数据结构课件ppt课件

合集下载

(2024年)《数据结构》全套课件

(2024年)《数据结构》全套课件

30
树形数据结构的查找算法
二叉排序树的查找
从根节点开始,若查找值小于当前节点 值,则在左子树中查找;若大于当前节 点值,则在右子树中查找。
VS
平衡二叉树的查找
在保持二叉排序树特性的基础上,通过旋 转操作使树保持平衡,提高查找效率。
2024/3/26
31
散列表的查找算法
散列函数的设计
将关键字映射为散列表中位置的函数。
过指针来表示。
链式存储的特点
逻辑上相邻的元素在物理位置上 不一定相邻;每个元素都包含数
据域和指针域。
链式存储的优缺点
优点是插入和删除操作不需要移 动元素,只需修改指针;缺点是
存储密度小、空间利用率低。
2024/3/26
11
线性表的基本操作与实现
插入元素
在线性表的指定位 置插入一个元素。
查找元素
在线性表中查找指 定元素并返回其位 置。
自然语言处理的应用
在自然语言处理中,需要处理大量的文本数据,数据结构中的字符 串、链表、树等可以很好地支持文本的处理和分析。
41
数据结构在计算机网络中的应用
2024/3/26
路由算法的实现
计算机网络中的路由算法需要大量的数据结构支持,如最短路径 树、距离向量等。
网络流量的控制
在计算机网络中,需要对网络流量进行控制和管理,数据结构中的 队列、缓冲区等可以很好地支持流量的控制。
37
06
数据结构的应用与拓展
2024/3/26
38
数据结构在算法设计中的应用
01
作为算法设计的基 础
数据结构为算法提供了基本操作 和存储方式,是算法实现的重要 基础。
02
提高算法效率

数据结构说课ppt课件

数据结构说课ppt课件
(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数
基本概念与术语
据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:
1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。
单链表
链表操作算法:初始化、插入、输出、删除、遍历
8. 在一个单链表中删除q所指结点时,应执行如下操作:
q=p->next;
p->next=( p->next->next );
free(q);//这种题目靠一根指针是没有办法完成的,必须要借助第二根指针。
9. 在一个单链表中p所指结点之后插入一个s所指结点时,应执行:
(2) 若表的总数基本稳定,且很少进行插入和删除,但要求以最快的速度存取表中的元
问答题
素,这时,应采用哪种存储表示?为什么?
应采用顺序存储表示。因为顺序存储表示的存取速度快,但修改效率低。若表的总数基本稳定,且很少进行插入和删除,但要求以最快的速度存取表中的元素,这时采用顺序存储表示较好。
03
栈和队列
数据结构说课ppt课件
演讲人
数据结构概述
01
线性表
02
栈和队列
03
目录
01
数据结构概述
基本概念与术语
2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。数据项是数据的不可分割的最小单位。)
在右侧编辑区输入内容
顺序表的存储效率高,存取速度快。此,不易扩充。同时,由于在插入或删除时,为保持原有次序,平均需要移动一半(或近一半)元素,修改效率不高。

