电工学(第七版)_秦曾煌_全套课件_16.集成运算放大器-1
电工学(第七版上册)秦曾煌主编ppt课件

A
B
(2)用正负极性: A +
U
B
(3)用双下标: A
UAB
B
参考方向
+U
–
+ 实际方向
U >0
参考方向
+U
–
实际方向 +
U <0
3.电位: 电路中为分析的方便,常在电路中选某
一点为参考点,任一点到参考点的电压称 为该点的电位。
用表示,单位与电压相同,也是V(伏)。
.
16
4.关联参考方向 i
+
1. 用箭头表示: 箭头的指向为电流的参考方向。
2.用双下标表示: 如iAB,电流的参考方向由A点指向B点。
i
A
B
.
11
2 .电压
两点之间的电位之差即是两点间的电压。从电场力做功概 念定义,电压就是将单位正电荷从电路中一点移至电路中另 一点电场力做功的大小,如图 所示。用数学式表示,即为
定义电压示意图
.
21
1.3 电功率和能量 一:电功率
单位时间做功大小称作功率,或者说做功的速率称为 功率。在电路问题中涉及的电功率即是电场力做功的速率, 以符号p(t)表示。功率的数学定义式可写为 :
p(t) dw(t) dt
式中dw为dt时间内电场力所做的功。功率的单位为瓦(W)。 1瓦功率就是每秒做功 1 焦耳,即1W = 1J/s 。
.
23
由 u dw 得 dw udq dq
再由 i dq 得 dt dq
dt
i
根据功率定义 p(t) = dw/dt, 得
P(t)=ui
根据功率的定义知道功率是能量对时间的导 数,反过来能量是功率对时间的积分。
电工学_第七版_下册_秦曾煌_高等教育出版社 第16章ppt课件

ui
R1 if i1
∞ -
+ +
uO
R2
【分析】:
i1 if i 0
i i1
if
i1
ui
u R1
ui u R1
u uo Rf
if
u
uo
R f
电工及电子技术A(2)
第16章 集成运算放大器
ui u uuo
R1
Rf
u 0u
Rui1
uo Rf
ui
uoR R1f ui AufR R1f
RF
【电路】:
【分析】: 叠加定理:
ui1
R1
ui2 R2
∞
-
+ +
uO
R3
ui1单 独ui作 20 用 uo , R R 1 f ui1 u i2 单独 u i1 作 0 u o 用 (1 R R 1 f, )R 2 R 3 R 3u i2 共 同 u o u o 作 u o R R 用 1 fu i1 ( 1 R R 1 f)R 2 R 3 R 3u i2
RF
∞
-
ui R2
+ +
uO
R3
u o u u R 2 R 3 R 3u i ( 2 R R 3 ,2 R //3 R R f)
电工及电子技术A(2)
第16章 集成运算放大器
二、加法运算
ui1 i1 R11 if RF
【电路】: 【分析】:
ui2 i2 R12
i1i2if i0
i i1i2if
若R f: R 1R 2R 3 u ou i2u i1 减法
电工及电子技术A(2)
第16章 集成运算放大器
电工学第七版上册秦曾煌

U1
U2 U'1
W'2 U'2
i3
W'1 V'2 W1 W2 V'1
V2
V1
i2
V2 W1
U2
U1 W2
V1
V1 W2 U1
U2
W1
V2
章目录 上一页 下一页 返回 退出
W1
V2
U1
N
• W2
•
U2 S
V1
S
V1 •
U2
W2 •
N
U1
V2
W1
30 V2
W1
U2 S
•
V1 •
W2 N
U1
U1
n N
cos2
O
1s
章目录 上一页 下一页 返回 退出
7.4 三相异步电动机转矩与机械特性
7. 4. 1 转矩公式 T Φ , I2 ,cos 2 T KTΦI2 cos 2
常数,与电 旋转磁场
转子电路的
机结构有关 每极磁通 转子电流 功率因数
由前面分析知:
I2 cos 2
sE20
R22
(
sX
R2
E20= 4.44 f 1N2
即E2= s E20
转子静止时 的感应电势
转子转动时 的感应电势
3. 转子感抗X 2
X2 2f2Lσ2 2 s f1Lσ2
当电动机起动瞬间, n = 0, s = 1, f2 = f1 , 则 X2 最大
X20= 2 f1L2
即X2= sX20
章目录 上一页 下一页 返回 退出
p = 1时
旋转磁场的转速 n0 60 50 3000 (转/分)
电工学第七版上册秦曾煌

20
)2
R22 (sX 20 )2
U1 4.44 f1 N1Φm
章目录 上一页 下一页 返回 退出
电磁转矩公式
T
K
R22
sR2 (sX 20 )2
U12
由公式可知
1.
