解线性方程组的直接法 ppt课件

合集下载

数值分析第三章 解线性方程组的直接方法 ppt课件

数值分析第三章 解线性方程组的直接方法 ppt课件

对算每一一次行。计以算后每s注i一意数步m 1:学考j这上a虑n两|严x子a个格i列j |方等。 a程价为...kk 组。省中在时as间iki 最,s大i 只的在ai初k 为始主时元计。
a nk
注:稳定性介于列主元法和全主元法之间。
§2 三角分解法 /* Matrix Factorization */
A(2) b(2)
其中
a(2) ij
b(2) i
a(1) ij
b(1) i
mi
a(1)
1 1j
mi1b1(1)
(i, j 2, ...,n)
Step
k:设
a(k) kk
, 0计算因子
m ik a i(k k )/a k (k )k(i k 1 ,..n ) .,
且计算
a(k1) ij
➢ 高斯消元法的矩阵形式 /* Matrix Form of G.E. */:
Step 1: m i1a i1/a 11(a 1 10 )
1
记 L1 =
m 21 ...
1
m n1
a1(1)1...a1(1n) b1(1)
A b ,则 L 1 [A (1 ) b (1 )]
(2) (2)
1
Step n 1:
Ln1Ln2 ...L1
Ab
a1(11)
a(1) 12
a(2) 22
...
a(1) 1n
...
a(2) 2n
... ...
bb12((12))
...
其中 Lk =
1
a(n) nn
bn(n)
1
m k 1,k ...
m n ,k
1
1

第三章 线性代数方程组的直接解法4ppt课件

第三章 线性代数方程组的直接解法4ppt课件

b
例如: Hilbert矩阵就是一个著名的病态矩阵
1
1
1
2
2
1
1
3
4
1
1
n
1
Hn
1
n
3
1
( n 1)
n
1
( n 1)
(n 2)
6
1
8
对 称 正 定 矩 阵
( 2 n 1)
10
cond1(H) cond2(H) cond(H)
4 28375 15514 28375
2.9E+7 1. 5E+7 2.9E+7
3.39E+10 3.54E+13 1.53E+10 1.60E+13 3.39E+10 3.54E+13
Th362 .. 设A R
n n
非奇异,则
| | A | | 2 m i n :A A 奇 异 |A | | | 2 1 1 1 || A ||2|| A ||2 (A ) 2
n n

| | x | | ( A ) | | A | | | | b | | | | A | | | | |x | | |A | | | |b | | 1 ( A ) | |A | |

为满足条件
其中
I 1
的矩阵范数.
推论(补充)
在上述定理的条件下,
即在谱范数下,一个矩阵的条件数的倒数正好 等于该矩阵与全体奇异矩阵所成集合的相对距离
二、病态方程组的解法
常用的几种判定方程组为病态的经验方法 当 det( A ) 相对来说很小时,或者矩阵A

第3章线性方程组的直接解法1PPT课件

第3章线性方程组的直接解法1PPT课件

(3.5)
u x n1,n1 n1 un1,nxn bn1
unnxn bn
n
u iixi b i (u i,i 1 xi 1 u inxn) b i u ijxj
j i 1
xnbn/unn,
xi bijn i1uijxj/uii8,in1,n2,
返回LU
,2,1. 返回(3.20)
3.2.2 消去法的基本思想
(3.4)
返回式3.19
i1
liixi bi (li1x1li2x2 li,i1xi1)bi lijxj j1
i1
xi bi lijxj /lii, i 1,2, ,n.
j1
7
三、上三角方程组(返回Gauss)
u11x1 u12x2 u13x3 u1nxn b1
uiixi ui,i1xi1 uinxn bi
x3
78 26
3
x2 -28 10x3 -28 10(3)
x 1
16
(x2
2
4x 3 )
2
10
16
2 2
4(3)
1
3.2.3 高斯消元过程(即初等行变换) 记方程组(3.1)为
返回矩阵的三角分解
aa12((1111))xx11
a1(12)x2 a2(12)x2
an(11)x1an(12)x2
2
3.1 引 言
自然科学和工程计算中的很多问题的解决常常 归结为求解线性方程组。如三次样条插值函数问 题、用最小二乘原理确定拟合曲线、求解微分方 程的数值解等,最终都要转化为求解线性方程组。
求解线性方程组可采用:
1、直接法——经有限步算术运算可求得方 程组的精确解的方法(若计算过程无舍入误差)。

