光盘中的安装向导支撑程序SETUP.exe,按其提示一步步选择即可。
MATLAB自身带有卸载程序,在其安装目录下有uninstall子目录,运行该目录下uninstall.exe的即可;也可以通过Windows系统的安装卸载程序进行卸载。
2.MATLAB的启动与退出MATLAB安装完成后,会自动在Windows桌面上生成一个MA TLAB图标,它是指向安装目录下\bin\win32\matlab.exe的链接,双击这个图标即可来到MATLAB集成环境的基本窗口;也可以在开始菜单的程序选项中选择MATLAB 快捷方式;还可以在MA TLAB的安装路径的bin子目录中双击可执行文件matlab.exe。
卫星信号处理系统实验指导书
南京工业大学卫星信号处理系统实验指导书南京莱斯大型电子系统工程2007年12月目录实验一数字卫星接收设置 (3)实验二卫星信号频谱分析 (7)实验三直播采集源设置和信道发布 (8)2实验一数字卫星信号接收介绍一实验目的通过本实验,让学生了解数字卫星信号接收原理和数字卫星接收机包含的基本参数以及设置方法。
二实验器材数字卫星接收机,卫星地面接收天线,双极化高频头,功分器。
三实验内容说明通过现场实物讲解,让学生了解卫星信号接收和处理的过程。
四实验步骤〔一〕C波段卫星知识介绍卫星通信是目前国内发展重点,在许多领域中都有应用,例如,广播电视系统、电信运营、气象观测系统、应急通信系统、军事通信系统等等,学习基础卫星通信知识是很有必要的,本实验主要介绍卫星信号的接收和处理知识,本实验中卫星信号是C波段广播电视信号作为信号分析源。
C波段广播电视信号介绍如下:C波段信号的频率范围:上行频率:5925MHz-6425 MHz下行频率:3700 MHz-4200 MHz上行频率是指发射频率,下行频率是指接收频率。
C 波段信号上行信号分为垂直极化和水平极化;C 波段信号下行信号分为垂直极化和水平极化;极化是两种不同的传输方式;C波段常用的500 MHz带宽内,分为12个转发器进行转发,每个转发器带宽为36MHz,每个转发器中心频率间隔40 MHz,通过频率复用技术,利用正交极化方式,可以使转发器数目增加一倍。
现代卫星通信采用频率复用技术,以增加C波段500 MHz带宽内的转发器数学习文档仅供参考目,频率服用可以通过正交极化方式来实现。
通过正交极化来实现频率复用,转发器工作在不同的极化状态,如相邻频率一个工作在水平极化,一个工作在垂直极化上。
由于C波段卫星信号的这个特征,我们选用PBI的双极化双本振高频头,即可以接收水平极化上的信号,同时也接收垂直极化上信号。
这样就可以使接收到中星6B上水平极化上的节目也可以接收到垂直极化上的节目。
数字信号处理实验指导书
前言数字信号处理是一门理论和工程实践密切结合的课程。
为了加深对教学内容的理解,应在学习理论的同时,加强上机实验,深入理解和消化基本理论,锻炼初学者独立解决问题的能力。
本课程实验要求学生运用MATLAB编程完成一些数字信号处理的基本功能。
MATLAB是一高效的工程计算语言,它将计算、可视化和编程等功能集于一个易于使用的环境。
在MATLAB环境中描述问题计编制求解问题的程序时,用户可以按照符合人们科学思维的方式和数学表达习惯的语言形式来书写程序。
MATLAB广泛应用于工业,电子,医疗和建筑等众多领域。
其典型应用主要包括以下几个方面:数学计算;算法开发;数据采集;系统建模和仿真;数据分析和可视化科学和工程绘图;应用软件开发(包括用户界面)。
;实验1 用MATLAB产生时域离散信号一、.实验目的:1、了解常用时域离散信号及其特点2、掌握用MATLAB 产生时域离散信号的方法 二、.实验原理: 1、时域离散信号的概念在时间轴的离散点上取值的信号,称为离散时间信号。
通常,离散时间信号用x(n)表示,其幅度可以在某一范围内连续取值。
由于信号处理设备或装置(如计算机、专用的信号处理芯片等)均以有限位的二进制数来表示信号的幅度,因此,信号的幅度也必须离散化。
我们把时间和幅度均取离散值的信号称为时域离散信号或数字信号。
在MATLAB 语言中,时域离散信号可以通过编写程序直接产生。
2、常用时域离散信号的生成 1) 单位抽样序列 单位抽样序列的表示式为⎩⎨⎧=01)(n δ00≠=n n 或 ⎩⎨⎧=-01)(k n δ 0≠=n kn 以下三段程序分别用不同的方法来产生单位抽样序列。
例1-1 用MATLAB 的关系运算式来产生单位抽样序列。
n1= -5;n2=5;n0=0;n=n1:n2; x=[n==n0]; stem(n,x,'filled');axis([n1,n2,0,1.1*max(x)]); xlabel('时间(n)');ylabel('幅度x(n)');title('单位脉冲序列');运行结果如图1-1所示:时间(n)幅度x (n )单位脉冲序列图1-1例1-2 用zeros 函数和抽样点直接赋值来产生单位抽样序列。
《数字信号处理实验》指导书
《数字信号处理实验》实验1 常用信号产生实验目的:学习用MATLAB编程产生各种常见信号。
