离散数学 第6章 集合代数
离散数学结构第6章集合代数
离散数学结构第6章集合代数第六章集合代数1. 集合,相等,(真)包含,⼦集,空集,全集,幂集2. 交,并,(相对和绝对)补,对称差,⼴义交,⼴义并3. ⽂⽒图,有穷集计数问题4. 集合恒等式(等幂律,交换律,结合律,分配律,德·摩根律,吸收律,零律,同⼀律,排中律,⽭盾律,余补律,双重否定律,补交转换律等)学习要求1. 熟练掌握集合的⼦集、相等、空集、全集、幂集等概念及其符号化表⽰2. 熟练掌握集合的交、并、(相对和绝对)补、对称差、⼴义交、⼴义并的定义及其性质3. 掌握集合的⽂⽒图的画法及利⽤⽂⽒图解决有限集的计数问题的⽅法4. 牢记基本的集合恒等式(等幂律、交换律、结合律、分配律、德·摩根律、收律、零律、同⼀律、排中律、⽭盾律、余补律、双重否定律、补交转换律)5. 准确地⽤逻辑演算或利⽤已知的集合恒等式或包含式证明新的等式或包含式6.1 集合的基本概念⼀.集合的表⽰集合是不能精确定义的基本概念。
直观地说,把⼀些事物汇集到⼀起组成⼀个整体就叫集合,⽽这些事物就是这个集合的元素或成员。
例如:⽅程x2-1=0的实数解集合;26个英⽂字母的集合;坐标平⾯上所有点的集合;……集合通常⽤⼤写的英⽂字母来标记,例如⾃然数集合N(在离散数学中认为0也是⾃然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。
表⽰⼀个集合的⽅法有两种:列元素法和谓词表⽰法,前⼀种⽅法是列出集合的所有元素,元素之间⽤逗号隔开,并把它们⽤花括号括起来。
例如A={a,b,c,…,z}Z={0,±1,±2,…}都是合法的表⽰。
谓词表⽰法是⽤谓词来概括集合中元素的属性,例如集合B={x|x∈R∧x2-1=0}表⽰⽅程x2-1=0的实数解集。
许多集合可以⽤两种⽅法来表⽰,如B也可以写成{-1,1}。
但是有些集合不可以⽤列元素法表⽰,如实数集合。
集合的元素是彼此不同的,如果同⼀个元素在集合中多次出现应该认为是⼀个元素,如{1,1,2,2,3}={1,2,3}集合的元素是⽆序的,如{1,2,3}={3,1,2}在本书所采⽤的体系中规定集合的元素都是集合。
离散数学 第六章 集合代数
3、相对补集 1)定义3 设A和B是任何两个集合,B 对A的相对补集 A-B, 是由属于集合A的但不属于集合B的所有元素构成的集合 A - B = { x |(x∈A)∧(x ∉ B)} = { x |(x∈A)∧ ┐(x∈B)} 2)相对补集的文氏图表示 3)性质 ( a) A - ø = A (b)A ∩(B-A)= ø (c)A∪(B-A)= A∪B (d)A-(B∪C)=(A-B)∩(A- C) (e)A-(B∩C)=(A-B)∪(A-C) (f)A - (A∩B)= A - B (g) A ⊆ B的等价形式: ⇔ A ∩B=A ⇔ A-B =Ø ⇔ A∪B =B
证明:A-B =A 的充要条件是 A∩B = Ø 充分性: 必要性:
证明 A⊆B任取 x ∈ A 利用所给的性质 ⇒ x∈B 或采用谓词演算方法 ∀x(x∈A→x∈B )成立 例:已知 A⊆B ,证明 ~B ⊆ ~A 证:∀x x∈~B ⇔ ┐x∈B 因为∀x ( x ∈ A → x ∈ B ) ┐x∈B → ┐x∈A ⇔ x∈ ~B → x∈~ A
§6.3
集合恒等式
Байду номын сангаас
集合运算的恒等式与命题公式的等值式有非常类同地方 即将: ∩看成 ∧ 、∪看成 ∨ 、 ∼ 看成 ┓ 空集Ø 看成 F 、全集E看成 T 那么命题公式的等值式可表示为集合运算的恒等式
一、下面给出对照的公式: 1)等幂律 A∪A= A [P∨P ⇔ P] A∩A= A [P∧P ⇔ P] 2)结合律 (A∪B)∪C=A∪(B∪C) [(P∨Q)∨R ⇔ P∨(Q∨R)] (A∩ B)∩C=A∩(B∩C) [(P∧Q)∧R ⇔ P∧(Q∧R)] 3)交换律 A∪B=B∪A [P∨Q ⇔ Q∨P] A∩B=B∩A [P∧Q ⇔ Q∧P] 4)分配律 A∪(B∩C)=(A∪B)∩(A∪C) A∩(B∪C)=(A∩B)∪(A∩C) [P∨(Q∧R) ⇔ (P∨Q)∧(P∧R)] [P∧(Q∨R) ⇔ (P∧Q)∨(P∨R)]
离散数学课件-6-集合代数
第六章集合代数§1 集合的基本概念集合用大写英文字母标记,A,B,C,…特别地,分别用N、Z、Q、R、C标记全体自然数的集合、全体整数的集合、全体有理数的集合、全体实数的集合、全体复数的集合。
元素用小写英文字母标记,a,b,c,…x∈A:x是A的元素,称x属于A。
