无线传感网中基于sink节点的目标位置选择移动算法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线传感网中基于 sink 节点的目标位置选择移动算法
摘 要: 在深入研究 k?means 算法和连续 Hopfield 神
经网络算法的基础上,提出一种目标位置选择移动算法,该 算法先利用 k?means 算法的原理,将网络中能量相近的节点 进行聚簇, 并选取每个簇的质心作为 sink 节点可以安放的目 标位置,再利用连续 Hopfield 神经网络算法的思想,为 sink
节点的前进预设一条最优路径。
Matlab 仿真结果显示,该路 由算法可以有效地抑制能量空洞的现象,对延长网络寿命具
号: TN92?34 文献标识码: A 文章编号: 1004?373X (2015)19?0043?03
Abstract : On the basis of studying k?means
algorithm and continuous Hopfield neural network algorithm deeply , a target position selection and movement algorithm is proposed , in which the nodes with similar energy in networks are clustered by using the principle of k?means algorithm. The centroid of each cluster is selected as the target position where the sink node can be placed , and an optimal path is presupposed for running
有重大意义, 同时对解决能源问题也做出了一定贡献。
关键词: 移动 sink 节点; 能量空洞; 目标位置选择
移动算法; 信息泛洪; 网络能耗; 网络寿命
中图分类
of the sink node by applying the thought of continuous Hopfield neural network algorithm. Simulation results by Matlab show that this route algorithm can suppress the phenomenon of energy hole effectively , has great
significance to prolong the network lifetime. It makes some contribution to solve energy problems.
Keywords : mobile sink node ; energy hole ; target position selection and movement
algorithm ; flooding ; network energy consumption ;
要的组成部分,在工业、农业等方面被广泛应用,但基于传 感器自身的特点,通常用能量有限的干电池给它供电 [1] 。
由 因此,怎样使无线传感网络实现同样的功能,消耗更少的能 耗就成为了研究的重点。
现在的无线传感网最明显的特征是在某一个指定的范
围内随机安放一些节点,由于节点是通过多跳的方式将感知 的信息传输到基站,这种数据收集方式带来的最显著的问题 是:在能量消耗方面上,网络中靠近 sink 附近的节点比远离
sink 的节点要快, 进而由于靠近 sink 周边节点的能量过早地
information network lifetime 随着物联网的发展,无线传感器网络(
WSN )作为其重
于无线传感网应用场景非常复杂,更换节点电池很困难
[2],
消耗完,容易使整个网络陷入瘫痪中 [3] 。
因此,大批的科研 种 sink 节点移动方案 [5?9] ,这些方案在一定程度上均衡了 的能量,进而使网络的生存时间 [10]变得更长。
关系 到整个网络生命期的是 sink 节点,对现阶段提出的移动方案 进行分析,发现怎样解决 sink 节点的移动成为了一个重难点。
本文在深入研究 k?means 算法和连续 Hopfield 神经网络 算法的前提条件下,提出目标位置选择算法,该算法先采用 k?means 算法将能量相近的节点聚为一类,然后选取聚类的 质心点作为sink 节点的目标位置[11]。
sink 节点在各个簇头 间的移动是随机的,容易产生信息泛洪现象 [12] ,会造成不 必要的能量消耗,基于这个特点,本文利用连续 Hopfield 神 经网络对 sink 节点的移动路径进行优化,得到了最优路径, 从而使能量消耗达到了最优状态。
1 问题描述 将移动 sink 节点应用到无线传感网络中, 一定程度上解
决了网络的生存时间,但却增加了路由协议设计的难度。
在 网络工作过程中, sink 节点如何选择停留的目标位置及移动 在现有的几种路由协议中, ART , SMS 等采用的是随机
移动策略,也就是说, sink 节点移动的位置不需要根据某种 信息作出判断而是随机选择的 [14],如图 1 所示。
由图 3 可知,可预测移动策略不像随机移动策略那样需
要多次转发 sink 节点的位置信息给源节点。
通过对比,可知
人员将移动 sink 的策略应用到 WSN 中 [4] 。
现阶段提出了各
WSN 中
路线如何确定成为不得不考虑的现实问题 [13]。
可预测移动策略为整个网络节省了相当多的一部分能量
[14] 。
同时,由于sink 节点什么时候路过什么地方都是提前设定的,源节点能够依照sink 节点来到的时刻合情合理地分
配自己的能耗,从而使能量消耗达到均衡的状态[14]。
2 目标位置选择移动算法根据上述分析,将可控制移动策略应
用到本文中,提出
了一种目标位置选择移动算法。
该算法利用无线传感器网络
中某部分特定的网络参数值来决定sink 节点的目标位置和移动方式[15] 。
2.1 k?means 算法结语
依据可控制移动策略的思想,针对该策略中sink 节点可
以停留的目标位置和可移动路径进行了研究分析。
文中提出的目标位置选择移动算法不仅有效地缓解了网络节点间的信息内爆现象,同时通过相应的平台仿真,该算法使网络能耗变少,网络时间缩短。
然而,这种移动sink 的策略的缺点是不够灵活,以后将针对此策略存在的问题进行更全面的研究。
参考文献
[1] 李明隆.无线传感器网络路由协议的分析与改进[D]. 重庆:重庆邮电大学,2011.
[2]童孟军.无线传感网能量有效路由协议的研究[D]. 浙江:浙江工业大学,2012.
[3]刘勇,侯荣旭.无线传感器网络攻击与防范[J]. 电脑知
识与技术,2013,35(2):7927?7928.
[4]程子栋.基于sink 节点移动的WSN 节能路由协议的
研究[D].北京:北京交通大学,2011.
[5]张帆.延迟容忍传感器网络性能研究[D]. 武汉:华中
科技大学,2007.
[6]YANG Yinying ,FONOAGE M I ,CARDEI M.
Improving network lifetime with mobile wireless sensor networks [J]. Computer Communications ,2010,33
(4):542?555.
[7] SOMASUNDARA A A ,KANSAL A ,JEA D D ,et
al. Control mobile infrastructure for low energy embedded networks [J]. IEEE Transaction on Mobile Computing ,2006,5(8):958?973.
[8] AKKAYA K ,YOUNIS M ,BANGAD M. sink
repositioning for enhanced performance in wireless sensor networks [J]. Computer Networks ,2006,49(4):512?534.
[9] XU X ,LIANG W. Placing optimal number of sinks
in
sensor networks for network lifetime maximization [C]// Proceedings of 2011 IEEE International Conference on Communications. [S.l.] :IEEE ,2011:1?6.
[10] SAAD E M ,AWADALLA M H DARWISH R R.
A data gathering algorithm for a mobile sink in large?scale sensor networks [C]// Proceedings of 2008 the 4th International
Confe?rence on Wireless and Mobile. [S.l.] :Springer Berlin
Heidelberg ,2008:207?213.
[11] 赵小松,孙晓洁,李国徽.基于多分辨率聚类的安全
定位算法[J].计算机科学与探索,2012, 22 (1): 78?79.
[12] 张静.无线传感器网络分簇路由算法研究[D]. 天津:
南开大学,2011.
[13] 郭书城,卢昱,许定根.基于分簇无线传感器网络的
路由算法研究[J]. 通信学报,2010,31(z1):63?69.
[14] 乐俊,张维明,肖卫东,等.无线传感器网络中
基于非均匀划分的分簇数据融合算法[J]. 计算机研究与发展,
201l,48(z2):247?254.
[15]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清
华大学出版社,1998.。