数据结构ppt课件

数据结构ppt课件

数据结构的定义数据结构是计算机中存储、组织数据的方式,它定义了数据元素之间的逻辑关系以及如何在计算机中表示这些关系。

提高算法效率合适的数据结构可以显著提高算法的执行效率,降低时间复杂度和空间复杂度。

简化程序设计数据结构为程序设计提供了统一的抽象层,使得程序员可以更加专注于问题本身,而不是底层的数据表示和访问细节。

便于数据管理和维护良好的数据结构设计可以使得数据的管理和维护变得更加方便和高效。

数据结构的定义与重要性线性数据结构中的元素之间存在一对一的关系,如数组、链表、栈和队列等。

线性数据结构非线性数据结构中的元素之间存在一对多或多对多的关系,如树、图等。

非线性数据结构静态数据结构在程序运行期间不会发生改变,如数组、静态链表等。

静态数据结构动态数据结构在程序运行期间可以动态地添加或删除元素,如链表、动态数组等。

动态数据结构数据结构的分类01020304在计算机科学中,数据结构是算法设计和分析的基础,广泛应用于操作系统、编译原理、数据库等领域。

计算机科学在软件工程中,数据结构是软件设计和开发的重要组成部分,用于实现各种软件功能和性能优化。

软件工程在人工智能中,数据结构用于表示和处理各种复杂的数据和知识,如神经网络、决策树等。

人工智能在大数据处理中,数据结构用于高效地存储、管理和分析海量数据,如分布式文件系统、NoSQL 数据库等。

大数据处理数据结构的应用领域0102线性表是具有n个数据元素的有限序列创建、销毁、清空、判空、求长度、获取元素、修改元素、插入元素、删除元素等线性表的定义线性表的基本操作线性表的定义与基本操作03用一段地址连续的存储单元依次存储线性表的数据元素顺序存储结构的定义可以随机存取,即可以直接通过下标访问任意元素;存储密度高,每个节点只存储数据元素顺序存储结构的优点插入和删除操作需要移动大量元素;空间利用率不高,需要提前分配存储空间顺序存储结构的缺点链式存储结构的定义01用一组任意的存储单元存储线性表的数据元素,这组存储单元可以是连续的,也可以是不连续的链式存储结构的优点02插入和删除操作不需要移动大量元素,只需要修改指针;空间利用率高,不需要提前分配存储空间链式存储结构的缺点03不能随机存取,只能通过从头节点开始遍历的方式访问元素;存储密度低,每个节点除了存储数据元素外,还需要存储指向下一个节点的指针0102定义栈(Stack)是一种特殊的线性数据结构,其操作只能在一端(称为栈顶)进行,遵循后进先出(LIFO)的原则。

《数据结构排序》课件

《数据结构排序》课件

根据实际需求选择时间复杂度和空间 复杂度最优的排序算法,例如快速排 序在平均情况下具有较好的性能,但 最坏情况下其时间复杂度为O(n^2)。
排序算法的适用场景问题
适用场景考虑因素
选择排序算法时需要考虑实际应 用场景的特点,如数据量大小、 数据类型、是否需要稳定排序等 因素。
不同场景适用不同
算法
例如,对于小规模数据,插入排 序可能更合适;对于大规模数据 ,快速排序或归并排序可能更优 。
排序的算法复杂度
时间复杂度
衡量排序算法执行时间随数据量增长而增长的速率。时间复杂度越低,算法效 率越高。常见的时间复杂度有O(n^2)、O(nlogn)、O(n)等。
空间复杂度
衡量排序算法所需额外空间的大小。空间复杂度越低,算法所需额外空间越少 。常见的空间复杂度有O(1)、O(logn)、O(n)等。
在数据库查询中,经常需要对结果进行排序,以便用户能够快速找到所需信息。排序算 法的效率直接影响到查询的响应时间。
索引与排序
数据库索引能够提高查询效率,但同时也需要考虑到排序的需求。合理地设计索引结构 ,可以加速排序操作。
搜索引擎中的排序
相关性排序
搜索引擎的核心功能是根据用户输入的 关键词,返回最相关的网页。排序算法 需要综合考虑网页内容、关键词密度、 链接关系等因素。
VS
广告与排序
搜索引擎中的广告通常会根据关键词的竞 价和相关性进行排序,以达到最佳的广告 效果。
程序中的排序应用
数组排序
在程序中处理数组时,经常需要对其进行排 序。不同的排序算法适用于不同类型的数据 和场景,如快速排序、归并排序等。
数据可视化中的排序
在数据可视化中,需要对数据进行排序以生 成图表。例如,柱状图、饼图等都需要对数 据进行排序处理。