T
与定子每相绕组电压
U
2 1
成正比。U
1
T
2. R2 的大小对 T 有影响。绕线型异步电动机可外
接电阻来改变转子电阻R2 ,从而改变转距。
f2
n0 n 60
p
n0 n n0
n0 p 60
s
f1
定子感应电势频率 f 1 转子感应电势频率 f 2 通常, f2 = 0.5 ~ 4.5Hz (f1 = 50Hz)
章目录 上一页 下一页 返回 退出
2. 转子感应电动势E 2
E2= 4.44 f 2N2 = 4.44s f 1N2
当电动机起动瞬间, n = 0, s = 1, f2 = f1 , 则 E2 最大
(2) Tst与 R2 有关, 适当使
R2 Tst 。对绕线式型
电机改变转子附加电阻
R´2 , 可使Tst =Tmax 。
n0 n
O
T
Tst
Tst体现了电动机带
载起动的能力。
若 Tst > T2电机能起 动,否则不能起动。
起动能力 st
Tst TN
一般st 1 ~ 1.2
章目录 上一页 下一页 返回 退出
例1:一台三相异步电动机,其额定转速
n = 975 r/min,电源频率 f1=50 Hz。试求电动机的 极对数和额定负载下的转差率。
解:根据异步电动机转子转速与旋转磁场同步转速
电工学(第七版)上册秦曾煌第一章ppt课件

.
章目录 上一页 下一页 返回 退出
例: 电路如图所示。
I = 0.28A I = – 0.28A
电动势为E =3V
+
方向由负极指向正极; E
3V
电压U的参考方向与实际方
向相同, U = 2.8V, 方向由
电动势 E
单位
A、 kA、 mA、 μA V、 kV、 mV、 μV
电 压 U V、 kV、 mV、 μV
实际正方向 正电荷移动的方向
电源驱动正电荷的 方向
(低 电 位 - 高 电 位 ) 电位降落的方向
(高 电 位 - 低 电 位 )
.
章目录 上一页 下一页 返回 退出
物理量正方向的表示方法
I
a
灯
U
R
池
泡 R0
导线
手电筒电路
干电池 导线 灯泡 手电筒的电路模型
电源或信号源的电压或电流称为激励,它推动电
路工作;由激励所产生的电压和电流称为响应。
电路分析是在已知电路结构和参数的条件下,讨
论激励与响应的关系。
.
章目录 上一页 下一页 返回 退出
1.3 电压和电流的参考方向
电流
电路中的物理量 电压
电功率和额定值的意义; 4. 会计算电路中各点的电位。
.