实验内容:1、矩阵操作:输入矩阵:x=[1 2 3 4;5 4 3 2;3 4 5 6;7 6 5 4]引用 x的第二、三行;引用 x的第三、四列;求矩阵的转置;求矩阵的逆;2、单位脉冲序列:产生δ(n)函数;产生δ(n-3)函数;3、产生阶跃序列:产生U(n)序列;产生U(n-n0)序列;4、产生指数序列:x(n)=0.5n⎪⎭⎫⎝⎛4 35、产生正弦序列:x=2sin(2π*50/12+π/6)6、产生取样函数:7、产生白噪声:产生[0,1]上均匀分布的随机信号:产生均值为0,方差为1的高斯随机信号:8、生成一个幅度按指数衰减的正弦信号:x(t)=Asin(w0t+phi).*exp(-a*t)9、产生三角波:实验要求:打印出程序、图形及运行结果,并分析实验结果。
实验2 利用MATLAB 进行信号分析实验目的:学习用MATLAB 编程进行信号分析实验内容:1数字滤波器的频率响应:数字滤波器的系统函数为:H(z)=21214.013.02.0----++++z z z z , 求其幅频特性和相频特性:2、离散系统零极点图:b =[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];画出其零极点图3、数字滤波器的冲激响应:b=[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];求滤波器的冲激响应。
4、 计算离散卷积:x=[1 1 1 1 0 0];y=[2 2 3 4];求x(n)*y(n)。
5、 系统函数转换:(1)将H(z)=)5)(2)(3.0()1)(5.0)(1.0(------z z z z z z 转换为直接型结构。
(2)将H (z )=3213210.31.123.7105.065.06.11-------+--+-zz z z z z 转换为级联型结构。
数字信号处理实验指导书
% Program P1_2
% Generation of a sinusoidal sequence
n = 0:40;
பைடு நூலகம்f = 0.1;
phase = 0;
A = 1.5;
arg = 2*pi*f*n - phase;
x = A*cos(arg);
clf;
% Clear old graph
附录A MATLAB系统的常用概念 .........................................................................28
附录B
信号处理工具箱函数...........................................................................33
分析,从而进一步研究它们的性质。 2.熟悉离散时间序列的 3 种表示方法:离散时间傅立叶变换(DTFT),离
散傅立叶变换(DFT)和 Z 变换。
二.实验相关知识准备 1.用到的 MATLAB 命令 运算符和特殊字符: < > .* ^ .^ 语言构造与调试: error function pause 基本函数: angle conj rem 数据分析和傅立叶变换函数: fft ifft max min 工具箱: freqz impz residuez zplane
数字信号处理 实验指导书
长沙理工大学电气与信息工程学院
目
录
实验一:离散时间信号的时域分析........................................................................3 实验二:离散时间系统的时域分析........................................................................6 实验三:离散时间信号的频域分析........................................................................9 实验四:线性时不变离散时间系统的频域分析..................................................13 实验五: IIR数字滤波器的设计...........................................................................17 实验六: FIR数字滤波器的设计..........................................................................24
数字信号处理实验指导书(带源程序)
实验一离散时间系统与MA TLAB一. 实验目的1. 进一步加深对离散时间系统的理解。
2. 学习在MATLAB中怎样表示离散时间信号。
3. 熟悉离散时间信号的作图。
二. 实验步骤1. 复习离散时间系统的有关容。
2. 复习MA TLAB的基本语法。
3. 按实验容熟悉stem。
4. 编写程序。
5. 输出结果,总结结论,按要求写出实验报告。
