解线性方程组的直接法 ppt课件
数值分析第三章 解线性方程组的直接方法 ppt课件
![数值分析第三章 解线性方程组的直接方法 ppt课件](https://img.taocdn.com/s3/m/193612870b4c2e3f572763de.png)
对算每一一次行。计以算后每s注i一意数步m 1:学考j这上a虑n两|严x子a个格i列j |方等。 a程价为...kk 组。省中在时as间iki 最,s大i 只的在ai初k 为始主时元计。
a nk
注:稳定性介于列主元法和全主元法之间。
§2 三角分解法 /* Matrix Factorization */
A(2) b(2)
其中
a(2) ij
b(2) i
a(1) ij
b(1) i
mi
a(1)
1 1j
mi1b1(1)
(i, j 2, ...,n)
Step
k:设
a(k) kk
, 0计算因子
m ik a i(k k )/a k (k )k(i k 1 ,..n ) .,
且计算
a(k1) ij
➢ 高斯消元法的矩阵形式 /* Matrix Form of G.E. */:
Step 1: m i1a i1/a 11(a 1 10 )
1
记 L1 =
m 21 ...
1
m n1
a1(1)1...a1(1n) b1(1)
A b ,则 L 1 [A (1 ) b (1 )]
(2) (2)
1
Step n 1:
Ln1Ln2 ...L1
Ab
a1(11)
a(1) 12
a(2) 22
...
a(1) 1n
...
a(2) 2n
... ...
bb12((12))
...
其中 Lk =
1
a(n) nn
bn(n)
1
m k 1,k ...
m n ,k
1
1
第三章 线性代数方程组的直接解法4ppt课件
![第三章 线性代数方程组的直接解法4ppt课件](https://img.taocdn.com/s3/m/c2cc28face2f0066f53322f5.png)
b
例如: Hilbert矩阵就是一个著名的病态矩阵
1
1
1
2
2
1
1
3
4
1
1
n
1
Hn
1
n
3
1
( n 1)
n
1
( n 1)
(n 2)
6
1
8
对 称 正 定 矩 阵
( 2 n 1)
10
cond1(H) cond2(H) cond(H)
4 28375 15514 28375
2.9E+7 1. 5E+7 2.9E+7
3.39E+10 3.54E+13 1.53E+10 1.60E+13 3.39E+10 3.54E+13
Th362 .. 设A R
n n
非奇异,则
| | A | | 2 m i n :A A 奇 异 |A | | | 2 1 1 1 || A ||2|| A ||2 (A ) 2
n n
则
| | x | | ( A ) | | A | | | | b | | | | A | | | | |x | | |A | | | |b | | 1 ( A ) | |A | |
为满足条件
其中
I 1
的矩阵范数.
推论(补充)
在上述定理的条件下,
即在谱范数下,一个矩阵的条件数的倒数正好 等于该矩阵与全体奇异矩阵所成集合的相对距离
二、病态方程组的解法
常用的几种判定方程组为病态的经验方法 当 det( A ) 相对来说很小时,或者矩阵A
第3章线性方程组的直接解法1PPT课件
![第3章线性方程组的直接解法1PPT课件](https://img.taocdn.com/s3/m/ed30c353cc17552706220820.png)
(3.5)
u x n1,n1 n1 un1,nxn bn1
unnxn bn
n
u iixi b i (u i,i 1 xi 1 u inxn) b i u ijxj
j i 1
xnbn/unn,
xi bijn i1uijxj/uii8,in1,n2,
返回LU
,2,1. 返回(3.20)
3.2.2 消去法的基本思想
(3.4)
返回式3.19
i1
liixi bi (li1x1li2x2 li,i1xi1)bi lijxj j1
i1
xi bi lijxj /lii, i 1,2, ,n.