数据结构ppt课件完整版

数据结构ppt课件完整版

针对有序数据集合,每次通过中间元素将 待查找区间缩小为之前的一半,直到找到 元素或区间为空。
哈希查找
树形查找
通过哈希函数将数据映射到哈希表中,实 现快速查找。
如二叉搜索树、平衡树等,通过树形结构实 现高效查找。
排序算法分类及实现原理
插入排序
将待排序元素逐个插入到已排序序列中,直到所有元素均插入完毕。
由n(n>=0)个具有相同类型 的数据元素(结点)a1,a2,
...,an组成的有序序列。
同一性
每个元素必须是同一类型的数 据。
有序性
元素之间具有一对一的前驱和 后继关系,即除首尾元素外, 每个元素都有一个前驱和一个 后继。
可变性
线性表的长度可变,即可以插 入或删除元素。
顺序存储结构与链式存储结构比较
定义
用一段连续的存储单元依次存储线性 表的数据元素。
优点
可以随机存取表中任一元素,且存取 时间复杂度为O(1)。
顺序存储结构与链式存储结构比较
• 缺点:插入和删除操作需要移动大量元素,时间 复杂度高;需要预先分配存储空间,容易造成空 间浪费。
顺序存储结构与链式存储结构比较
定义
用一组任意的存储单元存储线性 表的数据元素(这组存储单元可 以是连续的,也可以是不连续的
查找操作
查找指定元素的位置。
遍历操作
访问线性表中的每个元素。
销毁操作
释放线性表占用的存储空间。
03
栈和队列
栈定义及特点
栈(Stack)是一种特殊的线性数据结构,其数据的存 取遵循后进先出(LIFO, Last In First Out)的原则。 栈的特点
具有记忆功能,能保存数据的状态。
栈的基本操作包括入栈(push)、出栈(pop)、查 看栈顶元素(top)等。 只能在栈顶进行数据的插入和删除操作。

基本数据结构课件高中信息技术浙教版(2019)必修1(20张PPT)

基本数据结构课件高中信息技术浙教版(2019)必修1(20张PPT)
小组中小明的学习成绩的表达式为( D)
A.student[4] B.student[3] C.student{”小明”} D.student[”小明”]
例题
3.“回文”是古今中外都有的一种修辞方式和文字游戏,如“我为人人,人人为
我”等。在数学中也存在这样一类数具有这样的特征,称为回文数。例如:
123454321为回文数。
a[7:-9:-2] a[-2:-9:-2] 切片 a[开始索引:结束元素索引的后一个:步长]
1、从空间上看,一般切片从左往右 2、步长为负,从右往左
基本数据结构
由多个数据元素共同组成的序列组合
-9 -8 -7 -6 -5 -4 -3-2 -1
a=“你 好 , P y t h o n”
0 1 2 3 4 567 8
“hy,你”
a[索引] “P” a[3] a[-3] =“h” a[9] × a[6::-2] a[-3::-2]
切片 a[开始索引:结束元素索引的后一个:步长]
1、从空间上看,一般切片从左往右 2、步长为负,索引不变,整体倒置 3、开始索引、结束索引、步长均可为空
基本数据结构
由多个数据元素共同组成的序列组合
C2
D3
例题 已知列表a=[6,5],b=[6,5,4,3],则a*2+b的结果为( )
例题
某班级组建研究性学习小组,小组成员的情况以及学员成绩用Python存 储在student中。若student={”小红”:90,”小明”:80,”小张 ”:75,”小黄”:86,”小霞”:70,”小斌”:89},则访问学习
。要
访问小明的学习成绩的表达式为 scores[0][""]小[0明] "] 。

《数据结构》课件

《数据结构》课件

第二章 线性表
1
线性表的顺序存储结构
2
线性表的顺序存储结构使用数组来存储元素,
可以快速随机访问元素。
3
线性表的常见操作
4
线性表支持常见的操作,包括插入、删除、 查找等,可以灵活地操作其中的元素。
线性表的定义和实现
线性表是一种数据结构,它包含一组有序的 元素,可以通过数组和链表来实现。
线性表的链式存储结构
线性表的链式存储结构使用链表来存储元素, 支持动态扩展和插入删除操作。
第三章 栈与队列
栈的定义和实现
栈是一种特殊的线性表,只能在一 端进行插入和删除操作,遵循后进 先出的原则。
队列的定义和实现
队列是一种特殊的线性表,只能在 一端进行插入操作,在另一端进行 删除操作,遵循先进先出的原则。
栈和队列的应用场景和操作
哈希表是一种高效的查找数据结构, 通过哈希函数将关键字映射到数组 中,实现快速查找。
排序算法包括冒泡排序、插入排序 和快速排序等,可以根据数据规模 和性能要求选择合适的算法。
结语
数据结构的学习心得 总结
学习数据结构需要掌握基本概念 和常见操作,通过实践和练习加 深理解和熟练度。
下一步学习计划的安 排
在掌握基本数据结构的基础上, 可以进一步学习高级数据结构和 算法,提升编程技能。
相关学习资源推荐
推荐一些经典的数据结构教材和 在线学习资源,如《算法导论》 和LeetCode等。
栈和队列在计算机科学中有许多应 用,如函数调用、表达式求值和作 业调度等。
第四章 树与二叉树
树的定义和性质
树是由节点和边组成的一种非线性数据结构,每个 节点可以有多个子节点。
二叉树的遍历方式
二叉树的遍历方式包括前序遍历、中序遍历和后序 遍历,可以按不同顺序输出节点的值。