三. 实验容1.掌握stem函数STEM(Y) plots the data sequence Y as stems from the x axis terminated with circles for the data value.STEM(X,Y) plots the data sequence Y at the values specified in X.例:t=[0:0.1:2]; x=cos(pi*t+0.6); stem(t,x);xn=[4,2,2,3,6,7]; stem(xn);思考:STEM(Y)与STEM(X,Y)有什么不同?STEM与PLOT函数有什么不同?2.掌握subplot函数H = SUBPLOT(m,n,p), or SUBPLOT(mnp), breaks the Figure window into an m-by-n matrix of small axes, selects the p-th axes for the current plot, and returns the axis handle. The axes are counted along the top row of the Figure window, then the second row, etc.例:n1=0:3;x1=[1,1,1,1];subplot(221);stem(n1,x1);title('x1序列');n2=0:7;x2=[1,2,3,4,4,3,2,1];subplot(222);stem(n2,x2);title('x2序列');n3=0:7;x3=[4,3,2,1,1,2,3,4];subplot(223);stem(n3,x3);title('x3序列');n4=0:7;x41=cos((pi/4)*n4);subplot(224);stem(n4,x41);title('x4序列');思考:subplot是怎样分配各个作图分区的顺序号的?3.信号的运算]0,1.0,4.0,7.0,1[)(1=n x ,]9.0,7.0,5.0,3.0,1.0[)(2=n x ,请作出)()(21n x n x +,)()(21n x n x 的图形。
数字信号处理实验指导书
《数字信号处理》实验指导书王莉南京工业大学自动化与电气工程学院2008-04-17目录实验一信号、系统及系统响应 (3)实验二用双线性变换法设计IIR数字滤波器 (6)实验三用窗函数法设计FIR数字滤波器 (10)附录 MATLAB信号处理工具箱函数 (14)实验一 信号、系统及系统响应一.实验目的1. 熟悉时域离散系统的时域特性。
2. 验证时域的卷积定理。
3. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析。
二.实验内容1. 观察信号()a x n 和系统()h n 的时域和频域特性,并绘出相应的曲线。
①单位脉冲序列:()(a x n n δ=;②系统单位脉冲响应序列:()() 2.5(1) 2.5(2)(3)h n n n n n δδδδ=+-+-+-。
2. 利用线性卷积求信号()a x n 通过系统()h n 的响应()a y n ,比较所求响应()a y n 和()h n 的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。
3. 卷积定理的验证。
将2中的信号换成0()()sin()()anT b b x n x nT Ae nT u n -==Ω,使a=0.4,0Ω=2.0734,A=1,T=1,重复实验2,求出()b y n ,绘出其频率特性()j b Y e ω曲线;利用公式()()()j j j b Y e X e H e ωωω=,并绘出()j Y e ω的幅频和相频特性曲线,与前面直接对()b y n 进行傅里叶变换所得频率特性曲线进行比较,验证时域卷积定理。
三.实验设备及仪器1. 计算机。
2. Matlab 软件。
四. 实验线路及原理离散信号和系统在时域均可用序列来表示。
序列图形给人以形象直观的印象,它可加深我们对信号和系统的时域特征的理解。
本实验将观察分析几种信号及系统的时域特性。
序列和信号的傅立叶变换是ω的连续函数,而计算机只能计算出有限个离散频率点的函数值。
《数字信号处理》实验指导书
的相角, Ai 就是极点 pi 到单位圆上的点 e jω 的矢量长度(距离),而θ i 就是该矢量 的相角,因此有:
M
∏ B e j(ψ1 +ψ 2 +⋅⋅⋅⋅+ψ M ) j
H (e jω ) =
j =1 N
= H (e jω ) e jϕ (ω )
∏ A e j(θ1+θ2 +⋅⋅⋅⋅+θ N ) i
(1) 设有直流信号 g(t)=1,现对它进行均匀取样,形成序列 g(n)=1。试讨 论若对该序列分别作加窗、补零,信号频谱结构有何变化。 四、实验过程及结果(含程序)
12
13
14
15
16
实验三 IIR 数字滤波器的设计
一、实验目的 (1)掌握双线性变换法及脉冲相应不变法设计 IIR 数字滤波器的具体设计 方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和 带通 IIR 数字滤波器的计算机编程。 (2)观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双 线性变换法及脉冲响应不变法的特点。 (3)熟悉 Butterworth 滤波器、Chebyshev 滤波器和椭圆滤波器的频率特 性