x∉A:x不是A的元素,称x不属于A。
列元素法:{a1, a2, …, a n, …}谓词表示法:{x| F(x)}注①集合中的元素每个只写一次②集合中的元素不计排列次序A⊆B:A是B的子集,称A被B包含A B:A不是B的子集,称A不被B包含A=B ⇔A⊆B∧B⊆A:A与B相等A⊂B ⇔A⊆B∧A≠B:A是B的真子集N⊆Z⊆Q⊆R⊆C空集:是任意集合的子集,记为∅。
有限集,无限集n元集,k元子集n元集有2n个子集集合A的幂集P(A)(或2A)全集:E§2 集合的运算并:A∪B ={x| x∈A∨x∈B}交:A∩B ={x| x∈A∧x∈B}差(B对A的相对补集):A-B ={x| x∈A∧x∉B} 对称差:A⊕B=(A-B)(∪B-A)=(A∪B)-(A∩B)绝对补集(简称A的补集):∼A=A=E-A,文氏图:大矩形表示全集E,内部的圆表示不同集合。
例已知24人中,会英语的有13人,会日语的有5人,会德语的有10人,会法语的有9人。
其中,同时会英语和日语的有2人,同时会英语和德语、同时会英语和法语、同时会德语和法语的各有4人;此外,会日语的人不会德语和法语。
求只会英语、日语、德语、法语中一种语言的人数和同时会三种语言的人数。
解:设同时会三种 语言有x 人,只会只会 英语、法语、德语中一 种语言的人数分别为y 1、y 2、y 3人,则根据文氏图可得1231232(4)2132(4)92(4)103(4)24519y x x y x x y x x y y y x x +−++=⎧⎪+−+=⎪⎨+−+=⎪⎪+++−+=−=⎩解出x =1,y 1=4,y 2=2,y 3=3。
离散数学_第06章代数结构概念及性质
【例】(1)以实数集 R 为基集,加法运算" +"为二元,运算组成一代数系统,记为〈R, +〉。 (2)以全体n×n实数矩阵组成的集合 M为基集,矩阵加"+"为二元运算,组成一代 数系统,记为〈M,+〉。 (3)设 S A { | 是集合A上的关系}, “ ” 是求复合关系的运算。它们构成代数 系统S A , 。
有了集合上运算的概念后,便可定义代数结
构了。
定义6.1.2 设S是个非空集合且fi是S上的 ni元运算,其中i=1,2,…,m。由S及f1, f2,…,fm组成的结构,称为代数结构,记 作<S,f1,f2,…,fm>。
此外,集合S的基数即|S|定义代数结构 的基数。如果S是有限集合,则说代数结构 是有限代数结构;否则便说是无穷代数结构。
分配律,或者⊙对于○是可左分配的,即
(x)(y)(z)
(x,y,z∈S→x⊙(y○z))=(x⊙y)○(x⊙z))。
运算⊙对于○满足右分配律或⊙对于○是可 右分配的,即(x)(y)(z) (x,y,z∈S→(y○z)⊙x=(y⊙x)○(z⊙x)) 类似地可定义○对于⊙是满足左或右分配律。 若⊙对于○既满足左分配律又满足右分配律, 则称⊙对于○满足分配律或是可分配的。同样可 定义○对于⊙满足分配律。
x为关于⊙的右逆元:=(y)(y∈S∧y⊙x=e);
x为关于⊙可逆的:=(y)(y∈S∧y⊙x=x⊙y=e)
给定<S,⊙>及幺元e;x,y∈S,则 y为x的左逆元:=y⊙x=e
y为x的右逆元:=x⊙y=e
y为x的逆元:=y⊙x=x⊙y=e
显然,若y是x的逆元,则x也是y的逆元,
因此称x与y互为逆元。通常x的逆元表为x-1。
离散数学第六章集合代数
集合算律
6.3 集合恒等式
1.只涉及一个运算的算律:
交换律、结合律、幂等律
交换 结合
幂等
AB=BA (AB)C =A(BC) AA=A
AB=BA (AB)C= A(BC)
AA=A
AB=BA (AB)C =A(BC)
16
2.涉及两个不同运算的算集律合:算 律 分配律、吸收律
与
分配
A(BC)=
(AB)(AC)
A(BC)=
(AB)(AC)
吸收
A(AB)=A
A(AB)=A
与
A(BC) =(AB)(AC)
17
3.涉及补运算的算律: 集合算律 DM律,双重否定律
D.M律
双重否定
A(BC)=(AB)(A C)
A(BC)=(AB)(A C)
(BC)=BC (BC)=BC
A=A
18
4.涉及全集和空集的算律集:合 算 律 补元律、零律、同一律、否定律
解 (1)、(3)、(4)、(5)、(6)、(7)为真,其余为假.
28
(1) 判断元素a与集合A的隶属关系是否成立基本方法:
把 #2022 a 作为整体检查它在A中是否出现,注意这里的 a 可
能是集合表达式.
(2) 判断AB的四种方法
若A,B是用枚举方式定义的,依次检查A的每个元素是否 在B中出现.