章目录 上一页 下一页 返回 退出
1.1 电路的作用与组成部分
电路是电流的通路,是为了某种需要由电工设备
或电路元件按一定方式组合而成。
1. 电路的作用 (1) 实现电能的传输、分配与转换
发电机
电工学第七版下册知识点和例题总结

电工学第七版下册知识点及相关习题摘要秦曾煌主编总体内容概况14章半导体二极管晶体管的基本知识15章基本放大电路(共发射极放大电路等)16章集成运算放大器基本运算17章电路中的反馈(主要是负反馈知识)18章直流稳压电源(整流电路,滤波器,稳压电路)以上为模拟电路,以下为数字电路20章门电路及其组合(数字进制编码器译码器)21章触发器知识点及对应例题和习题14章6页半导体特性,N型半导体和P型半导体8页PN结10页二极管特性例14.3.1 14页稳压二极管例14.4.3 14.23页双极型晶体管例14.5.1习题14.3.1----14.4.2 14.3.6 二极管及稳压二极管导电性14.5.1---14.5.6 14.5.9 双极型晶体管分析15章38--40页共发射极放大电路,及静态值确定例15.2.145页动态分析例15.3.1 49页输入信号图解分析52页分压式偏置放大电路例15.4.1 60页射极输出器性质71页共模抑制比习题15.2.1---15.2.4 15.2.5 15.2.7 共发射极放大电路15.3.1----15.7.1 15.3.5 15.4.3 偏置放大电路射极输出器差分电路16章95.96页运算放大器98.99页理想运放例16.1.1100--105页比例运算加减法运算例16.2.3112页电压比较器例16.3.1习题16.2.1---16.2.5 16.2.6 16.2.7 16.2.13 比例运算16.3.1,16.3.2电压比较器17章132页正反馈和负反馈的判别133---136页负反馈的四种类型141页表17.2.1 负反馈对输入电阻和输出电阻的影响146页RC振荡电路习题17.1.1---17.2.4 负反馈及类型判定17.2.5,17.3.1,17.2.7,17.2.9负反馈的计算18章158页单相半波整流电路例18.1.1 159页单相桥式整流电路167页RC滤波器例18.2.1习题18.1.1--18.1.4 整流电路18.2.1--18.3.3 滤波和稳压电路18.1.6 18.1.7 18.3.4 直流稳压电源综合20章222--224页数制的转化227--229页基本逻辑门电路图20.2.2 20.2.3 20.2.4 231--232页基本逻辑门电路组合图20.2.5 20.2.6 20.2.7 250.251页逻辑代数运算254页逻辑运算实例259页由逻辑图得状态表例20.6.1 20.6.2 262页由状态表得逻辑图例20.6.3 例20.6.4 269页编码器273页译码器习题20.1.1 20.1.2 进制转换20.2.1--20.5.3 门电路逻辑式20.5.4--20.6.6 门电路组合运算20.5.8--20.5.11 逻辑式和逻辑图的转化20.5.12---20.5.13 逻辑式化简21章298页RS触发器。
《运算放大器》课件

《运算放大器》PPT 课件目录CONTENTS•运算放大器概述•运算放大器的工作原理•运算放大器的应用•运算放大器的选择与使用•运算放大器的性能指标•运算放大器的设计实例01运算放大器概述0102运算放大器的定义它能够实现加、减、乘、除等基本算术运算,因此得名“运算放大器”。
运算放大器(简称运放)是一种具有高放大倍数的电路单元,其输出信号与输入信号之间存在一定的数学关系。
运算放大器的开环放大倍数极高,一般在10^4~10^6之间。
