2014年美国大学生数学建模竞赛A题论文综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模综述
2014年美国大学生数学建模竞赛A题论文综述
我们小组精读两篇14年美赛A题论文,选择了其中一篇来进行学习,总结。
1、问题分析
The Keep-Right-Except-To-Pass Rule
除非超车否则靠右行驶的交通规则
问题:建立数学模型来分析这条规则在低负荷和高负荷状态下的交通路况的表现。
这条规则在提升车流量的方面是否有效?如果不是,提出能够提升车流量、安全系数或其他因素的替代品(包括完全没有这种规律)并加以分析。
在一些国家,汽车靠左形式是常态,探讨你的解决方案是否稍作修改即可适用,或者需要一些额外的需要。最后,以上规则依赖于人的判断,如果相同规则的交通运输完全在智能系统的控制下,无论是部分网络还是嵌入使用的车辆的设计,在何种程度上会修改你前面的结果
论文:
基于元胞自动机和蒙特卡罗方法,我们建立一个模型来讨论“靠右行”规则的影响。首先,我们打破汽车的运动过程和建立相应的子模型car-generation的流入模型,对于匀速行驶车辆,我们建立一个跟随模型,和超车模型。然后我们设计规则来模拟车辆的运动模型。我们进一步讨论我们的模型规则适应靠右的情况和,不受限制的情况, 和交通情况由智能控制系统的情况。我们也设计一个道路的危险指数评价公式。我们模拟双车道高速公路上交通(每个方向两个车道,一共四条车道),高速公路双向三车道(总共6车道)。通过计算机和分析数据。我们记录的平均速度,超车取代率、道路密度和危险指数和通过与不受规则限制的比较评估靠右行的性能。我们利用不同的速度限制分析模型的敏感性和看到不同的限速的影响。左手交通也进行了讨论。
根据我们的分析,我们提出一个新规则结合两个现有的规则(靠右的规则和无限制的规则)的智能系统来实现更好的的性能。
该论文在一开始并没有作过多分析,而是一针见血的提出了自己对于这个问题的做法。由于题目给出的背景只有一条交通规则,而且是题目很明确的提出让我们建立模型分析。所以这篇论文也没有过多的分析题目,而是直接写出自己的做法,体现了这小组成员在这个问题有很深的探究。
2、模型介绍Introduction
如今,大约65%的世界人口生活在右手交通的国家和35%在左手交通的国家交通流量。[worldstandards。欧盟,2013] 右手交通的国家,比如美国和中国,法规要求驾驶在靠路的右边行走。多车道高速公路在这些国家经常使用一个规则,要求司机在最右边开车除非他们超过另一辆车,在这种情况下,他们移动到左边的车道、通过,返回到原来的车道。
基于元胞自动机模型和蒙特卡罗算法,我们建立一个模型来模拟在不同条件下高速公路交通(靠右的规则或限制规则,根据交通或交通拥挤, 双车道或三车道)。我们的模型分为3个子模型(进入模型,跟随行驶模型和超车模型)。进入模型采用泊松概率分布的模拟
vehicle-generation过程。跟随模型引入了一个特别的概率分布模型,使模拟的过程一辆车跟随另一辆车更为现实。超车模型模拟了超车行为,定义了危险指数的安全风险评估对于某些高速公路。我们也建立一个智能系统控制的扩展交通模型。
到了第二部分,该论文先是阐述的问题背景,然后直接说明建立怎样的模型去说明问题。跟第一部分连接的很自然,补充说明的第一部分提出的模型。这一部分经常会被我们忽略掉,少了这部分会让人觉得模型跟题目没有联系上,不知道模型想表达什么、模拟什么。所以这部分的说明是很有必要的。
2.1术语Terminology
•双车道公路:两个车道在路的右前卫,总共四条车道。
•Three-lane路:三车道在路的右前卫,总共6车道。
•危险指数:索引设计在我们的论文评估的危险道路系统。
•最小安全差距:认为两辆车之间的距离在我们的模型足够安全。
•靠右规则:保持正确的除了通过规则。
•无限制的规则:车辆不受限制,可以超越别人任何一方。
•Free-driving风格:当没有附近的车辆,司机不会故意加速或减速,但速度仍将小幅波动。
术语不是每篇论文都有,也不是规定一定要有。但是术语说明会让人觉得这篇论文设分专业和有水平,就像符号说明一样会让读者更容易读懂这篇论文,能让门外汉也能看懂的论文才是好论文。