(交换律)
八. = A E
(零律)
九. = A
(同一律)
22
例6 证明AB AB=B AB=A AB=
#2022
①
②
③
④
证明思路:
确定问题中含有的命题:本题含有命题 ①, ②, ③, ④
《离散数学》教学大纲
《离散数学》教学大纲(Discrete Mathematics)适用专业:电子信息类课程类别:学科基础课课程学时:48课程学分:3.0先修课程:高等数学、线性代数等一、课程简介离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支,是计算机科学中基础理论的核心课程,是计算机科学与技术的支撑学科。
它在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能与机器人、数据库、网络、计算机图形学、算法设计与分析、理论计算机科学基础等必不可少的先行课程。
通过离散数学的学习,不但可以掌握离散结构的描述工具和处理方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
二、教学目的与任务离散数学是一门培养学生缜密思维、严格推理,具有综合归纳分析能力的课程。
通过本课程的学习,使学生有一定的严格逻辑推理与抽象思维能力,掌握离散量的处理及运算技能,能够将离散数学应用到解决计算机技术中的实际问题中。
不仅能为学生奠定计算机科学的专业基础,并且能为将后续课程的学习及将来开发软、硬件技术及研究、应用提供有力的工具。
三、课程内容第1章命题逻辑的基本概念1.1命题与联结词1.2命题公式及其赋值第2章命题逻辑等值演算2.1等值式2.2析取范式与合取范式* 2.3联结词的完备集* 2.4可满足性问题与消解法第3章命题逻辑的推理理论3.1推理的形式结构3.2自然推理系统P3.3消解证明法第4章一阶逻辑基本概念4.1一阶逻辑命题符号化4.2一阶逻辑公式及其解释第5章一阶逻辑等值演算与推理5.1一阶逻辑等值式与置换规则5.2一阶逻辑前束范式* 5.3一阶逻辑的推理理论第6章集合代数6.1集合的基本概念6.2集合的运算6.3有穷集的计数6.4集合恒等式第7章二元关系7.1有序对与笛卡儿积7.2二元关系7.3关系的运算7.4关系的性质7.5关系的闭包7.6等价关系与划分7.7偏序关系第8章函数8.1函数的定义与性质8.2函数的复合与反函数* 8.3双射函数与集合的基数* 8.4一个电话系统的描述实例第14章图的基本概念14.1图14.2通路与回路14.3图的连通性14.4图的矩阵表示* 14.5图的运算第15章欧拉图与哈密顿图15.1欧拉图15.2哈密顿图15.3最短路问题、中国邮递员问题与货郎担问题第16章树16.1无向树及其性质16.2生成树16.3根树及其应用三、课程学时分配、教学内容与教学基本要求四、教学方法与教学手段说明该课程教学方式主要有:课堂教学、交互学习、课后作业。
离散数学讲义(第6章)
18
6-2 分配格(续)
定理:如果在一个格中交运算对并运算可分配,则并运算 对交运算一定可分配。反之亦然。
定理:每个链是分配格。
定理:设〈A, ≤ 〉为一个分配格,则对任意的a,b,c A,如果有a b = a c且a b = a c,则b=c。
19
6-2 分配格(续)
定义:设〈A,,〉是由格〈A, ≤ 〉所诱导的代数系统。 如果对任意的a,b,cA,当b ≤ a时,有: a (b c) = b (a c) 则称〈A, ≤ 〉是模格。
5
6-1 格的概念(续)
偏序集但不是格
e d f
格
c a b
6
6-1 格的概念(续)
代数系统
设〈A, ≤ 〉是一个格,如果在A上定义两个二元运 算和,使得对于任意的a,bA,ab等于a和b的最小 上界,ab等于a和b的最大下界,那么就称〈A, , 〉 为由格〈A, ≤ 〉所诱导的代数系统。二元运算, 分 别称为并运算和交运算。
定理:分配格一定是模格。
21
6-3 有补格
定义:设〈A, ≤ 〉是一个格,如果存在元素aA,对 任意的xA,都有a ≤ x, 则称a为格〈A, ≤ 〉的全下界。记作 0。 定义:设〈A, ≤ 〉是一个格,如果存在元素bA,对 任意的xA,都有x ≤ b, 则称b为格〈A, ≤ 〉的全上界。记作 1。
{a,b} {a,b} {a,b} {a,b} {a,b}
{b} {a,b}
6-4 布尔代数(续)
定理:对布尔代数中的任意两个元素a,b,有
(a ) a
ab a b
a b ab
定义:具有有限个元素的布尔代数称为有限布尔代数。
26
第六章-集合代数PPT课件
.
9
悖论(paradox): 所谓悖论是指这样一个所谓的命题P,由P真立即推
出P假;由P假立即推出P真;即 P真P假 。
理发师悖论: 某偏远小山村仅有一位理发师。这位理发师规定: 他只给那些不给自己刮脸的人刮脸。 那么要问:这位理发师的脸由谁来刮? 如果他给自己刮脸,那么,按他的规定,他不应该
.
20
定理2.空集是任一集合的子集。即 A 。
[证明].(采用逻辑法) x(x) (空集的定义)
x (x)
x(xxA) (由析取构成式及联结词归约有:
p( p q)(pq))
A 。
.
21
十.幂集(power set): 定义1.幂集
一个集合A的所有子集构成的集合称为A的幂集。 记为 2A(或P(A) ) ,即
x(xA xB)x(xB xA)
x((xA xB)(xB xA)) (量词对 的分配律: xA(x)xB(x)x(A(x)B(x)) )
x(xAxB)
A=B 所以包含关系是反对称的;
.