高放大倍数运算放大器的输入阻抗很大,使得它对信号源的影响很小。
输入阻抗高运算放大器的输出阻抗很小,使得它对负载的影响也很小。
输出阻抗低运算放大器对共模信号的抑制能力很强,能够有效地抑制温漂和干扰信号。
共模抑制比高运算放大器的基本特点可以分为通用型、高精度型、高速型、低功耗型等。
按性能指标分类按电路结构分类按工作原理分类可以分为分立元件型和集成电路型。
可以分为线性运放和开关电容型运放。
030201运算放大器的分类02运算放大器的工作原理1 2 3差分输入是指运算放大器使用两个输入信号的差值作为输入,以实现更高的精度和抑制噪声。
差分输入电路可以消除共模信号,只对差模信号进行放大,从而提高信号的信噪比。
差分输入电路的对称性和平衡性对放大器的性能有重要影响,因此需要精心设计和选择合适的元件。
差分输入放大倍数01放大倍数是运算放大器的重要参数,表示输出电压与输入电压的比值。
02运算放大器的放大倍数很高,通常在100dB以上,即放大10万倍以上。
03放大倍数可以通过外接电阻和电容进行调节,以满足不同的应用需求。
输出电压与输入电压的关系01输出电压与输入电压的关系是运算放大器的基本工作特性之一。
02当输入电压变化时,输出电压会相应地变化,以保持放大倍数恒定。
03输出电压与输入电压的关系是非线性的,但在一定的线性范围内,可以近似认为放大倍数是恒定的。
非线性范围是指输入电压超过一定范围时,输出电压与输入电压不再成正比关系,放大倍数发生变化。
电工学 秦曾煌第七 PPT课件

t
3-33
第33页/共57页
uC (t) E (U 0 E)e t RC U 0 e t RC (E Ee t RC )
暂态电路的叠加定理:
全响应=稳态分量+暂态分量 全响应=零输入响应+零状态响应
前者:由电路因果关系来看 后者:由电路的变化规律来看
3-34
第34页/共57页
R-L电路的全响应
一阶电路暂态过程的求解方法
1. 经典法: 用数学方法求解微分方程。
2. 三要素法: 求初始值、稳态值、时间常数。 ……………... 3-18 第18页/共57页
* 经典法
K
R
+
_E
C
例
i
一阶常系数 线性微分方程
uC
RC
duC dt
uC
E
由数学分析知此种微分方程的解由两部分组成:
u' 方程的特解 C
R
t=0
+
E
C
_
uC
E
uC
RC
duC dt
uC
E
uC (0 ) U0 0
uC
(t
)
E
(U0
E
t
)e
RC
t uC (t) E Ee t RC
3-32
第32页/共57页
R-C电路的全响应
K
R
t=0
+
E
C
_
uC
RC
duC dt
uC
E
uC
E
U0
uC (0 ) U 0
uC (t) E (U 0 E)e t RC (E Ee t RC ) U 0 e t RC
2024版电工学简明教程(秦曾煌)ppt课件

同步发电机励磁系统简介
励磁系统作用
为发电机提供直流励磁电流,建立发电机主 磁场,并通过调节励磁电流的大小和相位, 实现对发电机输出电压和无功功率的调节。
2024/1/29
励磁系统组成
主要包括励磁电源、励磁调节器、励磁变压 器及灭磁装置等部分。其中,励磁电源为发 电机提供直流电源;励磁调节器根据发电机 运行状态和电网要求,输出相应的控制信号; 励磁变压器将控制信号转换为适合发电机的 励磁电流;灭磁装置用于在发电机停机或故
4
教材作者秦曾煌简介
2024/1/29
5
课程目标与要求
2024/1/29
课程目标
通过本课程的学习,使学生掌握电路的基本理论、分析方法和 实验技能,具备分析和解决工程实际电路问题的能力,为后续 专业课程的学习和从事相关领域的科学研究或工程技术工作打 下坚实的基础。
