_轴对称证明题

_轴对称证明题
_轴对称证明题

轴对称专题

[轴对称图形]

如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,?这个图形就叫做轴对称图形,这条直线就是它的对称轴.

有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.

[轴对称]

有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,?那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.

[图形轴对称的性质]

如果两个图形成轴对称,?那么对称轴是任何一对对应点所连线段的垂直平分线;轴对

称图形的对称轴是任何一对对应点所连线段的垂直平分线.

[轴对称与轴对称图形的区别]

轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形;轴对称图形

是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.

[线段的垂直平分线]

(1)经过线段的中点并且垂直于这条线段的直线,?叫做这条线段的垂直平分线(或线段的中垂线).

(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,?与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段

两个端点距离相等的所有点的集合.

轴对称变换

[轴对称变换]

由一个平面图形得到它的轴对称图形叫做轴对称变换.?

成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到.

[轴对称变换的性质]

(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样

(2)?经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称

点.

(3)连接任意一对对应点的线段被对称轴垂直平分.

[作一个图形关于某条直线的轴对称图形]

(1)作出一些关键点或特殊点的对称点.

(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.

用坐标表示轴对称

[关于坐标轴对称]

点P(x,y)关于x 轴对称的点的坐标是(x,-y )

点P(x,y)关于y 轴对称的点的坐标是(-x ,y)

[关于原点对称]

点P(x,y)关于原点对称的点的坐标是(-x ,-y )

[关于坐标轴夹角平分线对称]

点P(x,y)关于第一、三象限坐标轴夹角平分线y=x 对称的点的坐标是(y,x)点P(x,y)关于第二、四象限坐标轴夹角平分线y= - x 对称的点的坐标是(- y,- x)[关于平行于坐标轴的直线对称]

点P(x,y)关于直线x=m 对称的点的坐标是(2m-x ,y );

点P(x,y)关于直线y=n 对称的点的坐标是(x,2n-y );

等腰三角形

[等腰三角形]

有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.

[等腰三角形的性质]

性质1:等腰三角形的两个底角相等(简写成“等边对等角”)

性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重

合.特别的:(1)等腰三角形是轴对称图形.

(2)等腰三角形两腰上的中线、角平分线、高线对应相等.

[等腰三角形的判定定理]

如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等

边”).特别的:

(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形.

(2)有两边上的角平分线对应相等的三角形是等腰三角形.

(3)有两边上的中线对应相等的三角形是等腰三角形.

(4)有两边上的高线对应相等的三角形是等腰三角形.

[利用“三角形奠基法”作图]

根据已知条件先作出一个与所求图形相关的三角形,然后再以这个图形为基础,作出所求的三角形.

O

N B

∵.O ..P 平.分.∠.A ..O .B ,.P ..M ⊥.O ..A 于.M .,.P ..N ⊥.O ..B 于. N .,.

∴.P ..M .=.P .

N

[ 角平分线的判定 ]

到角的两边距离相等的点在角的平分线上

.

等边三角形

[等边三角形 ]

三条边都相等的三角形叫做等边三角形,也叫做正三角形. [等边三角形的性质 ]

等边三角形的三个内角都相等, ?并且每一个内角都等于

60°

[等边三角形的判定方法 ]

( 1)三条边都相等的三角形是等边三角形;

( 2)三个角都相等的三角形是等边三角形; ( 3)有一个角是 60°的等腰三角形是等边三角形.

角平分线的性质

[ 角平分线的作法 ] ........ . 见.课.本.

[. 角. 平. 分. 线. 的. 性. 质. ].

在.角.平.分.线.上.的.点.到.角.的.两.边.的.距.离.相.等.

..

A M

P

C

A

M

P

C

O N B

∵PM⊥OA于M,PN⊥OB于N,PM=PN

................

∴.O..P平.分.∠.A..O.B

[.三.角.形.的.角.平.分.线.的.性.质.].

三角形三个内角的平分线交于一点,并且这一点到三边的距离相等.

[添加辅助线口诀]

几何证明难不难,关键常在辅助线;知中点、作中线,倍长中线把线连.

线段垂直平分线,常向两端来连线;线段和差及倍分,延长截取全等现;

公共角、公共边,隐含条件要挖掘;平移对称加旋转,全等图形多变换.