19
(3)ABBC x(xA xB)x(xB xC) x((xA xB) (xB xC))
(量词对 的分配律:xA(x)xB(x)x(A(x)B(x)) ) x(xA xC) ( (假言) 三段论原则:(pq)(q r) p r ) AC 所以包含关系是传递的。
即 AB x(xA xB) 。
X
AB
真子集(proper subset):
称A是B的真子集或者A真包含在B中(或者B真包含 A ),记为AB。即 AB ABAB。
离散数学第二版答案(6-7章)
离散数学第二版答案(6-7章)LT第六章 代数系统6.1第129页1. 证明:任取,x y I ∈,(,)*(,)g y x y x y x yx x y xy g x y ==+-=+-=,因此,二元运算*是可交换的; 任取,,x y z I ∈,(,(,))*(*)*()()g x g y z x y z x y z yz x y z yz x y z yz x y z xy xz yz xyz==+-=++--+-=++---+((,),)(*)*()*()(,(,))g g x y z x y z x y xy zx y xy z x y xy z x y z xy xz yz xyz g x g y z ==+-=+-+-+-=++---+=因此,运算*是可结合的。
该运算的么元是0,0的逆元是0,2的逆元是2,其余元素没有逆元。
2.证明:任取,,x y N x y ∈≠,由*,*x y x y x y x ==≠知,**y x x y ≠,*运算不是可交换的。
任取,,x y z N ∈,由(*)**x y z x z x ==,*(*)*x y z x y x ==知,(*)**(*)x y z x y z =,*运算是可结合的。
任取x N ∈,*x x x =,可知N 中的所有元素都是等幂的。
*运算有右么元,任取,x y N ∈,*x y x =,知N 中的所有元素都是右么元。
*运算没有左么元。
证明:采用反证法。
假定e 为*运算的左么元,取,b N b e ∈≠,由*的运算公式知*e b e =,由么元的性质知,*e b b =,得e b =,这与b e ≠相矛盾,因此,*运算没有左么元。
3.解: ① 任取y x I y x ≠∈,,的最小公倍数和y x y x =*的最小公倍数和的最小公倍数和y x x y x y ==*因此对于任意的y x I y x ≠∈,,都有x y y x **=,即二元运算*是可交换的。
离散数学第六章 集合-自然数与自然数集
第二归纳法
若 n=0时命题成立, 假定当n 小于等于k 时命题成立,可以证明 n等于k+1 时命题也成立。
则对于一切自然数命题成立。
这种归纳方法又叫第二归纳法。
性质
①设n1,n2和n3是三个任意的自然数,若
n1∊n2,n2∊n3,则n1∊n3 。 ②设n1和n2是两个任意的自然数,则下述三个 式中有一个成立: n1∊n2, n1=n2, n2∊n1 ③设S是自然数集的任意非空子集,则存在 n0∊S ,使得n0∩S=Ø。
后继、前驱
对于任意两个自然数m和n, 如果m=n+,即 m=n∪{n}, 称m为n的后继,可以记为 m=n+1, 也称n为m的前驱,也可以记为 n=m-1。
自然数集 N
定义3 存在一个由所有自然数组成的集 合叫自然数集,记为
N
皮亚诺公设(Peano’s Axioms)
设N表示自然数集。则: 1.0∊N 2.如果n∊N,那么n+∊N , 3.0不是任何自然数集的后继,即不存在自然数m∊N ,使得0=m+。 4.n和m均是自然数,如果n+=m+,那么n=m。 5.如S是N的子集,有性质 (1) 0∊S, (2) 如果n∊S,那么n+∊S , 则有 S=N。
6.1 集合的基本概念 6.2 集合的基本运算 6.3 全集和集合的补 6.4 自然数与自然数集 6.5 包含与排斥原理
证明:对m用归纳法。 若m=n+,则 n∊m成立, 此时有n+=m 。 归纳假设对任意的m, 若n∊m,则n+=m,或者n+∊m之一成立。 考察m+=m∪{m}, 若n ∊m+={m}∪m, n ∊{m}∪m
n =m n+ =m+
离散数学第六章
6.1.6 循环群和置换群
§循环群 在循环群G=<a>中, 生成元a的阶与群G的阶是一样 的. 如果a是有限阶元, |a|=n, 则称G为n阶循环群. 如 果a是无限阶元, 则称G为无限阶循环群. 例如: <Z,+>是无限阶循环群; <Z6,>是n阶循环群. 注意:(1) 对9 无限阶循环群G=<a>, G的生成元是a和a-1; (2) 对n阶循环群G=<a>=<e,a,…,an-1>,G的生成元是at 当且仅当t与n互素, 如12阶循环群中, 与12互素的数 有1、5、7、11. 那么G的生成元有a1=a、a5、a7、 a11. (3) N阶循环群G=<a>, 对于n的每个正因子d, G恰好有 一个d阶子群H=<an/d>.
6.1.3 子群
例如, 群<Z6,>中由2生成的子群包含2的各次 幂, 20=e=0, 21=2, 22=22=4, 23=222=0, 所 以由2生成的子群:<2>={0,2,4}.
对于Klein四元群G={e,a,b,c}来说, 由它的每个 元素生成的子群是 <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}
6.1.6 循环群和置换群
§循环群
定义6.7 在群G中, 如果存在aG使得 G={ak|kZ} 则称G为循环群, 记作G=<a>,称a为G的生成元. ☆ 循环群必定是阿贝尔群, 但阿贝尔群不一定 是循环群. 证明: 设<G,*>是一个循环群, 它的生成元是a, 那么,对于任意x,yG, 必有r,sZ, 使得 x=as,y=at, 而且x*y=as*at=as+t=at*as=y*x 由此可见<G,*>是一个阿贝尔群. 例如,<Z,+>是一个循环群, 其生成元是1或-1.