课程要求
要求学生掌握电路的基本概念和基本定律,掌握电路的分析方 法和实验技能,了解电路理论的最新发展动态和前沿技术。同 时,要求学生具备独立思考、创新能力和团队协作精神。
2024/1/29
9
电源与负载
2024/1/29
电源
电源是将其他形式的能转换成电能 的装置。在电路中,电源提供电能, 驱动电荷流动。
负载
负载是指连接在电路中的电源两端 的电子元件。在电路中,负载消耗 电能,将电能转换为其他形式的能 量。
10
03
直流电路分析方法2024/1/2911电阻串联与并联
2024/1/29
特殊应用场合
除了上述应用外,变压器还被应用于一些特殊场合。例如,在铁路牵引供电系统中,为了减 小对通信线路的干扰,需要使用高阻抗变压器;在电子测量仪器中,为了减小测量误差和提 高测量精度,需要使用精密电压互感器等。
电工学 电子技术( 第七版 秦增煌)课件共16页

模拟电 子技术
数字电 子技术
被 测
传 感 器
模拟 信号 处理
模数 数字 转换 接口
微
控
对 象
伺服 机构
功率 放大
数模 转换
数字 接口
机
电机
计算机检测控制系统原理框图
绪 课程 的 目的、任务和学习方法
论
••• ••
《 试 理 按电 课 解 要工 ) 基 求学 本 参概 加》念实课、验程基是本必培理修养论课良和(好分学的析校实方规验法定素为质考 大 学 注学 用 重工 结 实科 合 践各 , 技专举能业一的的反培技三养术,基融础会课贯通
• 1892年马可尼和波波夫分别进行了无线电 通讯实验
• 1883年爱迪生发现电子的热效应及1904年 佛莱明制成了电子二极管
• 1906年德福雷斯发明了电子三极管 • 1948年美国贝尔实验室发明了晶体三极管 • 1958子技术 的 发展概况
论 • 现状:
• 容量大型化
绪
论•••••
•
工械机加束测力交电地第…、业工加、械量通子促二采…—电长汽广••••金生矿、工流加与与技进次—镀度车播农医军国属产、超 等 量工 控 通 术 了 工电、 、 与 、业 疗 事 防冷中冶动声、…工制讯的社业电速火电加电金机波照…艺发会革焊度车视工力、加度展生命机、、、、机轧…………工和和产对—械械电温飞电钢…………、色机—广力社的、炉度机影床动电度电泛的会锻冶、、及等力造子等加应提生金时轮电设和束…工用 高产、间船话备铸和…技极力电、……造离术大的蚀压……机子
•
器件小型化
•
设计自动化
电子计算机 的 发展概况 绪 论
• 1943年英国制造了一台电子计算机
电工学上册(第七版)PPT 高等教育出版社,秦曾煌主编

内阻 消耗 功率
负载大小和电阻大小是不 同概念!
问题
• 为什么当线路上并入许多电灯时,电灯会 变暗,电源会发热?
电源与负载的判别
1. 根据 U、I 的实际方向判别
电源:
U、I 实际方向相反,即电流从“+”端流出,
负载:
(发出功率);
U、I 实际方向相同,即电流从“+”端流入。
(吸收功率)。 2. 根据 U、I 的参考方向判别
0
I
1.5.1 电源有载工作
I
+ E
+
U
R
特征:
R0
① 电流的大小由负载决定。 I E ② 在电源有内阻时,I U 。 R0 + R
负载端电压 U = IR 或 U = E – IRo
③ 电源输出的功率由负载决定。
UI = EI – I²Ro P = PE – P
负载 取用 功率
电源 产生 功率
闭合面。在任何一个时刻,流过任何一个闭合面的电流 的代数和为0。
例:
IA
A
广义结点
IB
IC B
C
IA + IB + IC = 0 (1)
左图式(1)可以用基尔霍夫节 点电流定理来证明。
问题:如果这个闭合面 中包含电源,是不是还
满足Si=0?