j1
7
三、上三角方程组(返回Gauss)
u11x1 u12x2 u13x3 u1nxn b1
uiixi ui,i1xi1 uinxn bi
x3
78 26
3
x2 -28 10x3 -28 10(3)
x 1
16
(x2
2
4x 3 )
2
10
16
2 2
4(3)
1
3.2.3 高斯消元过程(即初等行变换) 记方程组(3.1)为
返回矩阵的三角分解
aa12((1111))xx11
a1(12)x2 a2(12)x2
an(11)x1an(12)x2
2
3.1 引 言
自然科学和工程计算中的很多问题的解决常常 归结为求解线性方程组。如三次样条插值函数问 题、用最小二乘原理确定拟合曲线、求解微分方 程的数值解等,最终都要转化为求解线性方程组。
求解线性方程组可采用:
1、直接法——经有限步算术运算可求得方 程组的精确解的方法(若计算过程无舍入误差)。
线性方程组解PPT课件
![线性方程组解PPT课件](https://img.taocdn.com/s3/m/63f8a94adf80d4d8d15abe23482fb4daa58d1da1.png)
VS
详细描述
高斯消元法的基本思想是将线性方程组转 化为上三角矩阵,然后通过回代过程求解 未知数。在消元过程中,通过行变换将方 程组的系数矩阵变为上三角矩阵,然后通 过回代过程求解未知数。该方法具有较高 的计算效率和精度,适用于大规模线性方 程组的求解。
迭代法
总结词
迭代法是一种求解线性方程组的方法,通过不断迭代逼近解的过程。
在物理领域的应用
力学系统
利用线性方程组描述多体系统的 运动状态,分析系统的平衡点和 稳定性,以及如何通过调整系统
参数实现稳定运动。
电路分析
通过线性方程组表示电路中的电流 和电压关系,分析电路的阻抗、导 纳和转移矩阵等参数,为电路设计 和优化提供依据。
波动方程
利用线性方程组描述波动现象,如 声波、光波和水波等,分析波的传 播规律和特性。
线性方程组解ppt课件
目录 CONTENT
• 线性方程组的基本概念 • 线性方程组的解法 • 线性方程组的解的性质 • 线性方程组的应用 • 线性方程组解的软件实现
01
线性方程组的基本概念
线性方程组的定义
线性方程组
由有限个线性方程组成的方程组,其中每个方程包含一个或多个 未知数。
线性方程
形如 ax + by + c = 0 的方程,其中 a, b, c 是常数,x 和 y 是未 知数。
详细描述
迭代法的基本思想是通过不断迭代逼近解的过程,最终得到线性方程组的近似解。迭代法有多种形式,如雅可比 迭代法、高斯-赛德尔迭代法和松弛迭代法等。这些方法通过迭代更新解的近似值,最终得到满足精度要求的解。 迭代法适用于大规模线性方程组的求解,但计算效率相对较低。
矩阵求解法
总结词
线性方程组直接解 优质课件
![线性方程组直接解 优质课件](https://img.taocdn.com/s3/m/e02af796fab069dc502201b5.png)
a11
a1i
D1 a11 0, Di ai1
0, i 1, 2, , n aii
推论:
a(1) 11
D1,
a(i) ii
Di
Di1 ,
i 2,
,n
23:35:57
Numerical Analysis
13
运算量
计算机中做乘除运算的时间远远超过做加减运算时间,
故我们只估计 乘除运算 的次数
a(2) 22
a(1) 1n
a(2) 2n
x1 x2
b(1) 1
b(2) 2
a(n) nn
xn
bn(n)
回代求解:
xn
b(n) n
a(n) nn
( ) n
xi
b(i) i
a(i) ij
x
j
a(i) ii
Numerical Analysis
17
列主元 Gauss 消去法
Gauss 消去法有效的条件是: 主元全不为零
例:解线性方程组
0 1
1 0
x1 x2
1 1
列主元 Gauss 消去法
在第 k 步消元时,在第 k 列的剩余部分选取主元
①
先选取列主元: |
20
全主元Gauss消去法
全主元高斯消去法:
第 k 步消元时,在剩余的 n-k 阶子矩阵中选取主元
①
先选取全主元:|
a(k) ik jk
|
=
计算方法PPT课件第三章 解线性代数方程组的直接法
![计算方法PPT课件第三章 解线性代数方程组的直接法](https://img.taocdn.com/s3/m/410ed800caaedd3383c4d3ee.png)
k 1,2,, n 1; i k 1, k 2,, n
计算
lik
a(k) ik
a(k) kk
对 j k 1, k 2,, n 1
计算
a (k 1) ij
a(k) ij
lik
a(k kj
)
2020年11月24日星期二
.