离散数学(修订版)-耿素云
谓词表示法: 用谓词来概括集合中元素的属性. 例如:B = { x | x R 且 x2 - 1 = 0 } 集合B表示方程x2 - 1 = 0的实数解集.
图示法:用一个圆来表示, 圆中的点表示集合中的元素. 许多集合可用两种方法来表示, 如: B = { -1, 1 }. 有些集合不能用列元素法表示, 如: 实数集合, 不能列举出
6.2 集合的运算
中山大学计算机科学系
18
集合的基本运算有并(Union), 交(Intersection)和相对
补(Relative Complement).
定义6.7 设A和B为集合, A与B的并集A∪B, 交集A∩B, B对A
的相对补集A-B分别定义如下:
A∪B = { x | x A∨x B }
常用的集合名称:
N: 自然数集合(本课程中认为0也是自然数)
Z: 整数集合
Q: 有理数集合
R: 实数集合
C: 复数集合
6.1 集合的基本概念
中山大学计算机科学系
10
集合有三种表示方法:列元素法、谓词表示法和图示法.
列元素法:列出集合中的所有元素, 各元素之间用逗号隔开, 并 把它们用花括号括起来.
《离散数学》(修订版) 耿素云、屈婉玲, 高等教育出版社, 2004年
教学参考书
《离散数学》
王兵山、王长英、周贤林、何自强编, 国防科技大学出版社, 1985年
《离散数学》
檀凤琴、何自强编著, 科学出版社, 1999年
《离散数学》
孙吉贵、杨凤杰、欧阳丹彤和李占山, 高等教育出版社, 2002年
《离散数学》
离散数学第六章
第六章几个典型的代数系统6.1 半群与群引言:简略介绍群论产生的背景1. 图形的对称性如正三角形、正方形(一般地正n 边形)、长方形、 等腰三角形、等腰梯形等;三维空间中的正四面体、 正方体、长方体等都各有自己的对称性。
画图解释:2.用根式求解代数方程的根(1)一元二次方程:20x bx c ++=⇒122b x -±=,。
注:①约公元前2000年即出现二次方程求根问题; ②约公元9世纪时,阿拉伯人花拉子米首次得到上述求根公式。
(2)三次及四次方程的求根公式一般三次方程: 320x ax bx c +++=。
先作变换:用3a x -代替x 后可化成 3x mx n +=(不含二次项), (*)其中 332,3327a ab a m b n c =-=--。
利用恒等式:333()3()u v uv u v u v -+-=-,把它与(*)比较得:33,3,x u v uv m u v n =-=-=。
由后面两个关于33,u v 的方程可得u x u v v ⎫⎪=⎪⇒=-= (即*方程的解) 以上求解三次方程的公式叫做卡丹公式, 出现在公元1545年出版的著作《大书》中。
关于四次方程的求根公式这里从略,可以肯定的是, 四次一般方程也有求根公式,并且也叫卡丹公式。
(3从1545年之后的近300年间,人们都没能找到五次(当然,这并不排除对 某些特殊的五次及五次以上的方程可以求出它们的根)。
直到1830年由法国人Galois (伽珞瓦)解决,证明出:五次及五次以上的一般方程不存在用加、减、乘、除及开方表示的求根公式,所用方法就是现在已广为接受的群的思想。
可是在当时,很多同时代的大数学家都无法理解和接受他的思想方法。
3.群在其它方面的应用:如编码理论、计算机等。
一.群的定义及简单性质1定义:设,G ⋅是一个具有二元运算⋅的代数系统,如果⋅同时满足(1)结合律:即,,a b c G ∀∈,()()a b c a b c ⋅⋅=⋅⋅总成立;(2)存在单位元(也称为幺元,记为e ),即 ,;a e e a a a G ⋅=⋅=∀∈(3)中每个元素a 都有逆元(记为1a -):即存在1a G -∈,使得11a a a a e --⋅=⋅=,则称G 关于运算⋅构成一个群。
离散数学 代数系统 ppt课件
1
33 0 1 2 8
代数系统举例
设A={1,2,3,4,6,12} A上的运算*定义为:a*b=|a-b| (1)写出二元运算的运算表; (2)<A,*>能构成代数系统吗?