1.6.2 基尔霍夫电压定律(KVL定律,应用于回路)
1.定律
电压 U 电动势E
高电位 低电位 (电位降低的方向)
低电位 高电位 (电位升高的方向)
kV 、V、mV、
μV
kV 、V、mV、
μV
2. 电路基本物理量的参考方向
(1) 参考方向
秦增煌电工学解析PPT课件

U i
1S 2 Uf
Au
F
U i
1S 2 Uf
Au
F
如果:Uf U i
Uo • 开关合在“1” 为无反馈放大
电路。
U o
U o AuU i
• 开关合在“2”
为有反馈放大电
自激振荡状态
第28页/共41页
U路o , AuU f
自激振荡的条件
由:U
U
o
f
AFuUUfo
U o AuFU o
自激振荡的条件
反馈电压 uf =Rio 取自输出电流 ——电流反馈
反馈信号与输入信号在输入端以电压的形式比较
——串联反馈
io
uf R
ui R
特点:输出电流 io 与负载电阻RL无关
——同相输入恒流源电路或电压-电流变换电路
第10页/共41页
17.2.1.4 并联电流负反馈
+ i1 R1
ui R
–
2
if RF
id
性A Af 1 AF
d Af
1
dA
Af 1 AF A
引入负反馈使放大倍数的稳定性提高。
放大倍数下降至1/(1+|AF|)倍,其稳定性提高1+|AF|倍。
若|AF| >>1,称为深度负反馈,此时:
Af
1 F
在深度负反馈的情况 下,闭环放大倍数仅与反 馈电路的参数有关。
第22页/共41页
3. 改善波形失真
X d 基本放大 X o
电路A
反馈 电路F
净输入信号 X d X i X f
若三者同相,则
Xd = Xi – Xf
可见 Xd < Xi ,即反馈信号起了削弱净输入信号的 作用,因而输出信号也减小(负反馈)。
2024版电工学(第七版上册)秦曾煌主编PPT课件

26
铁心线圈电路模型和分析方法
铁心线圈电路模型
将铁心线圈等效为一个电阻和一个电 感的串联电路,其中电阻表示线圈的 铜损,电感表示线圈的磁损。
铁心线圈电路的特点
由于铁心的存在,铁心线圈电路具有 非线性、饱和性和磁滞性等特点,使 得电路的分析和计算变得复杂。
2024/1/28
无功功率
比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功 率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场, 就要消耗无功功率。
视在功率
在电工技术中是指将单口网络端钮电压和电流有效值的乘积。只有单口网络完全由电阻混联 而成时,视在功率才等于平均功率,否则,视在功率总是大于平均功率(即有功功率),也 就是说,视在功率不是单口网络实际所消耗的功率。
4
第七版上册内容结构
第七版上册主要包括电路的基本概念和基本定律、电阻电路的分析、动态电路的时域分析、正弦稳态电 路的分析、含有耦合电感的电路分析、三相电路、非正弦周期电流电路和信号的频谱分析等内容。
本册内容在编排上注重系统性、连贯性和实用性,通过大量的例题和习题帮助学生巩固所学知识,提高分 析问题和解决问题的能力。
在并联电路中,总电阻的倒数等于 各电阻倒数之和,即 1/R=1/R1+1/R2+…+1/Rn,同时 电压相等,电流分配与电阻成反比。
13
电源等效变换方法
电压源等效变换
将电压源转换为等效的电流源,使得二者在外部电路中具有相同的电压和电流 表现。具体方法是通过计算电压源的内阻和开路电压,得到等效电流源的电流 和内阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大器, 并掌握其基本分析方法;
3. 理解用集成运算放大器组成的比例、加减、微分和