(2)回代过程 回代过程只需要二
重循环,即计算
xn
a(n) in1
x
2
a (1) 1n
xn
a
(1) 22
x
2
a (1) 2n
xn
a (1) 1n1
a (1) 2 n 1
a
(1) n1
x1
a (1) n2
x2
a (1) nn
xn
a (1) nn1
2020年11月24日星期二
.
5
(1)第k个导出方程 组
假设a(111)
0,将第1个方程乘以(
a(1) i1
a(1) 11
)加到第i个方
程(2 i n)得到第一个导出方 程组
a(111)x1
a(112)x2 a(11n)x n a(222)x2 a(22n)x n
a(1) 1n 1
a(2) 2n 1
a(n22)x 2
a(n2n)x n
a(2) nn 1
其中a(i2j)
a(1) ij
a(1) i1
2020年11月24日星期二
.
4
3.1.1 顺序消去法
1. 消元过程
考虑一般方程组(3.1),记系数矩阵A的元素
aij为ai(j1),右端向量b的元素bi 记为ai(n1) 1,于是方程 组(3.1)成为形式(将书中k=0改为k 1便于推导)
矿产
![矿产](https://img.taocdn.com/s3/m/829bb502a4e9856a561252d380eb6294dd88229b.png)
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
矿产
![矿产](https://img.taocdn.com/s3/m/829bb502a4e9856a561252d380eb6294dd88229b.png)
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a 11 a 12 ... a 1n
a 21 a 22 ... a 2 n ... ... ... ... a n1 a n 2 ... a nn
a 11 a 12 ... a 1n
a 21 a 22 ... a 2 n ... ... ... ... a n1 a n 2 ... a nn
9
AX=B上三角线性方程组表示为:
aa34
1 1
x52 x5 y5 y52 x5 y5 a5 1
可确定椭圆方程(小行星轨道方程)
5
对一般线性方程组: A X = b, 其中
a11 a12 A a21 a22
an1 an2
a1n
a2
n
b
b1
b
2
ann
b n
x1
X
x
2
xn
当系数矩阵A的行列式|A|≠0时,则方程组有唯一 解.
得 a1xk2 + a2xkyk + a3yk2 + a4xk + a5yk + 1 = 0
(k = 1, 2, 3, 4, 5)
4
即求解方程组
x12 x1y1 y12 x1 y1 a1 1
x22
x2 y2
y22
x2
y2
a2
1
xx3422
x3 y3 x4 y4
y32 y42
x3 x4
y3 y4
6
求解线性方程组: A X = b的一般过程:
输入: A,b
解方程组 算法
输出: X
直接法:经过有限步算术运算求得精确解 迭代法:从初始解出发,逐步求出近似解来逼近
在求解小型(未知数较少)方程组时,直接法很有效. 在求解大型方程组时,迭代法是最有效的方法.