数据结构排序PPT课件

数据结构排序PPT课件
—— 若待排序记录一部分在内存,一部分在外存, 则称为外部排序。
注:外部排序时,要将数据分批调入内存来 排序,中间结果还要及时放入外存,显然外 部排序要复杂得多。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
5.待排序记录在内存中怎样存储和处理?
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
Void BInsertSort (SqList &L) // 折半插入排序
{ for ( i=2;i<=L.length;++i )
{ L.r[0] = L.r[ i ]; // 将L.r [i] 暂存到L.r[0]
处理方式: ① 顺序排序 —— 数据间的逻辑顺序关系通过其物理
存储位置的相邻来体现,排序时直接移动记录; 适合数据较少的情况!
② 链表排序 ——数据间的逻辑顺序关系通过结点中 的指针体现,排序时只修改指针,不移动数据;
③ 地址排序 —— 数据存储在一段连续地址的空间, 构造一个辅助表保持各数据的存放地址(指针),排 序时先修改辅助表中的地址,最后再移动记录。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
4. 什么叫内部排序?什么叫外部排序? —— 若待排序记录都在内存中,称为内部排序;
内部排序基本操作有两种: ◆ 比较两个关键字的大小;(比不可少的操作) ◆ 存储位置的移动。
i=8
0
1
2
3
4

数据结构(牛小飞)6队列PPT课件

数据结构(牛小飞)6队列PPT课件
优先级队列的实现需要额外的存储空间来维护元素的优先级信息。
循环队列的应用
循环队列是一种利用固定长度的数组实现的队列,通过 循环利用数组的空间来达到动态扩展的效果。
循环队列在实现上需要处理队列为空和队列满的情况, 以保证数据的正确性。
循环队列在处理大量数据时具有较高的效率,能够避免 频繁的内存分配和释放操作。
代码的复杂性。
04
出队操作:删除循环队列头部的元素,并将头部指针 向前移动一位。如果头部指针已经达到数组的最后一 个位置,则将其重置为数组的第一个位置。
04
队列的运算性能分析
队列的插入性能分析
总结词
队列的插入操作通常具有较好的 性能,时间复杂度为O(1)。
详细描述
在队列中,插入操作通常在队尾进 行,因为队列是一种先进先出 (FIFO)的数据结构,所以插入操 作可以在常数时间内完成。
消息中间件
使用队列可以实现异步的消息传递, 提高系统的解耦性和扩展性。
02
队列的基本操作
入队操作
总结词
在队列的尾部添加元素
详细描述
入队操作是指将一个元素添加到队列的尾部。在队列中,新元素总是被放置在 队尾,等待被处理。入队操作的时间复杂度通常为O(1),即常数时间复杂度。
出队操作
总结词
从队列的头部移除元素
详细描述
出队操作是指从队列的头部移除一个元素。在队列中,最先进入的元素最先被处理, 因此出队操作总是从队头开始。出队操作的时间复杂度通常为O(1),即常数时间复 杂度。
队列的初始化与销毁
总结词
创建和释放队列所占用的资源
详细描述
队列的初始化操作是创建一个空队列,并分配必要的存储空间。销毁队列的操作则是释放队列所占用的存储空间, 并解除与队列相关的所有资源。初始化与销毁操作的时间复杂度通常为O(1)。