角平分线取一点,可向两边作垂线;也可将图对折看,对称之后关系现;

角平分线加平行,等腰三角形来添;角平分线伴垂直,三线合一试试看。

角平分线+平行线→等腰三角形

当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形。如图1(1)中,若AD平分,AD//EC,则是等腰三角形;如图1(2)中,若AD平分,DE//AC,则

是等腰三角形;如图1(3)中,若AD 平分,CE//AB,则是等腰三角形;如图1(4)中,若AD平分,EF//AD ,则是等腰三角形。

图1

例1. 如图,在中,AB=AC,在AC上取点P,过点P 作,交BA的延长线于点E,

垂足为点F。求证:AE=AP

1.已知,如图1-11,在直角坐标系中,点 A 在y 轴上,BC ⊥x 轴于点C,点 A 关于直线

OB 的对称点 D 恰好在BC 上,点E 与点O 关于直线BC 对称,∠OBC=35°,求∠OED 的度数.

2.已知:如图2-3,线段AB.

求作:线段AB 的垂直平分线

MN .作法:

图2-3

3.已知:如图2-4,∠ABC 及两点M、N.

求作:点P,使得PM =PN,且P 点到∠ABC 两边的距离相

等.作法:

图2-4

4.已知点 A 在直线l 外,点P 为直线l 上的一个动点,探究是否存在一个定点B,当点P

在直线l 上运动时,点P 与A、B 两点的距离总相等.如果存在,请作出定点B;若不存在,请说明理由.

图2-5

5.如图2-6,AD 为∠BAC 的平分线,DE ⊥AB 于E,DF ⊥AC 于F,那么点E、F 是否

关于AD 对称?若对称,请说明理由.

图2-6

综合、运用、诊断

6.已知:如图3-7,A、B 两点在直线l 的同侧,点A'与A 关于直线l 对称,连接A'B 交l

于P 点,若A'B=a.

(1)求AP+PB;

(2)若点M 是直线l 上异于P 点的任意一点,求证:AM +MB >AP+PB.

7.已知:A、B 两点在直线l 的同侧,试分别画出符合条件的点M.

(1)如图3-8,在l 上求作一点M,使得|AM -BM |最小;

(3)如图3-10,在l 上求作一点M,使得AM +BM 最小.

图3-10

8.(1)如图3-11,点A、B、C 在直线l 的同侧,在直线l 上,求作一点P,使得四边形APBC 的周长最小;

图3-11

(2)如图3-12,已知线段a,点A、B 在直线l 的同侧,在直线l 上,求作两点P、Q (点P 在点Q 的左侧)且PQ=a,四边形APQB 的周长最小.

图3-12

9.(1)已知:如图3-13,点M 在锐角∠AOB 的内部,在OA 边上求作一点P,在OB 边上求作一点Q,使得ΔPMQ 的周长最小;

图3-13

(2)已知:如图3-14,点M 在锐角∠AOB 的内部,在OB 边上求作一点P,使得点P 到点M 的距离与点P 到OA 边的距离之和最小.

图3-14

10.已知:如图6-5,ΔABC 中,BC 边上有 D 、E 两点,∠1=∠2,∠3=∠

4.求证:△ABC 是等腰三角形.

图6-5

11.已知:如图5-2,ΔABC 中,AB=AC,D、E 在BC 边上,且AD =

AE.求证:BD =CE.

图5-2

12.已知:如图5-3,D、E 分别为AB、AC 上的点,AC=BC=BD,AD =AE,DE=CE,

求∠B 的度数.

图5-3

13.已知:如图5-4,ΔABC 中,AB=AC,D 是AB 上一点,延长CA 至E,使AE=

AD .试确定ED 与BC 的位置关系,并证明你的结论.

图5-4

拓展、探究、思考

14.已知:如图5-5,RtΔABC 中,∠BAC=90°,AB=AC ,D 是BC 的中点,AE=

BF .求证:(1)DE=DF ;(2)ΔDEF 为等腰直角三角形.

图5-5

15.在平面直角坐标系中,点P (2,3),Q (3,2),请在x 轴和y 轴上分别找到M 点

和N 点,使四边形PQMN 周长最小.

(1)作出M 点和N 点.

(2)求出M 点和N 点的坐标.

图5-6

16.已知:如图6-6,ΔABC 中,AB=AC,E 在CA 的延长线上,ED

⊥BC.求证:AE=AF.

图6-6

17.已知:如图6-7,ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,BF 平分∠ABC 交CD 于

E,交AC 于F.

求证:CE =CF.

图6-7

18.如图6-8,在△ ABC 中,∠ BAC=60°,∠ ACB=40°,P、Q 分别在BC、CA 上,并

且AP、BQ 分别为∠ BAC、∠ ABC 的角平分线,

求证:BQ+AQ=AB+BP.

图6-8

相关主题
相关文档
最新文档