《数字信号处理》
实验指导书
班级: 学号: 姓名: 苏州科技学院 电子教研室
实验一 信号、系统及系统响应
一、实验目的
(1) 熟悉 MATLAB 平台的使用,掌握离散信号、离散系统的 MATLAB 实现。 (2)掌握根据系统函数绘制系统零极点分布图的基本原理和方法。 (3)理解离散系统频率特性分析的基本原理,掌握根据系统函数零极点分布来分 析离散系统频率响应的几何矢量法。
17
变换类型 低通
Байду номын сангаас
工程测试与信号处理实验指导书
工程测试与信号处理实验报告姓名班级学号指导教师2012年下学期实验目录实验一金属箔式应变片――单臂电桥性能实验实验二金属箔式应变片――半桥性能实验实验三金属箔式应变片――全桥性能实验实验四金属箔式应变片单臂、半桥、全桥性能比较实验实验五电容式传感器地位移特性实验实验六光电转速传感器地转速测量实验实验七霍尔测速实验实验八磁电式转速传感器地测速实验实验九电涡流传感器地位移特性实验实验十被测体材质对电涡流传感器地特性影响实验实验一金属箔式应变片――单臂电桥性能实验一、实验目地:了解金属箔式应变片地应变效应,单臂电桥工作原理和性能.二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应地关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成地应变敏感元件,通过它转换被测部位受力状态变化、电桥地作用完成电阻到电压地比例变化,电桥地输出电压反映了相应地受力状态.,对单臂电桥输出电压U o1= EKε/4.三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备).四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上.传感器中各应变片已接入模板地左上方地R1、R2、R3、R4.加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放地正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表地切换开关打到2V档).关闭主控箱电源(注意:当R w3、R w4地位置一旦确定,就不能改变.一直到做完实验三为止).3、将应变式传感器地其中一个电阻应变片R1(即模板左上方地R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V (从主控台引入)如图1-2所示.检查接线无误后,合上主控台电源开关.调节R W1,使数显表显示为零.图1-2应变式传感器单臂电桥实验接线图4、在电子称上放置一只砝码,读取数显表数值,依次增加砝码和读取相应地数显表值,直到200g(或500g)砝码加完.记下实验结果填入表1-1,关闭电源.5、根据表1-1计算系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)和非线性误差δf1=Δm/y F..S ×100%式中Δm为输出值(多次测量时为平均值)与拟合直线地最大偏差:y F·S 满量程输出平均值,此处为200g(或500g).五、思考题:单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以.实验二金属箔式应变片――半桥性能实验一、实验目地:比较半桥与单臂电桥地不同性能、了解其特点.二、基本原理:不同受力方向地两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善.当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2.三、需用器件与单元:同实验一.四、实验步骤:1、传感器安装同实验一.做实验(一)地步骤2,实验模板差动放大器调零.2、根据图1-3接线.R1、R2为实验模板左上方地应变片,注意R2应和R1受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)地电阻应变片作为电桥地相邻边.接入桥路电源±4V,调节电桥调零电位器R W1进行桥路调零,实验步骤3、4同实验一中4、5地步骤,将实验数据记入表1-2,计算灵敏度S2=U/W,非线性误差δf2.若实验时无数值显示说明R2与R1为相同受力状态应变片,应更换另一个应变片.图1-3应变式传感器半桥实验接线图表1-2半桥测量时,输出电压与加负载重量值五、思考题:1、半桥测量时两片不同受力状态地电阻应变片接入电桥时,应放在:(1)对边(2)邻边.2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性(2)应变片应变效应是非线性地(3)调零值不是真正为零.实验三金属箔式应变片――全桥性能实验一、实验目地:了解全桥测量电路地优点.二、基本原理:全桥测量电路中,将受力性质相同地两应变片接入电桥对边,当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KEε.