数据结构详解ppt课件

数据结构详解ppt课件

“数据结构知识导入全程目标•数据结构的基本概念–逻辑结构–物理结构–运算结构•数据结构的基本实现–堆栈–队列–链表–二叉树知识讲解数据结构的基本概念•数据结构是相互之间存在一种或多种特定关系的数据的集合•数据结构是计算机存储、组织数据的方式•数据结构的选择直接影响计算机程序的运行效率(时间复杂度)和存储效率(空间复杂度)•计算机程序设计=算法+数据结构•数据结构的三个层次–抽象层——逻辑结构–结构层——物理结构–实现层——运算结构识讲解•集合结构(集)–结构中的数据元素除了同属于一个集合外没有其它关系识讲解•线性结构(表)–结构中的数据元素具有一对一的前后关系识讲解•树型结构(树)–结构中的数据元素具有一对多的父子关系知识讲解实现双向线性链表•删除节点识讲解•树形结构的最简模型,每个节点最多有两个子节点•每个子节点有且仅有一个父节点,整棵树只有一个根节点•具有递归的结构特征,用递归的方法处理,可以简化算法•三种遍历序–前序遍历:D-L-R–中序遍历:L-D-R–后序遍历:L-R-D识讲解•二叉树的一般形式–根节点、枝节点和叶节点–父节点和子节点–左子节点和右子节点–左子树和右子树–大小和高度(深度)识讲解•满二叉树–每层节点数均达到最大值–所有枝节点均有左右子树知识讲解二叉树•完全二叉树–除最下层外,各层节点数均达到最大值–最下层的节点都连续集中在左边识讲解•顺序存储–从上到下、从左到右,依次存放–非完全二叉树需用虚节点补成完全二叉树识讲解•链式存储–二叉链表,每个节点包括三个域,一个数据域和两个分别指向其左右子节点的指针域识讲解•链式存储–三叉链表,每个节点包括四个域,一个数据域、两个分别指向其左右子节点的指针域和一个指向其父节点的指针域知识讲解实现有序二叉树•有序二叉树亦称二叉搜索树,若非空树则满足:–若左子树非空,则左子树上所有节点的值均小于等于根节点的值–若右子树非空,则右子树上所有节点的值均大于等于根节点的值–左右子树亦分别为有序二叉树•基于有序二叉树的排序和查找,可获得O(logN)级的平均时间复杂度知识讲解逻辑结构•网状结构(图)–结构中的数据元素具有多对多的交叉映射关系识讲解•顺序结构–结构中的数据元素存放在一段连续的地址空间中识讲解•顺序结构–随机访问方便,空间利用率低,插入删除不方便识讲解•链式结构–结构中的数据元素存放在彼此独立的地址空间中–每个独立的地址空间称为节点–节点除保存数据外,还需要保存相关节点的地址识讲解•链式结构–插入删除方便,空间利用率高,随机访问不方便知识讲解逻辑结构与物理结构的关系•每种逻辑结构采用何种物理结构实现,并没有一定之规,通常根据实现的难易程度,以及在时间和空间复杂度方面的要求,选择最适合的物理结构,亦不排除复合多种物理结构实现一种逻辑结构的可能知识讲解运算结构•创建与销毁–分配资源、建立结构、释放资源•插入与删除–增加、减少数据元素•获取与修改–遍历、迭代、随机访问•排序与查找–算法应用知识讲解数据结构的基本实现•堆栈–基于顺序表的实现–基于链式表的实现•队列–基于顺序表的实现–基于链式表的实现•链表–双向线性链表的实现•二叉树–有序二叉树(二叉搜索树)的实现知识讲解堆栈•后进(压入/push)先出(弹出/pop)识讲解•初始化空间、栈顶指针、判空判满识讲解•动态分配、栈顶指针、注意判空知识讲解队列•先进(压入/push)先出(弹出/pop)识讲解•初始化空间、前弹后压、循环使用、判空判满识讲解•动态分配、前后指针、注意判空知识讲解链表•地址不连续的节点序列,彼此通过指针相互连接•根据不同的结构特征,将链表分为:–单向线性链表–单向循环链表–双向线性链表–双线循环链表–数组链表–链表数组–二维链表识讲解•单向线性链表识讲解•单向循环链表识讲解•双向线性链表识讲解•双向循环链表识讲解•数组链表识讲解•链表数组识讲解•二维链表识讲解•结构模型识讲解•插入节点。

《数据结构MST》课件

《数据结构MST》课件

VS
最小生成树唯一性的证明
通过反证法,假设存在两棵不同的最小生 成树,它们之间至少存在一个边不同,那 么可以通过调整这条边来得到一棵权值和 更小的生成树,与最小生成树的定义矛盾 。
最小生成树性质
最小生成树的边数
01
在一个连通加权无向图中,最小生成树的边数等于顶点数减一