9
解答
由运算表可知*运算在集合A上不封闭
所以: <A,*>不能构成代数系统
* 1 2 3 4 6 12
1 0 1 2 3 5 11
U=<I,+, > 证明:V=< m,+m, m >
满同态
g:I→Nm 对于所有的iI,有:
g(i)=(i)(modm)
32
证明
类型映射f定义为:f(+)=+m,f()=m (1)显然U=<I,+, >和V=< Nm,+m, m >同类型
(2)运算的象=象的运算
对任意的x,yI: g(x+y)=g(x) +m g(y) g(x y)=g(x) m g(y)
12
4、同类型的代数系统
V1=<S1,Ω1>:代数系统 类型映射 V2=<S2,Ω2>:代数系统 同元运算
存在一个双射函数f: Ω1 → Ω2 每一个ω∈Ω1和f(ω) ∈Ω2具有相同的阶 ωf V1和V2是同类型的代数系统
13
同类型的代数系统举例
V1=<Nm,+m , m > 和V2=<R,+, >是 同类型的代数系统吗?其中:
41
满同态举例(续)
(5)对“+”存在e=0,则: 对“+3”存在e=g(0)=0; (6)对“”存在e=1,则: 对“3”存在e=g(1)=1; (7)对“”存在零元=0,则: 对“3”存在零元=g(0)=0;
06集合代数
引言 集合论
集合论是现代数学的基础,几乎与现代数学的各个 分支都有着密切联系,并且渗透到所有科技领域,是不 可缺少的数学工具和表达语言。
集合论的起源可以追溯到16世纪末期,为了追寻微 积分的坚实基础,开始时,人们仅进行了有关数集的研 究。1976~1983年,康托尔(Georg Cantor)发表了一系 列有关集合论研究的文章,奠定了集合论的深厚基础, 以后策墨罗(Zermelo)在1904~1908年列出了第一个集合 论的公理系统,并逐步形成公理化集合论。
在本书所采用的体系中规定:集合的元素都是集合。
元素和集合之间的关系
元素和集合之间的关系是隶属关系,即属 于或不属于,属于记作∈,不属于记作。
A
例如:A={a,{b,c},d,{{d}}} a∈A,{b,c}∈A,d∈A,{{d}}∈A,
a {b,c} d
bA,{d}A。 b和{d}是A的元素的元素。
A x(x∈ → x∈A) 右边的蕴涵式因前件假而为真命题, 所以 A也为真。
推论 空集是唯一的。 证明:假设存在空集1和2,由定理6.1有
1 2 , 2 1。 根据集合相等的定义,有 1= 2。
有限集和无限集
▪ 集 合 A 中 元 素 的 数 目 称 为 集 合 A 的 基 数 ( base
n元集
含有n个元素的集合简称n元集,它的含有m(m≤n)个元 素的子集叫做它的m元子集。
例6.1 A={1,2,3},将A的子集分类:
0元子集(空集) 1元子集(单元集) 2元子集 3元子集
{1},{2},{3} {1,2},{1,3},{2,3} {1,2,3}
幂集 ( power set )
一般地说,对于n元集A,它的0元子集有 Cn0个,1元子集有 C1n 个,…,m元子集有 Cnm个,…,n元子集有 Cnn个。子集总数为
离散数学-- 集合代数共45页
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
离散数学-- 集合代数
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
END
离散数学 第六章 代数
设<A,*>为代数系统,*是定义在A上的二 元运算,则运算*的某些性质以及代数常元 可以直接从运算表中得到:
运算*是封闭的,当且仅当运算表中的每个元素 都属于A;
运算*满足交换律,当且仅当运算表关于主对角 线对称;
2018/10/27
yuliang@
29
6.1本节小结
31
6.1习题
习题一
设<A,*>为代数系统,其中A={1,2,3,4},“*”定义 如下表所示: (a)运算*是可交换的吗?为什么? (b)运算*是可结合的吗?为什么?
(c)求A中关于运算*的幺元,
并给出每个元素的逆元。 (d)A中有关于运算*的零元吗?
20
6.1代数结构
【例题8】
设集合S={a,b,c,d}, S上定义的两个二元运算*和★
的运算表如下表所示,试求出其中的左幺元和右
幺元。
* a b c d ★ a b c d
a
b c d
2018/10/27
d
a a a
a
b b b
(a)
b
c c c
c
d c d
a
b c
a
b c
b
a d
d
c a
c
则称*对 是可分配的。
2018/10/27
yuliang@
12
6.1代数结构
代数运算的性质三
【例题6】设集合A={α,β},在A上定义两个二元 运算*和☆,如下表(a)和(b)所示。 * α β
(a)
α β α β β α
☆ α β
α β α α α β
d b
d
d
(b)
离散数学 高教版 屈婉玲 06
2 4-x
y3
5-2
y1+2(4-x)+x+2=13
4-x
y2+2(4-x)+x=9
y3+2(4-x)+x=10 y1+y2+y2+3(4-x)+x=19
C
解方程组得 x=1,y1=4,y2=2,y3=3.
7/11/2013 1:59 AM Discrete Math. , huang liujia 11
| A1 A2 Am |
| S | | Ai |
i 1 m 1i j m
| A A
i
j
|
1i j k m
| Ai A j Ak | (1) m | A1 A2 Am |
7/11/2013 1:59 AM
7/11/2013 1:59 AM
Discrete Math. , huang liujia
14
应用——欧拉函数的值
CHAPTER SIX
例6.6 计算欧拉函数的值(n). 欧拉函数 :小于 n 且与 n 互素的自然数的个数 解 n 的素因子分解式: n p11 p22 ...pk k Ai = { x | 0xn1,且 pi 整除 x }, (n) | A A2 ... Ak | . 则 1
7/11/2013 1:59 AM Discrete Math. , huang liujia 3
§6.1 集合的基本概念
注:元素与集合的关系是属于∈和不属于 。 本书规定集合的元素都是集合。对任何集合A,都有AA .
CHAPTER SIX
2.子集合(Def 6.1):若集合B中的元素都在集合A中,则称B是A的子集合(简 称子集)。这时也称B被A包含,或A包含B。记为B A。
离散数学(屈婉玲版)第六章部分答案
可见 , 存在幺元,幺元为 2。 对 x∈Z 有 4-x∈Z,使 x ° (4-x)= (4-x) °x=2
所以 x-¹= 4-x 所以 Z 与运算 ° 能构成群 。
6.7 下列各集合对于整除关系都构成偏序集,判断哪些偏序集是格? (1)L={1,2,3,4,5}. (2)L={1,2,3,6,12}. (3)L={1,2,3,4,6,9,12,18,36}. (4)L={1,2,2(2),…,2(n)}.