其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善.三、需用器件和单元:同实验一四、实验步骤:1、传感器安装同实验一.2、根据图1-4接线,实验方法与实验二相同.将实验结果填入表1-3;进行灵敏度和非线性误差计算.1-4全桥性能实验接线图表1-3全桥输出电压与加负载重量值五、思考题:1、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以.2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻.图1-5应变式传感器受拉时传感器圆周面展开图实验四 金属箔式应变片单臂、半桥、全桥性能比较一、实验目地:比较单臂、半桥、全桥输出时地灵敏度和非线性度,得出相应地结论.二、实验步骤:根据实验一、二、三所得地单臂、半桥和全桥输出时地灵敏度和非线性度,从理论上进行分析比较.阐述理由(注意:实验一、二、三中地放大器增益必须相同).FF实验五电容式传感器地位移实验一、实验目地:了解电容式传感器结构及其特点.二、基本原理:利用平板电容C=εA/d和其它结构地关系式通过相应地结构和测量电路可以选择ε、A、d中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器.三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源.四、实验步骤:1、按图3-1安装示意图将电容传感器装于电容传感器实验模板上,判别C X1和C X2时,注意动极板接地,接法正确则动极板左右移动时,有正、负输出.不然得调换接头.一般接线:二个静片分别是1号和2号引线,动极板为3号引线.2、将电容传感器电容C1和C2地静片接线分别插入电容传感器实验模板C x1、C x2插孔上,动极板连接地插孔(见图4-1).图4-1电容传感器位移实验接线图3、将电容传感器实验模板地输出端V o1与数显表单元V i相接(插入主控箱V i孔),Rw调节到中间位置.4、接入±15V电源,旋动测微头推进电容器传感器动极板位置,每间隔0.2mm记下位移X与输出电压值,填入表4-1.表4-1 电容传感器位移与输出电压值5、根据表4-1数据计算电容传感器地系统灵敏度S和非线性误差δf.五、思考题:试设计利用ε地变化测谷物湿度地传感器原理及结构?能否叙述一下在设计中应考虑哪些因素?实验六磁电式转速传感器测速实验一、实验目地:了解磁电式测量转速地原理.二、基本原理:基于电磁感应原理,N匝线圈所在磁场地磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N个磁棒时,每转一周线圈感应电势产生N次地变化,通过放大、整形和计数等电路即可以测量转速.三、需用器件与单元:磁电式传感器、数显单元测转速档、直流源2-24V.四、实验步骤:1、磁电式转速传感器按图5-4安装传感器端面离转动盘面2mm左右.将磁电式传感器输出端插入数显单元Fin孔.(磁电式传感器两输出插头插入台面板上二个插孔)2、将显示开关选择转速测量档.3、将转速电源2-24V用引线引入到台面板上24V插孔,合上主控箱电开关.使转速电机带动转盘旋转,逐步增加电源电压观察转速变化情况.五、思考题:为什么说磁电式转速传感器不能测很低速地转动,能说明理由吗?实验七霍尔测速实验一、实验目地:了解霍尔转速传感器地应用.二、基本原理:利用霍尔效应表达式:U H=K H IB,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化N次.每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物地转速.三、需用器件与单元:霍尔转速传感器、直流源+5V、转动源2-24V、转动源单元、数显单元地转速显示部分.四、实验步骤:1、根据图5-4,将霍尔转速传感器装于传感器支架上,探头对准反射面内地磁钢.图7-1霍尔、光电、磁电转速传感顺安装示意图2、将5V直流源加于霍尔转速传感器地电源端(1号接线端).3、将霍尔转速传感器输出端(2号接线端)插入数显单元Fin端,3号接线端接地.4、将转速调节中地+2V-24V转速电源接入三源板地转动电源插孔中.5、将数显单元上地开关拨到转速档.6、调节转速调节电压使转动速度变化.观察数显表转速显示地变化.五、思考题:1、利用霍尔元件测转速,在测量上有否限制?2、本实验装置上用了十二只磁钢,能否用一只磁钢?实验八光电转速传感器地转速测量实验一、实验目地:了解光电转速传感器测量转速地原理及方法.二、基本原理:光电式转速传感器有反射型和透射型二种,本实验装置是透射型地,传感器端部有发光管和光电池,发光管发出地光源在转盘上反射后由光电池接受转换成电信号,由于转盘上有相间地16个间隔,转动时将获得与转速及黑白间隔数有关地脉冲,将电脉计数处理即可得到转速值.三、需用器件与单元:光电转速传感器、直流电源+5V、转动源及2-24V直流源、数显单元.四、实验步骤:1、光电转速传感器已安装在三源板上,把三源板上地+5V、接地V0与主控箱上地+5V、地、数显表地Vin相连.