最小生成树的权值和
02
在一个连通加权无向图中,最小生成树的权值和等于所有边的
最小生成图问题
1 2 3
定义
给定一个带权重的连通图,寻找一种方式将该图 分解为若干个子图,使得所有子图的权值和最小 。
算法
可以采用Kruskal算法或Prim算法进行扩展,通 过将多个顶点划分为一个集合,然后寻找连接这 些集合的边,形成子图。
应用
在图像处理、化学分子结构分析等领域有广泛应 用,用于简化模型和提高计算效率。
电力系统网络优化
在电力系统中,最小生成树算法可以用于构 建低损耗的输电网络,提高电力传输效率。
最小生成树算法的实现步骤
选择起始节点
选择一个节点作为最小生成树 的根节点。
构建最小生成树
从根节点开始,按照权值从小 到大选择边,直到所有节点都 被连接起来。
构建无向图
将问题转化为无向图,并确定 所有节点和边。
要点二
克鲁斯卡尔算法(Kruskal's Algorithm)
按照边的权值从小到大排序,依次选择边,如果选择的边 不会与已选择的边构成环,则加入到生成树中,直到所有 顶点都连接在一起。
02
MST基本算法
Prim算法
总结词
Prim算法是一种求解最小生成树问题的贪心算法。
详细描述
Prim算法从图中的任意一个顶点开始,每次选择距离已选顶点集合最近的顶点 加入集合,直到所有顶点都被加入。该算法利用了贪心策略,每次选择局部最 优解,最终得到全局最优解。

数据结构-排序PPT课件

数据结构-排序PPT课件
平均情况时间复杂度
O(nlogn),归并排序的平均时间复杂度为O(nlogn)。其中,n为待排序序列的长度。
06
基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
分配和收集
基数排序是一种稳定的排序算法,即相同的元素在排序后仍保持原有的顺序。
文件系统需要对文件和目录进行排序,以便用户可以更方便地浏览和管理文件。
数据挖掘和分析中需要对数据进行排序,以便发现数据中的模式和趋势。
计算机图形学中需要对图形数据进行排序,以便进行高效的渲染和操作。
数据库系统
文件系统
数据挖掘和分析
计算机图形学
02
插入排序
将待排序的元素按其排序码的大小,逐个插入到已经排好序的有序序列中,直到所有元素插入完毕。
简单选择排序
基本思想:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。 时间复杂度:堆排序的时间复杂度为O(nlogn),其中n为待排序元素的个数。 稳定性:堆排序是不稳定的排序算法。 优点:堆排序在最坏的情况下也能保证时间复杂度为O(nlogn),并且其空间复杂度为O(1),是一种效率较高的排序算法。
基数排序的实现过程
空间复杂度
基数排序的空间复杂度为O(n+k),其中n为待排序数组的长度,k为计数数组的长度。
时间复杂度
基数排序的时间复杂度为O(d(n+k)),其中d为最大位数,n为待排序数组的长度,k为计数数组的长度。
适用场景
当待排序数组的元素位数较少且范围较小时,基数排序具有较高的效率。然而,当元素位数较多或范围较大时,基数排序可能不是最优选择。

数据结构线性表ppt课件

数据结构线性表ppt课件
03
2. 创建两个多项式对象,并初始化它们的系数和指 数。
多项式相加问题
01 3. 遍历两个多项式对象的线性表,将相同指数的 系数相加。
02 4. 创建新的线性表存储结果多项式的系数和指数 。
03
5. 返回结果多项式对象。
约瑟夫环问题
问题描述
n个人围成一圈,从第一个人开始报 数,每次数到m的人出列,然后从下 一个人开始继续报数,直到所有人都 出列为止。求每次出列的人的序号。
03
线性表基本操作
插入操作
在指定位置插入一 个元素。
查找操作
查找指定元素的位 置。
初始化操作
建立一个空的线性 表。
删除操作
删除指定位置的元 素。
遍历操作
访问线性表中的每 个元素。
02
顺序存储结构及其实现
顺序存储结构原理
顺序存储定义
用一段地址连续的存储单元依次 存储线性表的数据元素。
存储方式
逻辑上相邻的元素,其物理存储 位置也相邻。
...,an组成的有序序列。
性质
集合中必存在唯一的一个“第一元素 ”。
集合中必存在唯一的一个“最后元素 ”。
除最后元素之外,均有唯一的后继。
除第一元素之外,均有唯一的前驱。
线性表与数组关系
01
数组是线性表的一种表现和实现形式。
02
线性表是逻辑结构,而数组是存储结构。
任何一种逻辑结构都可以用多种存储结构表示。
顺序表基本操作实现
初始化操作
创建一个空表,分配存储空间。
插入操作
在指定位置插入一个元素,需移动插入位置后的所有元素。
删除操作
删除指定位置的元素,需移动删除位置后的所有元素。