答:满足封闭性,因为矩阵加法可结合所以为半群,且幺元为 e=0 的矩阵,故为 独异点。又因为以任一 n 阶矩阵的逆元存在是它的负矩阵,所以是群。 评语:答案太简单
6.2 (1)因为可结合,交换,幺元为 1,但不存在逆元 所以是半群 (2)因为可交换,结合,幺元为 0,是有限阶群并且是循环群,G 中的 2 阶元是 2,4 阶元 是1和3
设 a={1,3} b={3,4,5} ∴a,b∈p(A) ∵<p(A), >构成群 a x=b ∴a-1 a x= a-1b
e x= a-1b x= a-1b
e= a-1=a ∴x=ab={1,3}{3,4,5}={1,4,5} (2)由 B 生成的循环子群<B>为 {,{1,4,5}}
6.10
答案太简单621因为可结合交换幺元为1但不存在逆元所以是半群2因为可交换结合幺元为0是有限阶群并且是循环群gz为正数集合在z上定义二元运算yxy2那么z与运算c2abc4bc22abc44x4x4x所以67下列各集合对于整除关系都构成偏序集判断哪些偏序集是格
6.1(5) S5 = Mn (R),+为矩阵加法,则 S 是(群)
110
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文氏图的实例
有穷集的计数问题
• 使用文氏图可以很方便地解决有穷集的计数问题。 • 首先根据已知条件把对应的文氏图画出来。 – 一般地说,每一条性质决定一个集合。 – 有多少条性质,就有多少个集合。 – 如果没有特殊说明,任何两个集合都画成相交的 • 然后将已知集合的元素数填入表示该集合的区域内。 – 通常从n个集合的交集填起, – 根据计算的结果将数字逐步填入所有的空白区域。 – 如果交集的数字是未知的,可以设为x。 • 根据题目中的条件,列出一次方程或方程组,就可以求得所 需要的结果。
| A B C |
= 1000(200+166+125)+(33+25+41)8 = 600
3.广义运算的性质 (1)=,无意义 (2)单元集{x}的广义并和广义交都等于 x (2)广义运算减少集合的层次(括弧减少一层) (3)广义运算的计算:一般情况下可以转变成初级运算 {A 1,A2 ,…,A n}=A 1A2 …An {A 1,A2 ,…,A n}=A 1A2 …An 4.引入广义运算的意义 可以表示无数个集合的并、交运算,例如 {{x}|xR}=R 这里的 R 代表实数集合.
第二部分 集合论
一、本部分的主要内容 集合代数----集合的概念和基本运算 关系----二元关系的表示、运算、性质、特殊的关系 函数----函数定义、性质、运算 集合的基数----集合的等势、集合的基数 二、本部分的基本要求 掌握集合及其相关的基本概念 熟练掌握集合以及关系、函数的基本运算 了解和使用基本的证明方法
图1
隶属关系可以看作是处在不同层次上的集合之间的关系。
规定:对任何集合A都有AA。
第二节 集合的运算
一、初级运算 1.定义 6.7 并 交 相对补
举例
AB = {x | xA xB} AB = {x | xA xB} AB = {x | xA xB}
命题演算证明法的书写规范 (以下的 X 和 Y 代表集合公式) (1)证 XY 任取 x, xX … xY (2)证 X=Y 方法一 分别证明 XY 和 YX 方法二 任取 x, xX … xY 注意:在使用方法二的格式时,必须保证每步推理都是 充分必要的
证明 AB AB=B AB=A AB= ① 证 ①② 显然 BAB,下面证明 ABB. 任取 x, xAB xAxB xBxB xB 因此有 ABB. 综合上述②得证. ②③ A=A(AB) A=AB (由②知 AB=B,将 AB 用 B 代入) ② ③ ④
| A1 A2 ... An || S | | Ai |
1i n
1i j n
| A A
i
j
|
1i j k n
| Ai A j Ak | ... (1) n | A1 A2 ... An |
2.计数实例 例 求 1 到 1000 之间(包含 1 和 1000 在内)既不能被 5 和 6 整除,也不能被 8 整除的数有多少个? 解 方法一
例 6.5 设 ={{a},{a,b}} A 计算∪∪A,∩∩A 和∩∪A∪(∪∪A-∪∩A)。 ∪A={a,b} 解 ∩A ={a} ∪∪A=a∪b ∩∩A =a ∪A=a∩b ∩ ∪∩A=a ∪A∪(∪∪A-∪∩A) ∩ =(a∩b)∪((a∪b)-a) =(a∩b)∪(b-a) =b 所以∪∪A=a∪b,∩∩A=a,∩∪A∪(∪∪A-∪∩A)=b。
三、元素与集合 1.集合的元素具有的性质 无序性——元素列出的顺序无关 相异性——集合的每个元素只计 数一次 确定性——对于任何元素和集 合,都能确定这个元素是否为该 集合的元素 任意性——集合的元素也可以是 集合 2. 元素与集合的关系——隶属关系: 或者 3.集合的树型层次结构
说 明
d A , a A
33
图3
方法二 令 S = {x | xZ1x1000}, B = {x | xSx0(mod 6)}, 则 |S| = 1000 |A| = 1000/5 = 200, |B| = 1000/6 = 166, |C| = 1000/8 = 125 |AB| = 1000/lcm(5,6) = 1000/33 = 33 |AC| = 1000/lcm(5,8) = 1000/40 = 25 |BC| = 1000/lcm(6,8) = 1000/24 = 41 |ABC| = 1000/lcm(5,6,8) = 1000/120 = 8 A = {x | xSx0(mod 5)} C = {x | xSx0(mod 8)}