积分运算电路的工作原理,了解有源滤波器的工作
原理; 4. 理解电压比较器的工作原理和应用。
章目录 上一页 下一页 返回 退出
16.1 集成运算放大器的简单介绍
集成运算放大器是一种具有很高放大倍数的多 级直接耦合放大电路。是发展最早、应用最广泛的 一种模拟集成电路。 集成电路 是把整个电路的各个元件以及相互之 间的联接同时制造在一块半导体芯片上, 组成一个不 可分的整体。 集成电路特点:体积小、重量轻、功耗低、可 靠性高、价格低。 按集成度 小、中、大和超大规模 集成电路分类 按导电类型 双、单极性和两种兼容 按功能 数字和模拟
章目录 上一页 下一页 返回 退出
16.1.2 电路的简单说明
输入级 中间级 偏置 电路 输出级
运算放大器方框图
输入级:输入电阻高,能减小零点漂移和抑制干 扰信号,都采用带恒流源的差分放大器 。 中间级:要求电压放大倍数高。常采用带恒流源 的共发射极放大电路构成。 输出级:与负载相接,要求输出电阻低,带负载 能力强,一般由互补功率放大电路或射极输出器构成。 偏置电路: 一般由各种恒流源等电路组成
因要求静态时u+、u对地 电阻相同, 所以平衡电阻R2 = R1//RF
u u u0 R1 RF RF uo (1 )ui R1 uo RF Auf 1 ui R1
章目录 上一页 下一页 返回
退出
结论:
(1) Auf 为正值,即 uo与 ui 极性相同。因为 ui 加
16.1.3 主要参数
1. 最大输出电压 UOM 能使输出和输入保持不失真关系的最大输出电压。 2. 开环差模电压增益 Auo 运算放大器没有接反馈电路时的差模电压放大倍数。 Auo愈高,所构成的运算电路越稳定,运算精度也越高。 3. 输入失调电压 UIO 愈小愈好 4. 输入失调电流 IIO 5. 输入偏置电流 IIB 6. 共模输入电压范围 UICM 运算放大器所能承受的共模输入电压最大值。超出此 值,运算放大器的共模抑制性能下降,甚至造成器件损坏。
章目录 上一页 下一页 返回 退出
3. 理想运算放大器工作在线性区的特点
u– u+
i–
∞ – + i+ +
因为 uo = Auo(u+– u– )
电压传输特性 uo +Uo(sat)
线性区
O
uo
所以(1) 差模输入电压约等于 0 即 u+= u– ,称“虚短” (2) 输入电流约等于 0 即 i+= i– 0 ,称“虚断”
退出
当 R1= 且 RF = 0 时, uo = ui , Auf = 1, RF 称电压跟随器。
由运算放大器构成的电 R1 压跟随器输入电阻高、输 – + + uo + 出电阻低,其跟随性能比 + R2 – u射极输出器更好。 i – 例:
+15V 15k 15k 7.5k – + +
章目录 上一页 下一页 返回 退出
16.1.1 集成运算放大器的特点
1. 元器件参数的一致性和对称性好; 2. 电阻的阻值受到限制,大电阻常用三极管恒流 源代替,电位器需外接; 3. 电容的容量受到限制,电感不能集成,故大电 容、电感 和变压器均需外接; 4. 二极管多用三极管的发射结代替。
各类型号集成运算放大器
RF Ri1 (1 uo ) ui 2 R1 Ri 1 Ri 2
Ri 2 Ri 1 Ri 2 RF (1 )u R1 RF Ri 2 (1 ) ui 1 R1 Ri 1 Ri 2
u ? ui 1
RF Ri 2 Ri 1 uo (1 )( ui 1 ui 2 ) R1 Ri 1 Ri 2 Ri 1 Ri 2
章目录 上一页 下一页 返回
退出
例1: 电路如下图所示,已知 R1= 10 k ,RF = 50 k 。 求: 1. Auf 、R2 ; 2. 若 R1不变, 要求Auf为 – 10, 则RF 、 R2 应为多少?