2.2假设Assumptions
•路是直的,并且没有旁路。
•一个车道的宽度只够一车。
•所有车辆都有相同的体积。
•只有两种车辆在路上(一快一慢)。
•环境和气候对开车有好处。
•驾驶右边是常态。
•行人被忽略。
假设是模型建立的前提,假设要考虑到每个方面,当然不是什么假设都写上去,只有对模型建立有帮助的才写,但是我们往往会把不必要的假设加上,这样就使得论文看上去不那么严谨。该论文的假设就考虑的比较周全,而且每个假设都是对后面模型的计算有帮助的。
3、模型The Models
3.1元胞自动机的设计Design of Cellular Automata
元胞自动机(CA)表明,在大量的前人交通模拟(瓦格纳P et al.2005)的基础,CA模型是可行和有效的方法来模拟交通流。空间、时间和状态都是离散的细胞自动机。例如,该模型将道路划分成小矩形将时间分为时间单位。这个特性显著简化模拟过程。此外,细胞的状态由周边控制,细胞的这一组规则,非常类似于现实生活中的交通汽车的运动很大程度上取决于周边汽车运动。因此, 对我们来说是合理应用元胞自动机在解决我们的问题。
在我们的模拟中,我们每个车道划分为1000个细胞。每个细胞都是4米在长度和宽度两个属性上,当前速度V和最大速度Vm。每个细胞是空的即当V为0,因为一辆车不会停止,模拟时是绝对无故障。我们简单的认为只有一个方向的高速公路。因此,高速公路有n条车道转化为n * 1000矩阵。
在我们的模拟中,我们使用两种类型的汽车,快的速度的模拟汽车和缓慢的模拟卡车。对于每一个车道,前6个细胞作为car-generation区域,车流观察至少10细胞和交通密度计算的基础上至少500个细胞。我们的模型每秒更新一次,当周期T = 1s为一个司机的平均反应时间我们讨论了CA模型的基本过程:
•流入过程:根据流入模型,我们将讨论最近的, 分配车辆vehicle-generation地区。
•加速过程:如果V < Vm ,∆V为汽车增加的速度,和新的速度V‟ = V +∆V。
•减速过程:如果车辆与车辆之间的距离(前保险杠和后保险杠的距离,我们称之为的差距, 用G表示差距及其单位是细胞。当没有车辆,G= +∞。)不超过V,车辆减速V ‟=(G−1)/ T。
•移动过程:车辆前进通过V …*T细胞只有当G >Gs(V …)。(Gs(V‟)是为了安全考虑,所需的最小差距和是被定义之后。)
具体的规则将被设置在流入模型中,下面的模型和超车模型是为了模拟靠右行车交通规则和自由行车交通规则
论文在模型建设引用了元胞自动机的CA模型,但并不是简单的引用,而是在情景对比过后选择最符合的模型。有时我们的论文也会引用一些现有的模型,千万要注意要说明相同的地方以及引用后加上自己对模型模拟的过程的理解不然就会让人觉得你没有深入研究,只是单单的引用。该论文就做的很好,不仅详细说明了模型的模拟过程还分析了模型每个过程。
3.2 流入模型Inflow Model
让ts表示采样时间间隔和N表示在ts时间内车辆的总数。然后N可以近似服从泊松概率分布。让Pt(N)表示N的可能性,于是我们有
ts表示在一秒,我们可以分配N的期望的值的范围从0到3.6。N作为在每一秒中到达的总车辆,N的期望能有效地反映交通状况。λ越小,交通越轻松。因此我们能够模拟不同流量条件下,交通的轻或重,通过分配相应的值λ。λ的值设定后,我们得到了进入高速公路的车辆模拟每一秒的随机号码。每个车道然后随机分配进入。
我们的车辆模型支持两种不同的速度范围, 假设所有车辆的初始速度设置为20 m / s。这种做法带来了简化而不削弱结果。
3.3 跟随模型Vehicle-Following Model
•当G > Gs,车辆会加速(后来我们将介绍一个概率模型去模拟这种倾向),直到实现高速公路速度限制或其最大可能速度;
•当G < Gs,是否超车或跟随由超越概率Po和超车条件决定(Po和超越条件将在超车模型中讲到)。
当跟随时,车辆加速,减速或保持原来的速度。我们引入两个参数(SUN yue 2005),加速概率Pa和减速概率Pb。速度越高,Pa越小,Pb越大。Vl代表最高的高速公路限速, Vmax是