数显表转换开关打到转速档.2、将转速源2-24V输出旋到最小,接到转动源24V插孔上.3、合上主控箱电源开关,使电机转动并从数显表上观察电机转速.思考题:已进行地实验中用了多种传感器测量转速,试分析比较一下哪种方法最简单、方便.实验九电涡流传感器位移实验一、实验目地:了解电涡流传感器测量位移地工作原理和特性.二、基本原理:通过高频电流地线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈地距离有关,因此可以进行位移测量.三、需用器件与单元:电涡流传感器实验模板、电涡流传感器、直流电源、数显单元、测微头、铁圆片.四、实验步骤:1、根据图8-1安装电涡流传感器.图8-1电涡流传感器安装示意图图9-1 电涡流传感器安装示意图图9-2电涡流传感器位移实验接线图2、观察传感器结构,这是一个平绕线圈.3、将电涡流传感器输出线接入实验模板上标有L地两端插孔中,作为振荡器地一个元件.4、在测微头端部装上铁质金属圆片,作为电涡流传感器地被测体.5、将实验模板输出端V o与数显单元输入端V i相接.数显表量程切换开关选择电压20V档..6、用连结导线从主控台接入15V直流电源接到模板上标有+15V地插孔中.7、使测微头与传感器线圈端部接触,开启主控箱电源开关,记下数显表读数,然后每隔0.2mm读一个数,直到输出几乎不变为止.将结果列入表8-1.表8-1电涡流传感器位移X与输出电压数据8、根据表8-1数据,画出V-X曲线,根据曲线找出线性区域及进行正、负位移测量时地最佳工作点,试计算量程为1mm、3 mm及5mm时地灵敏度和线性度(可以用端基法或其它拟合直线).五、思考题:1、电涡流传感器地量程与哪些因素有关,如果需要测量±5mm地量程应如何设计传感器?2、用电涡流传感器进行非接触位移测量时,如何根据量程使用选用传感器.实验十被测体材质对电涡流传感器特性影响一、实验目地:了解不同地被测体材料对电涡流传感器性能地影响.二、基本原理:涡流效应与金属导体本身地电阻率和磁导率有关,因此不同地材料就会有不同地性能.三、需用器件与单元:除与实验二十五相同外,另加铜和铝地被测体圆盘.四、实验步骤:1、传感器安装与实验二十五相同.2、将原铁圆片换成铝和铜圆片.3、重复实验二十五步骤,进行被测体为铝圆片和铜圆片时地位移特性测试,分别记入表8-2和表8-3.表8-2被测体为铝圆片时地位移为输出电压数据表8-3被测体为铜圆片时地位移与输出电在数据4、根据表8-2和表8-3分别计算量程为1mm和3mm时地灵敏度和非线性误差(线性度).5、分别比较实验二十五和本实验所得结果进行小结.五、思考题:当被测体为非金属材料如何利用电涡流传感器进行测试?。
数字信号处理实验指导书
《数字信号处理》实验指导书编写:刘梦亭审核:司玉娟阎维和适用专业:电子信息工程电子信息科学与技术通信工程等电子信息与工程系2009年9月目录实验一:离散时间信号分析 (1)实验二:离散时间系统分析 (3)实验三:离散系统的Z域分析 (6)实验四:FFT频谱分析及应用 (9)实验五:IIR数字滤波器的设计 (12)实验六:FIR数字滤波器的设计 (16)附录: MATLAB基本操作及常用命令 (20)实验一:离散时间信号分析实验学时:2学时 实验类型:验证 实验要求:必修 一、实验目的1) 掌握离散卷积计算方法; 2) 学会差分方程的迭代解法;3) 了解全响应、零输入响应、零状态响应和初始状态的物理意义和具体求法; 二、实验内容 1、信号的加数学描述 )()()(21n x n x n x += MATLAB 实现 21X X X +=设[ x10=[1 0.7 0.4 0.1 0]; x20=[0.1 0.3 0.5 0.7 0.9 1];]2、信号的乘数学描述 )()()(21n x n x n x *= MATLAB 实现 2.1X X X *=设[ x10=[1 0.7 0.4 0.1 0]; x20=[0.1 0.3 0.5 0.7 0.9 1];]3、计算卷积用MATLAB 计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。
首先用手工计算,然后用MATLAB 编程验证。
三、实验组织运行要求1、学生在进行实验前必须进行充分的预习,熟悉实验内容;2、学生根据实验要求,读懂并理解相应的程序;3、学生严格遵守实验室的各项规章制度,注意人身和设备安全,配合和服从实验室人员管理;4、教师在学生实验过程中予以必要的辅导,独立完成实验;5、采用集中授课形式。
四、实验条件1、具有WINDOWS 98/2000/NT/XP 操作系统的计算机一台; 2.、MATLAB 编程软件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
训练一信号与系统函数编程训练目的1﹑学会将信号与系统函数转变成计算机程序。
2﹑基本掌握将数学函数转变为程序函数的技巧与规范。
3﹑了解理论函数与程序函数的差异。
初步认识计算机适用范围。
训练介绍1﹑数学函数转化问题把根据数学函数编写的C函数子程序称为程序函数。
数学函数与程序不可能完全一致。