=A1∪A2∪…∪An
=A1∩A2∩…∩An 并和交运算还可以推广到无穷多个集合的 情况:
=A1∪A2∪…
=A1∩A2∩… 定义6.8 设A,B为集合,A与B的对称差集 AB定义为: AB=(A-B)∪(B-A) 例如A={a,b,c},B={b,d},则 AB={a,c,d}。 对称差运算的另一种定义是 AB=(A∪B)-(A∩B) 可以证明这两种定义是等价的。 在给定全集E以后,AE,A的绝对补集~A 定义如下:
三、运算的优先权规定 为了使得集合表达式更为简洁,我们对集合运算的优先顺序做 如下规定: 称广义并,广义交,幂集,绝对补运算为一类运算,并,交, 相对补,对称差运算为二类运算。 一类运算优先于二类运算。 一类运算之间由右向左顺序进行。 二类运算之间由括号决定先后顺序。 例如下面的集合公式: ∩A -∪B,∪P(A),~P(A)∪∪B,~(A∪B) 都是合理的公式。
第三节 集合恒等式
一、集合算律 1.只涉及一个运算的算律 交换 结合 幂等 AB=BA (AB)C=A(BC) AA=A AB=BA (AB)C=A(BC) AA=A AB=BA (AB)C=A(BC)
2.涉及两个运算的算律 与 分配 吸收 A(BC)=(AB)(AC) A(BC)=(AB)(AC) A(AB)=A A(AB)=A 与 A(BC)=(AB)(AC)
二、集合等式或包含关系的证明 方法一:命题演算法 例 证明 A(AB) = A (吸收律) xA(AB) xAxAB xA(xAxB) xA 因此得 A(AB) = A. 例 证明 AB = AB x AB xAxB xAxB xAB 方法二:等式代入法(假设交换律、分配律、同一律、零律已经成立) 例 证明吸收律 A(AB) = (AE)(AB) = A(EB) = A(BE) = AE = A 证 任取 x, 证 任取 x,
第六章 集合代数
主要内容 集合的基本概念----属于、包含、幂集、空集、 文氏图等 集合的基本运算----并、交、补、差等 集合恒等式----集合运算的算律、 恒等式的证明 方法 与后面各章的关系 是集合论后面各章的基础 是典型的布尔代数系统
第一节 集合的基Байду номын сангаас概念
一、集合的定义 集合没有精确的数学定义 直观理解: 由离散个体构成的整体称为集合, 称这些个体为集合的元素 常见的数集:N, Z, Q, R, C 等分别表示自然数、整数、有理数、实数、 复数集合 二、集合的表示法 1.枚举法----通过列出全体元素来表示集合 2.谓词法----通过谓词概括集合元素的性质 实例: 枚举法 自然数集合 N={0,1,2,3,…} 谓词法 S={x| x 是实数,x21=0}
例
证明 AB AB=B AB=A AB= ① ② ③ ④
证明思路: 确定问题中含有的命题:本题含有命题 ①, ②, ③, ④ 确定命题间的关系(哪些命题是已知条件、哪些命题是 要证明的结论) :本题中每个命题都可以作为已知条件, 每个命题都是要证明的结论 确定证明顺序:①②,②③,③④,④① 按照顺序依次完成每个证明(证明集合相等或者包含)
3.涉及补运算的算律 D.M 律 双重否定 A(BC)=(AB)(AC) A(BC)=(AB)(AC) (BC)=BC (BC)=BC A=A
4.涉及全集和空集的算律 补元律 零律 同一律 否定 AA= A= A=A =E E AA=E AE=E AE=A E=
例6.2
法 9 英 13 y1 2 4-x 5-2 日 5
y2
4-x
4-x
x
y3
y1+2(4-x)+x+2=13
y2+2(4-x)+x=9
德 10
y3+2(4-x)+x=10
y1+y2+y3+3(4-x)+x=24-5
4、有穷集合元素的计数 1.计数方法 (1)文氏图法 (2)公式法——包含排斥原理 设集合 S 上定义了 n 条性质,其中具有第 i 条性质的元素构成子 集 Ai, 那么集合中不具有任何性质的元素数为
例6.2 对24名会外语的科技人员进行掌握外语情况 的调查。其统计结果如下:会英、日、德和法语 的人分别为13,5,10和9人,其中同时会英语和 日语的有2人,会英、德和法语中任两种语言的都 是4人。已知会日语的人既不懂法语也不懂德语, 分别求只会一种语言(英、德、法、日)的人数和 会三种语言的人数。 解:令A,B,C,D分别表示会英、法、德、日语的 人的集合。根据题意画出文氏图。设同时会三种 语言的有x人,只会英、法或德语一种语言的分别 为y1,y2和y3人。将x和y1,y2,y3填入图中相应的 区域,然后依次填入其它区域的人数。
• 文氏图的构造方法如下:
– 画一个大矩形表示全集E(有时为简单起见可将 全集省略)。 – 在矩形内画一些圆(或任何其它的适当的闭曲 线),用圆的内部表示集合。 – 不同的圆代表不同的集合。如果没有关于集合 不交的说明,任何两个圆彼此相交。 – 图中阴影的区域表示新组成的集合。 – 可以用实心点代表集合中的元素。
③④ 假设 AB, 即xAB,那么知道 xA 且 xB. 而 xB xAB 从而与 AB=A 矛盾. ④① 假设 AB 不成立,那么 x(xAxB) xAB AB 与条件④矛盾.