7
4.2 高斯消去法(Gaussian Elimination )
4x1 – x2 + 2x3 + 3x4 =20 –2x2 + 7x3 - 4x4 =-7 6x3 + 5x4 = 4 3x4 = 6
x1 = (20 + x2 - 2x3 - 3x4 )/4=3 x2 = (-7-7x3 + 4x4 )/-2=-4
x3 = (4-5x4)/6=-1 x4 = 6/3=2
a11x1+ a12x2 +a13x3 +…+ a1n-1xn-1 + a1nxn =b1 a22x2 +a23x3 +…+ a2n-1xn-1 + a2nxn =b2 a33x3 +…+ a3n-1xn-1 + a3nxn =b3 …………. an-1n-1xn-1 + an-1nxn =bn-1 annxn =bn
4.2.1 顺序高斯消去法
1. 上三角线性方程组(Upper-triangular Linear System)
定义4.1 NN矩阵A=[aij]中的元素满足对所 有i>j,有aij=0,则称NN矩阵A=[aij]为上三角 矩阵。如果A中的元素满足对所有i<j,有aij=0, 则称NN矩阵A=[aij]为下三角矩阵。
an-1n-1xn-1 + an-1nxn =bn-1
annxn =bn
证明:x n
bn a nn
唯一
xn1
bn1an1nxn an1n1
n
bk akx j j
xk
jk1
ak k
,kn1,n2,..1.
用归纳法可证明x n-1,x n-2….x1是唯一的
11
例4.1:利用回代法求解线性方程组
的行列式
n
n
de A ) t|A (| a i(j 1 )ijM ij a i(j 1 )ijM ij
j 1
i 1
14
n
n
de A ) t|A (| a i( j 1 )i jM ij a i( j 1 )i jM ij
j 1
i 1
23 8
A= 3 -4 5 -1
4 7 -6 9
5 -1 -4 -1 i=1,det(A)=2 -6 9-3 7+89
第四章 线性方程组AX=B 的数值解法
(The Solution of Linear Systems AX=B)
主讲教师: 高小辉 E-mail:fzlcstar@
1
4.1 引言
求解 Axb
•许多实际问题可归结为线性(代数)方程组 机械设备、土建结构的受力分析; 经济计划 输电网络、管道系统的参数计算; 企业管理 •大型的方程组需要有效的数值解法。 •数值解法的稳定性和收敛性问题需要注意。
2
小行星轨道计算问题
3
天文学家要确定一小行星的轨道, 在轨道平面建立以太阳为原点的 直角坐标系.在坐标轴上取天文单位(地球到太 阳的平均距离),对小行星作5次观察, 测得坐标 数据
(x1,y1), (x2,y2), (x3,y3), (x4,y4), (x5,y5)
将数据代入椭圆的一般方程: a1x2 + a2xy + a3y2 + a4x + a5y + 1 = 0
6x3 + 5x4 = 4
a22=0
3x4 = 6
x2 = 4x1 -16
x3 = -1 x3 = -1
无穷解
x4 =1 a12 a13 … a1n
A
a21 a22 a23 … a2n
=
……
an1 an2 an3 … ann
第i行展开
则A的行列式为:
第j列展开
划掉A的第i 行和第j列后
-4 5 7 -6
=2(45-6)-3(-36+7)+8(24-35)=77
-4 -1 2 8 j=2,det(A)=-3 +5 +6
79 79
28 =77 -4 -1
15
3. 如果NN矩阵A=[aij]是上三角矩阵或下三
角矩阵,则:
n
deA t)(a1a 122 ..a.nn aii i1
2. 回代(Back Substitution)
设AX=B是上三角线性方程组,如果:
akk0, k=1,2..n,则方程组存在唯一解。
10
a11x1+ a12x2 +a13x3 +…+ a1n-1xn-1 + a1nxn =b1 a22x2 +a23x3 +…+ a2n-1xn-1 + a2nxn =b2 a33x3 +…+ a3n-1xn-1 + a3nxn =b3 ………….
例4.2:证明下列线性方程组无解
4x1 – x2 + 2x3 + 3x4 =20
70x32 -+4x4 =-7
a22=06x3 + 5x4 = 4 3x4 = 6
x3 = 1/7
x3 = -1 x4 = 2
12
例4.3:证明下列线性方程组有无穷解
4x1 – x2 + 2x3 + 3x4 =20
0x2 + 7x3 - 0x4 =-7