2024版《数据结构图》ppt课件

2024版《数据结构图》ppt课件
重要性
良好的数据结构可以带来更高的运 行或存储效率,是算法设计的基础, 对程序设计的成败起到关键作用。
常见数据结构类型介绍
线性数据结构
如数组、链表、栈、队 列等,数据元素之间存
在一对一的关系。
树形数据结构
如二叉树、多叉树、森 林等,数据元素之间存
在一对多的关系。
图形数据结构
由顶点和边组成,数据 元素之间存在多对多的
队列定义、特点及应用场景
队列的特点 只能在队尾进行插入操作,队头进行删除操作。
队列是一种双端开口的线性结构。
队列定义、特点及应用场景
应用场景 操作系统的任务调度。 缓冲区的实现,如打印机缓冲区。
队列定义、特点及应用场景
广度优先搜索(BFS)。
消息队列和事件驱动模型。
串定义、基本操作及实现方法
最短路径问题 求解图中两个顶点之间的最短路径,即路径上边 的权值之和最小。
3
算法介绍 Prim算法、Kruskal算法、Dijkstra算法、Floyd 算法等。
拓扑排序和关键路径问题探讨
拓扑排序
对有向无环图(DAG)进行排序, 使得对每一条有向边(u,v),均有
u在v之前。
关键路径问题
求解有向无环图中从源点到汇点 的最长路径,即关键路径,它决
遍历二叉树和线索二叉树
遍历二叉树
先序遍历、中序遍历和后序遍历。遍历算 法可以采用递归或非递归方式实现。
VS
线索二叉树
利用二叉链表中的空指针来存放其前驱结 点和后继结点的信息,使得在遍历二叉树 时可以利用这些线索得到前驱和后继结点, 从而方便地遍历二叉树。
树、森林与二叉树转换技巧
树转换为二叉树
加线、去线、层次调整。将树中的每个结点的所有孩子结点用线连接起来,再去掉与原结点相连的线,最后 将整棵树的层次进行调整,使得每个结点的左子树为其第一个孩子,右子树为其兄弟结点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)集合结构:数据元素间除了同属于一个集 合的关系外,无任何其他关系。
1.3 数据的逻辑结构
• • • • • 一个数据结构的逻辑结构G可以用二元组来表示: G=(D,R) 其中: D是数据元素的集合; R是D上所有数据元素之间关系的集合(表示各元 素的前趋、后继关系)。R中的关系圆括号表示是 双向的,尖括号表示是单向的。