线性方程组解PPT课件

线性方程组解PPT课件

VS
详细描述
高斯消元法的基本思想是将线性方程组转 化为上三角矩阵,然后通过回代过程求解 未知数。在消元过程中,通过行变换将方 程组的系数矩阵变为上三角矩阵,然后通 过回代过程求解未知数。该方法具有较高 的计算效率和精度,适用于大规模线性方 程组的求解。
迭代法
总结词
迭代法是一种求解线性方程组的方法,通过不断迭代逼近解的过程。
在物理领域的应用
力学系统
利用线性方程组描述多体系统的 运动状态,分析系统的平衡点和 稳定性,以及如何通过调整系统
参数实现稳定运动。
电路分析
通过线性方程组表示电路中的电流 和电压关系,分析电路的阻抗、导 纳和转移矩阵等参数,为电路设计 和优化提供依据。
波动方程
利用线性方程组描述波动现象,如 声波、光波和水波等,分析波的传 播规律和特性。
线性方程组解ppt课件
目录 CONTENT
• 线性方程组的基本概念 • 线性方程组的解法 • 线性方程组的解的性质 • 线性方程组的应用 • 线性方程组解的软件实现
01
线性方程组的基本概念
线性方程组的定义
线性方程组
由有限个线性方程组成的方程组,其中每个方程包含一个或多个 未知数。
线性方程
形如 ax + by + c = 0 的方程,其中 a, b, c 是常数,x 和 y 是未 知数。
详细描述
迭代法的基本思想是通过不断迭代逼近解的过程,最终得到线性方程组的近似解。迭代法有多种形式,如雅可比 迭代法、高斯-赛德尔迭代法和松弛迭代法等。这些方法通过迭代更新解的近似值,最终得到满足精度要求的解。 迭代法适用于大规模线性方程组的求解,但计算效率相对较低。
矩阵求解法
总结词

线性方程组直接解 优质课件

线性方程组直接解 优质课件

a11
a1i
D1 a11 0, Di ai1
0, i 1, 2, , n aii
推论:
a(1) 11

D1,
a(i) ii

Di
Di1 ,
i 2,
,n
23:35:57
Numerical Analysis
13
运算量
计算机中做乘除运算的时间远远超过做加减运算时间,
故我们只估计 乘除运算 的次数
a(2) 22


a(1) 1n
a(2) 2n


x1 x2



b(1) 1
b(2) 2


a(n) nn


xn

bn(n)
回代求解:
xn

b(n) n
a(n) nn
( ) n
xi
b(i) i

a(i) ij
x
j
a(i) ii
Numerical Analysis
17
列主元 Gauss 消去法
Gauss 消去法有效的条件是: 主元全不为零
例:解线性方程组
0 1
1 0

x1 x2

1 1
列主元 Gauss 消去法
在第 k 步消元时,在第 k 列的剩余部分选取主元

先选取列主元: |
20
全主元Gauss消去法
全主元高斯消去法:
第 k 步消元时,在剩余的 n-k 阶子矩阵中选取主元

先选取全主元:|
a(k) ik jk
|
=

计算方法PPT课件第三章 解线性代数方程组的直接法

计算方法PPT课件第三章 解线性代数方程组的直接法

k 1,2,, n 1; i k 1, k 2,, n
计算
lik
a(k) ik
a(k) kk
对 j k 1, k 2,, n 1
计算
a (k 1) ij
a(k) ij
lik
a(k kj
)
2020年11月24日星期二
.
(2)回代过程 回代过程只需要二
重循环,即计算
xn
a(n) in1
x
2
a (1) 1n
xn
a
(1) 22
x
2
a (1) 2n
xn
a (1) 1n1
a (1) 2 n 1
a
(1) n1
x1
a (1) n2
x2
a (1) nn
xn
a (1) nn1
2020年11月24日星期二
.
5
(1)第k个导出方程 组
假设a(111)
0,将第1个方程乘以(
a(1) i1
a(1) 11
)加到第i个方
程(2 i n)得到第一个导出方 程组
a(111)x1
a(112)x2 a(11n)x n a(222)x2 a(22n)x n
a(1) 1n 1
a(2) 2n 1
a(n22)x 2
a(n2n)x n
a(2) nn 1
其中a(i2j)
a(1) ij
a(1) i1
2020年11月24日星期二
.
4
3.1.1 顺序消去法
1. 消元过程
考虑一般方程组(3.1),记系数矩阵A的元素
aij为ai(j1),右端向量b的元素bi 记为ai(n1) 1,于是方程 组(3.1)成为形式(将书中k=0改为k 1便于推导)