RF
解:1. Auf = – RF R1
+
+ ui –
R1 R2
– +
章目录 上一页 下一页 返回
退出
2. 同相比例运算 (1) 电路组成
RF R1 + ui – R2 u– u+ – + +
+ uo –
因要求静态时u+、u对地 电阻相同, 所以平衡电阻R2=R1//RF
(2) 电压放大倍数 因虚断,所以u+ = ui R1 u uo R1 RF 因虚短,所以 u– = ui , 反相输入端不“虚地” RF uo (1 )ui R1
RF RF uo ( ui1 ui2 ) Ri1 Ri2
章目录 上一页 下一页 返回 退出
因虚短, u–= u+= 0
2. 同相加法运算电路
RF R1 ui1 ui2 Ri1 Ri2 – + +
方法1: 根据叠加原理 ui1单独作用(ui2=0)时,
+ uo –
u
uo
同理,ui2单独作用时
uO
–
= –50 10 = –5 R2 = R1 RF
2. 因 Auf = – RF / R1 = – RF 10 = –10 故得 RF = –Auf R1 = –(–10) 10 =100 k
R2 = 10 100 (10 +100) = 9. 1 k
=10 50 (10+50) = 8.3 k
RF Ri 2 Ri 1 uo (1 )( ui 1 ui 2 ) R1 Ri 1 Ri 2 Ri 1 Ri 2
第16章 集成运算放大器
16.1
16.2 16.3 16.4 16.5
集成运算放大器的简单介绍
运算放大器在信号运算方面的应用 运算放大器在信号处理方面的应用 运算放大器在波形产生方面的应用 使用运算放大器应注意的几个问题
跳转 章目录 上一页 下一页 返回
退出
第16章 集成运算放大器
本章要求
1. 了解集成运算放大器的基本组成及主要参数的意义; 2. 理解运算放大器的电压传输特性,理解理想运算放
章目录 上一页 下一页 返回 退出
信号传 输方向 反相 输入端
+UCC
实际运算放大器 开环电压放大倍数
u– u+
同相 输入端
– +
Auo +
+UCC 输出
uo
输出端
8 1
7 6 F007 2 3 U-
5 4
–UEE
(a)
U+ -UCC
(b)
集成运算放大器的管脚和符号 (a) 符号; (b)引脚
章目录 上一页 下一页 返回 退出
章目录 上一页 下一页 返回 退出
16.2 运算放大器在信号运算方面的运用
集成运算放大器与外部电阻、电容、半导体器 件等构成闭环电路后,能对各种模拟信号进行比例、 加法、减法、微分、积分、对数、反对数、乘法和 除法等运算。 运算放大器工作在线性区时,通常要引入深度 负反馈。所以,它的输出电压和输入电压的关系基 本决定于反馈电路和输入电路的结构和参数,而与 运算放大器本身的参数关系不大。改变输入电路和 反馈电路的结构形式,就可以实现不同的运算。
u +– u – –Uo(sat)
Auo越大,运算放大器 的线性范围越小,必 须加负反馈才能使其 工作于线性区。
章目录 上一页 下一页 返回 退出
4. 理想运算放大器工作在饱和区的特点 uo 电压传输特性 +Uo(sat)
饱和区
O
u +– u –
–Uo(sat)
(1) 输出只有两种可能, +Uo(sat) 或–Uo(sat) 当 u+> u– 时, uo = + Uo(sat) u+< u– 时, uo = – Uo(sat) 不存在 “虚短”现象 (2) i+= i– 0,仍存在“虚断”现象
– + +
u ui iL i1 R1 R1
负载电流的大小 与负载无关。
+ Ux –
+ R2
流过电流表的电流 Ux IG R1 (1) 能测量较小的电压; (2) 输入电阻高,对被测 电路影响小。
章目录 上一页 下一页 返回 退出
16.2.2 加法运算电路
1. 反相加法运算电路
章目录 上一页 下一页 返回 退出
16.2.1 比例运算
1.反相比例运算 (1) 电路组成 if R F
(2) 电压放大倍数
因虚断,i+= i– = 0 , 所以 i1 if u uo ui u if i1 i1 R 1 i– RF R1 – + + + 因虚短, 所以u–=u+= 0, ui u + o 称反相输入端“虚 R 2 i+ – – 地”— 反相输入的重要 以后如不加说明,输入、 特点 输出的另一端均为地()。 因要求静态时u+、 u– 对 地电阻相同, 所以平衡电阻 R2 = R1 // RF
章目录 上一页 下一页 返回 退出
16.1.4 理想运算放大器及其分析依据
在分析运算放大器的电路时,一般将它看成是理 想的运算放大器。理想化的主要条件:
1. 开环电压放大倍数
2. 开环输入电阻 3. 开环输出电阻 4. 共模抑制比