杜刚
95
… 87
87
… 86
数据项
… 刘珊
82010040
[例1.2]组织示意图
学院
教务处
学生处
总务处
图书馆
电教中心
团委
财务科
后勤中心
[例1.3]七桥问题
Euler在1736年访问俄罗斯的哥尼斯堡时,他发现 当地的居民正从事一项非常有趣的消遣活动。哥尼斯堡 城中有一条名叫勒格尔的河流横经其中,在河上建有七 座桥如图所示:
数据结构
• • • • • • • • •
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章
绪论 线性表 数组和广义表 栈和队列 串 树 图 查找 排序
第一章
绪论
本章学习要求: • 了解数据结构的研究内容。 • 理解掌握数据结构的基本概念和术语。 • 了解数据元素间的结构关系。 • 理解掌握算法及算法的描述
A B D C
这项有趣的消遣活动是 在星期六作一次走过所 有七座桥的散步,每座 桥只能经过一次而且起 点与终点必须是同一地 点。
设四块陆地分别为A、B、C、D,Euler把每一块 陆地考虑成一个点,连接两块陆地的桥以线表示,便 得到如下的图形:
1
A
2 4 5
7
B
3
C
6 D 后来推论出此种走法是不可能的。 他的论点是这样的,除了起点以外,每一次当一个人 由一座桥进入一块陆地(或点)时,他(或她)同时也由 另一座桥离开此点。即每个点如果有进去的边就必须有出 来的边,形中,没有一点含有偶数条数,因此上述的 任务是不可能实现的。
1.2 数据结构的基本概念和术语
• 数据元素(Data Element):是数据的基本单位,在计算 机信息处理中通常作为一个整体来考虑。一个数据元素可 以由若干个数据项组成,数据元素也称为元素、结点、顶 点、记录。 • 数据对象(Data Object):具有性质相同的数据元素的集 合,是数据的一个子集。如整数数据对象是集合N={ 0, ±1, ±2, … }。
1.3 数据的逻辑结构
逻辑结构(logical structure):是指数据元素之间 的逻辑关系,是用户使用需要建立起来的数据组织 形式,是独立于计算机的。
根据数据元素之间的不同关系,有以下四种基本 逻辑结构:
(1)线性结构:结构中的数据元素之间是一对一的关系。在 线性结构中,有且仅有一个开始结点和一个终端结点,除 了开始结点和终端结点,其余结点都有且仅有一个直接前 趋和一个直接后继。
1.1 数据结构的发展
1.1.1数据结构的发展简史
最早对这一发展作出杰出贡献的是 D.E.Kunth教授和C.A.R.Hoare(霍尔)。 D.E.Kunth的《计算机程序设计技巧》和霍尔的 《数据结构札记》对数据结构这门学科的发展 作出了重要贡献。随着计算机科学的飞速发展, 到20世纪80年代初期,数据结构的基础研究日 臻成熟,已经成为一门完整的学科。
• • • • • •
[例1-4]一种数据结构Graph=(D,R) 其中: D={A,B,C,D,E} R={r} r={(A,B),(A,C),(B,C),(B,D), (B,E),(C,E)} r中的(A,B)表示顶点A到顶点B之间的边是双向的, 上述的结构关系如图1-5所示。
1.2 数据结构的基本概念和术语
• 数据类型:是一个值的集合和定义在这个值集合上的一组 操作的总称。数据类型中定义了两个集合:值的集合和操 作集合。其中值的集合定义了该类型数据元素的取值,操 作集合定义了该类型数据允许参加的运算,例如C语言中的 int类型,取值范围是[-32768~32767],主要的运算为加、 减、乘、除、取模、乘方等。 • 数据结构(Data Structure):带结构的数据元素的集合, 描述了一组数据元素及元素间的相互关系。数据元素间的 关系包括三个方面:数据的逻辑结构、存储结构和操作集 合。
1.3 数据的逻辑结构
(2)树状结构或层次结构:数据元素之间存在着一 对多的关系。比如部门之间的隶属关系、人类社会 的父子关系、上下级关系等。在树形结构中,除根 结点之外,每个结点都有唯一直接前趋,所有的结 点都可以有0个或多个直接后继。
1.3 数据的逻辑结构
(3)图形结构或网状结构:结构中的数据元素之间 存在着多对多的关系。在图状结构中,每个结点都 可以有多个直接前趋和多个直接后继。
1.1.2数据结构的研究内容
用计算机解决一个具体的问题时,大致需要经过 以下几个步聚: (1)分析问题,确定数据模型。 (2)设计相应的算法。 (3)编写程序,运行并调试程序直至得到正确的 结果。
[例1.1] 学生成绩表
一个数据 元素
学号 8201001 姓名 李红 高数 89 数据结构 90
8201002
1.2 数据结构的基本概念和术语
• 数据(data):是指在计算机科学中能够被计算机输入、 存储、处理和输出的一切信息,是计算机处理的信息的 某种特定的符号表示形式。包括数字、英文、汉字、以 及表示图形、声音、光和电的符号等。 • 数据项(Data Item):是数据的最小单位,有时也称为 域(field),即数据表中的字段。数据项是具有独立含 义的不可分割的最小标识单位。
1.2 数据结构的基本概念和术语
• 数据类型:是一个值的集合和定义在这个值集合上的一组 操作的总称。数据类型中定义了两个集合:值的集合和操 作集合。其中值的集合定义了该类型数据元素的取值,操 作集合定义了该类型数据允许参加的运算,例如C语言中的 int类型,取值范围是[-32768~32767],主要的运算为加、 减、乘、除、取模、乘方等。 • 数据结构(Data Structure):带结构的数据元素的集合, 描述了一组数据元素及元素间的相互关系。数据元素间的 关系包括三个方面:数据的逻辑结构、存储结构和操作集 合。
相关文档
最新文档