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
a 11 a 12 ... a 1n
a 21 a 22 ... a 2 n ... ... ... ... a n1 a n 2 ... a nn
a 11 a 12 ... a 1n
a 21 a 22 ... a 2 n ... ... ... ... a n1 a n 2 ... a nn
9
AX=B上三角线性方程组表示为:
aa34
1 1
x52 x5 y5 y52 x5 y5 a5 1
可确定椭圆方程(小行星轨道方程)
5
对一般线性方程组: A X = b, 其中
a11 a12 A a21 a22
an1 an2
a1n
a2
n
b
b1
b
2
ann
b n
x1
X
x
2
xn
当系数矩阵A的行列式|A|≠0时,则方程组有唯一 解.
得 a1xk2 + a2xkyk + a3yk2 + a4xk + a5yk + 1 = 0
(k = 1, 2, 3, 4, 5)
4
即求解方程组
x12 x1y1 y12 x1 y1 a1 1
x22
x2 y2
y22
x2
y2
a2
1
xx3422
x3 y3 x4 y4
y32 y42
x3 x4
y3 y4
6
求解线性方程组: A X = b的一般过程:
输入: A,b
解方程组 算法
输出: X
直接法:经过有限步算术运算求得精确解 迭代法:从初始解出发,逐步求出近似解来逼近
在求解小型(未知数较少)方程组时,直接法很有效. 在求解大型方程组时,迭代法是最有效的方法.
7
4.2 高斯消去法(Gaussian Elimination )
4x1 – x2 + 2x3 + 3x4 =20 –2x2 + 7x3 - 4x4 =-7 6x3 + 5x4 = 4 3x4 = 6
x1 = (20 + x2 - 2x3 - 3x4 )/4=3 x2 = (-7-7x3 + 4x4 )/-2=-4
x3 = (4-5x4)/6=-1 x4 = 6/3=2
a11x1+ a12x2 +a13x3 +…+ a1n-1xn-1 + a1nxn =b1 a22x2 +a23x3 +…+ a2n-1xn-1 + a2nxn =b2 a33x3 +…+ a3n-1xn-1 + a3nxn =b3 …………. an-1n-1xn-1 + an-1nxn =bn-1 annxn =bn
4.2.1 顺序高斯消去法
1. 上三角线性方程组(Upper-triangular Linear System)
定义4.1 NN矩阵A=[aij]中的元素满足对所 有i>j,有aij=0,则称NN矩阵A=[aij]为上三角 矩阵。如果A中的元素满足对所有i<j,有aij=0, 则称NN矩阵A=[aij]为下三角矩阵。
an-1n-1xn-1 + an-1nxn =bn-1
annxn =bn
证明:x n
bn a nn
唯一
xn1
bn1an1nxn an1n1
n
bk akx j j
xk
jk1
ak k
,kn1,n2,..1.
用归纳法可证明x n-1,x n-2….x1是唯一的
11
例4.1:利用回代法求解线性方程组
的行列式
n
n
de A ) t|A (| a i(j 1 )ijM ij a i(j 1 )ijM ij
j 1
i 1
14
n
n
de A ) t|A (| a i( j 1 )i jM ij a i( j 1 )i jM ij
j 1
i 1
23 8
A= 3 -4 5 -1
4 7 -6 9
5 -1 -4 -1 i=1,det(A)=2 -6 9-3 7+89
第四章 线性方程组AX=B 的数值解法
(The Solution of Linear Systems AX=B)
主讲教师: 高小辉 E-mail:fzlcstar@
1
4.1 引言
求解 Axb
•许多实际问题可归结为线性(代数)方程组 机械设备、土建结构的受力分析; 经济计划 输电网络、管道系统的参数计算; 企业管理 •大型的方程组需要有效的数值解法。 •数值解法的稳定性和收敛性问题需要注意。
2
小行星轨道计算问题
3
天文学家要确定一小行星的轨道, 在轨道平面建立以太阳为原点的 直角坐标系.在坐标轴上取天文单位(地球到太 阳的平均距离),对小行星作5次观察, 测得坐标 数据
(x1,y1), (x2,y2), (x3,y3), (x4,y4), (x5,y5)
将数据代入椭圆的一般方程: a1x2 + a2xy + a3y2 + a4x + a5y + 1 = 0
6x3 + 5x4 = 4
a22=0
3x4 = 6
x2 = 4x1 -16
x3 = -1 x3 = -1
无穷解
x4 =1 a12 a13 … a1n
A
a21 a22 a23 … a2n
=
……
an1 an2 an3 … ann
第i行展开
则A的行列式为:
第j列展开
划掉A的第i 行和第j列后
-4 5 7 -6
=2(45-6)-3(-36+7)+8(24-35)=77
-4 -1 2 8 j=2,det(A)=-3 +5 +6
79 79
28 =77 -4 -1
15
3. 如果NN矩阵A=[aij]是上三角矩阵或下三
角矩阵,则:
n
deA t)(a1a 122 ..a.nn aii i1
2. 回代(Back Substitution)
设AX=B是上三角线性方程组,如果:
akk0, k=1,2..n,则方程组存在唯一解。
10
a11x1+ a12x2 +a13x3 +…+ a1n-1xn-1 + a1nxn =b1 a22x2 +a23x3 +…+ a2n-1xn-1 + a2nxn =b2 a33x3 +…+ a3n-1xn-1 + a3nxn =b3 ………….
例4.2:证明下列线性方程组无解
4x1 – x2 + 2x3 + 3x4 =20
70x32 -+4x4 =-7
a22=06x3 + 5x4 = 4 3x4 = 6
x3 = 1/7
x3 = -1 x4 = 2
12
例4.3:证明下列线性方程组有无穷解
4x1 – x2 + 2x3 + 3x4 =20
0x2 + 7x3 - 0x4 =-7
相关文档
最新文档