一是计算机运算都有一个范围,所做运算超出范围便会出错;二是因为计算机不能做除零运算,这会产生一除法错,理论函数无此限制。
所以要求在编写程序函数时一定要结合实际应用情形来确定如何编写,不能简单照搬数学函数。
三是程序函数不象数学函数那样易于进行代数运算或者具有某种运算性质,例如理论上的冲击函数,则不易编写对应的函数子程序,所以数学函数并不能全由计算机的程序函数完全实现。
一般在将一数学函数转变为一计算机上程序函数时,要具体情况具体处理。
编写程序函数有一些规范和注意事项:(1)数学函数当中若有除法运算,需仔细函数奇异值的处理,须通过程序中的判断和特殊处理使程序函数返回正确值。
(2)数学函数中跳变点的极限值,常取左右极限的均值,程序函数中以右极限作为函数的取值。
若特殊需要,须与数学函数完全一致,则仍按数学函数规定取值。
(3)所有函数子程序的输入与输出参量尽量规定为double型,建议不用float型,这是出于规范考虑。
(4)所有程序函数的输入输出参量声明时写成如下形式:Double function(Type out1,Type out2,...Type in1,Type in2,...)Double function(Type out1,Type out2,...Type io1,Type io2,...Type in1,Type in2,...)即,输出变量占一行,输入输出变量占一行,输入变量占一行。
输入变量的第一个参量为主变量。
(5) 尽量减少函数变量个数,例如sin(ωt)有两个参数,编程只需实现sin(x)。
(6) 每个函数子程序须有适当文字注释,注释的内容包括索引号,对应的理论函数,编者姓名及日期,函数的功能﹑定义域﹑值域,使用举例等。
说明应简洁清楚,以备能长期正确使用。
(7) 程序函数块内的小块以一空行进行分割,程序函数体之间,以2、3空行行分割。
组织一个函数库文件时应将功能,特征相近的函数子程序归在一起。
各分类块间应有适当的注释说明。
2﹑以下以单位阶跃U(t)、方波和函数])3][()1[(222222b a b a b a h +-+-+=三种信号函数为例进行编程示范:训练内容1、斜变函数R(t)=t ,t>02、锯齿波:f(t)=t / T,0≤t<T 扩展至整个t 轴(如图1-1所示)。
图1-13、调制SinC 信号:f(t) = (sin ωtcos Ωt)/ωt , 代入参数Ω、ω时,使Ω>>ω。
训练步骤1﹑依训练内容在一个文件中编写好三个函数子程序,并依要求进行注释,做成一个库文件。
2﹑编写一个有main( )函数的可执行文件,在此执行文件中调用库文件里的函数子程序进行计算,计算结果由计算机屏幕输出,结合手算验证,多取不同情况的特殊值,保证程序函数正确。
问题讨论1﹑举例说明不宜用程序函数表达的理论函数,并总结这些函数的特点。
2﹑讨论理论方式、计算机方式在处理实际物理的信号与系统问题时的异同。
3﹑对规范化程序方法的初步认识。
]训练二图形显示与观察训练目的1﹑掌握基本的计算机作图方法。
2﹑掌握常用的信号与系统图形观察。
3﹑熟悉一些显示器编程的基本概念。
训练介绍1、计算机绘图基础对于计算机屏幕,机器本身按物理坐标绘图显示,屏幕左上角的物理坐标是(0,0),右下角的坐标是(横向分辨率-1,纵向分辨率-1)。
Windows操作系统是在屏幕上开若干窗口,有客户区的窗口用户可以在客户区作图,窗口客户区的左上角的相对物理坐标是(0,0),右下角的相对物理坐标是(w-1,h-1),w是宽,h是高,用户工程使用的是自己定义的用户坐标,用户坐标到窗口的相对物理坐标有一个转换。
如图2-1所示:(图2-1)用户坐标可以是三维坐标,同样是转换到2维屏幕窗口坐标。
工程中常用不同的窗口模拟一些仪器,如用示波器﹑扫频仪﹑频谱仪﹑矢量分析仪等等,也可用不同的坐标系统和作图函数工具研究分析工程中的信号和系统。
对窗口的作图由不同的图形驱动函数实现。
基本的作图函数有SetPixel()、MoveToEx()、LineTo(),其它作图函数可由基本函数构造出来。
工程训练中,对2维用户坐标窗口作图函数,函数名后有一个2,如linto2(),3维的作图函数后面有一个3。
不同窗口不同坐标体系的作图函数众多,主要的是掌握基本,理解其它或构建其它。
训练内容1、用plotxy2( )绘制余弦,正切,和e为底的指数函数;2﹑用plotxy2( )绘制训练一中的斜变函数和锯齿波函数,用plotxyz3()绘制sinC()函数。
3、练习物理坐标下的作图,绘制圆,三角形和扇型图(参数自定)训练三 波形合成训练目的1﹑学会用计算机合成波形。
2﹑学习将理论知识同用计算机相结合的方法。
训练介绍波形合成有许多运用,如电子琴、信号源、计算机里声卡,合成法使得信号、声音、图象的产生更加容易,使用更加方便,计算机研究信号波形合成,可直观看出合成的具体效果,这对我们进行科学研究和设计新仪器新设备都有极大帮助。
训练理论,核心是一种函数逼近,通过合成信号g(t)希望能与理想信号f(t)差别很小,以使实际使用当中可用合成信号代替理想信号。
用数学形式表示为:g(t)=c 1g 1(t)+c 2g 2(t)+...c n g n (t),(g 1(t)﹑g 2(t) ... g n (t)为一函数集) 在(3-1)条件下的c 1﹑c 2...c n ,可得到f(t)与g(t)的最佳匹配。
由此可找到函数f(t)在不同坐标函数集上的分解合成形式。
其中由正交正弦函数集表示的傅立叶级数为:式中)23()sin cos ()sin cos (2)(01-+=++=∑∑∞=∞=k k k k k k t k b t k a t k b t k a a t f ωωωω)13()]()([min 212--⎰t t dt t g t f 求有关系函数介绍:积分工具函数为宏函数_Trapz(value,a,b,N,fx,x) 将自变量为x 的f(x)在[a,b]区间划分成N 2进行梯形积分,返回的积分值⎰=ba dx x f value )(,注意x 为形式上参数,用于指明fx 函数表达式中的自变量,无须用前声明。
double FouSer(double t,double *T,double a[],double b[],int *N);用于求(3-2)式的值。
t :为(3-2)中的自变量;T :为信号与系统函数的周期;a[],b[]:为(3-2)中系数构成的数组,数组长度为N 。
一个周期为1的函数f(t)的正交沃尔什级数表示为:其中:)83(),()(10-=⎰dt k t Wal t f A k这里k r 是k 的二进制各位数字,p 是二进制位数。
Walsh 函数只取{+1,-1},例如Wal (1,t )=sgn(cos πt)在0〈=t<1/2时为+1,在1/2<=t<1时为-1。
该函数最大优点是运算速度快,只须)53(sin )(2)43(cos )(2)33(2a )(10000-=-=-==⎰⎰⎰T k T k T tdt k t f T b t k t f Ta a dt t f T a ωω,)63()10(),,()(0-<≤=∑∞=t k t Wal A t f k k )73(2),2sgn(cos ),(1010-==∑∏-=-=rp r r p r r r k k t k k t Wal π简单加减即可完成。
一个周期为T 的函数g(t)的正交沃尔什级数表示为:由C 函数实现walsh 函数的运算:double wal(double t,int n);实现(3-7)的运算,返回第k 级沃尔什函数在时间t 处的值。
double WalSer(double t,double *T,double a[],int n[1]);实现(3-9)的运算,用级数合成函数。
程序示例选用的函数为::⎪⎪⎩⎪⎪⎨⎧<≤<≤<≤<≤=)43(0)32(2)21(5.1)10(5.0)(t t t t t f 扩展到整个t 轴。
把该函数编写成标准的信号与系统程序函数jieti(),在主函数中积分求级数系数,然后用级数程序函数合成波形。
训练准备1﹑预习有关付里叶级数,沃尔什级数的有关知识。
2﹑编写初步的上机程序。
训练内容1﹑作|sin(t)|,三角波,方波的5级傅立叶级数和沃尔什级数的合成图。
2﹑作出两种级数合成波形与理想波形的误差图。
)103(),()()93()0(),,(),()(000-=-<≤≈=⎰∑∑=∞=dt k Tt Wal t g A T t k T t Wal A k T t Wal A t g T k n k k k k训练四波形失真与群延时训练目的1﹑学会用计算机研究基本理论概念。
2﹑培养用计算机仿真实际问题的能力。
训练介绍在示波器研究信号与系统时,常需辅助设备,才能获得有关信号与系统的完整认识,图4-1是研究信号经一系统后产生失真的示意图,示波器同步信号采自系统输入,系统输出即失真信号做示波器显示,一个有经验的工程师可以通过调节系统旋钮1或2,观察失真信号变化,然后判断失真类型,否则就要借助专门的失真分析仪。
以下是有关失真的理论定义:(1)波形的幅度失真——指在信号的正弦分量中因幅度发生相对比例变化而引起的失真。
(2)波形的相位失真——指在信号的正弦分量中因相位发生相对位置变化而引起的失真。
上述两种失真不产生新的频率分量,一般也称作线性失真。
(3) 波形的频率失真——指在信号的正弦分量中因频率发生变化而引起的失真,这种失真产生新的频率分量,一般也称作非线性失真。
(4) 信号的群延时——指系统响应的各频率分量相对于激励中的相应各频率分量延迟的时间虽不相同,但输出信号的包络并不变形,只是延迟了一段时间,其相频关系为:b(ω)=b 0+ωt 。
训练将通过动态连续模拟,以获得工程师相关经验。
相关函数:int instKeyCtr(double x[1],double a,double b,int n);该函数用于在已建好的用户坐标系统边框上安装一键盘控制按钮。
int keyCtr(double x[1],double a,double b,int n);/*:ESC=27 exit 0= . > 4key add dx=(b-a)/n;—_ , < 4key dec dx;*/预定义在xxgc.h ;为实际键盘控制函数,根据按键不同,控制x[0]的量作增或减(”+=.>”四键为增,“—-,<”四键为减),x[0]变化区间为[a,b],变化步长为(b-a )/n 。