六年级下册数学鸽巢问题练习题演示教学
小学六年级数学下册第五单元《鸽巢问题》知识重点、配套练习及答案
01鸽巢问题(1)鸽巣原理先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法, 如下表无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”。
这个结论是在“任意放法”的情况下, 得出的一个“必然结果”。
类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。
如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信。
我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式。
②利用公式进行解题:物体个数÷鸽巣个数=商……余数至少个数=商+12、摸2个同色球计算方法。
①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。
物体数=颜色数×(至少数-1)+1②极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
③公式:两种颜色:2+1=3(个)三种颜色:3+1=4(个)四种颜色:4+1=5(个)02第五单元练习及答案一.填空题(每空4分,共56分)。
1.一只袋子里有许多规格相同但颜色不同的玻璃球,颜色有红黄绿三种,至少取出()个球才能保证有2个球的颜色相同。
2.抽屉里有4枝红铅笔和3枝蓝铅笔,如果闭着眼睛摸,一次必须拿()枝才能才能保证至少有1枝蓝色铅笔。
3.从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出()个苹果。
4.从()个抽屉中拿出25个苹果,才能保证一定能找出一个抽屉,从它当中至少拿出7个苹果。
5.一个联欢会有100人参加,每个人在这个会上至少有一个朋友。
那么这100人中至少有()个人的朋友数目相同。
6.一个口袋里有四种大小相同颜色不同的小球。
每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸()次。
7.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取()颗。
《鸽巢问题(例1、例2)》(共27张ppt)-人教版六年级数学下册
今天你有什么收获呢?
谢 谢!
分一分:
0
3 3
0
2 3
1
活动二:把4枝笔放进3个笔筒里,不管怎 么放,总有一个笔筒里至少放进2枝笔, 这是为什么?
要求:①小组合作摆学具;②把每一种情 况用数的分解式记录下来。
活动二:把4枝笔放进3个笔筒里,不管怎 么放,总有一个笔筒里至少放进2枝笔, 这是为什么?
活动二:把4枝笔放进3个笔筒里,不管怎 么放,总有一个笔筒里至少放进2枝笔, 这是为什么?
一定有
“至少”是什么意思?
最少,不能少于2本或不能少于3枝。
把4枝笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少放进2枝笔. 把5枝笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少放进2枝笔.
把6枝笔放进5个笔筒里,不管怎么放,总有一个笔筒里至少放进2枝笔.
把10枝笔放进9个笔筒里,不管怎么放,总有一个笔筒里至少放进2枝笔.
把100 枝笔放进99个笔筒里,不管怎么放,总有一个笔筒里至少放进2枝笔.
待分物体 抽屉
我的发 现
只要待分物体的数量比抽屉的数量多1,总有一个抽屉 里至少放进2个物体。Fra bibliotek算一算:
任意13人中,总有至少几个人 的属相相同,想一想,为什么?
平均分
13÷12=1……1
1+1=2
因为假设13个人中有12个人的 生肖各不同,还剩1个人,这个 人不管生肖是什么,总有一种 生肖至少有2个人是一样的。
四种花色
抽牌
鸽巢问题
学习目标:
一、了解鸽巢问题的特点, 理解鸽巢问题的含义; 二、会用不同的方法证明 鸽巢问题的结论; 三、能用鸽巢问题解决实 际问题。
二、探究新知
小学六年级数学下册《鸽巢问题》例1
假设法
还可以这样想: 先放3支,每个笔筒中 放1支铅笔。
剩下的1支放入任意一个 笔筒中,这个笔筒中就 有两支铅笔了。所以, 总有一个笔筒中至少有2 支铅笔。
第一种方法(枚举法):
优 点: 直观,列出所有情况,能很清楚地 进行解释;
局限性: 一一列举,浪费了宝贵的时间,效 率低下。数字大了,操作起来麻烦。
1+1=2(人)
4、5只鸽子飞回3个鸽巢,至少有( 2 )只鸽 子要飞进同一个鸽巢。为什么?
如果每个鸽巢飞进1只,最多飞了3只.剩下 的2只还要分别飞进两个鸽巢里.所以至少有2 只要飞进同一个鸽巢里。
剩下的2只鸽子怎么飞才能保证“至少”?
一副扑克牌(除去大小王)52张中有四种花色, 从中随意抽5张牌,无论怎么抽,为什么至少有 两张牌是同一花数据的限制,能够更简洁、 迅速地解决问题,效率高。
平均分可以使每个笔筒中的笔尽可能的少。
平均分
先把3支平均分到3个笔筒里,每个笔筒放1支,剩 下的1支不管放到哪个笔筒里,总有一个笔筒里至 少有2支铅笔。
你能用算式表示平均分的过程吗?
4÷3=1(支)……1(支)
说一说
6支笔放入5个笔筒里,总有一个笔筒里至少放(
)支2 笔?
10支笔放进9个笔筒里,总有一个笔筒里至少放
(2 )支笔?
100支笔放进99个笔筒里,总有一个笔筒里至少
放( 2 )支笔?
发现了什么?
发现:只要笔比笔筒的数量多1,总有一个笔筒里 至少放进2支笔。 只要物体数比抽屉数多1,总有一个抽屉里至少 放进2个物体。
把(n+1)个物体放入n个抽屉中,则总有一个 抽屉中至少放2个物体。
• 8只鸽子飞回7个鸽巢 • 10支铅笔放进9个抽屉
5.1 鸽巢问题课件(共26张PPT)六年级下册数学人教版
一、游戏引入
我给大家表演一个“魔 术”。一副牌,取出假 牌,大王和小王,还剩 52张,请一位同学上来 随意抽出五张,我知道 至少有2张牌是同花色 的。相信吗?
二、探究新知
把3支铅笔放进2个笔筒中,有哪 些放法呢?
可把3支铅笔都放在左边的笔筒里。
可以在左边笔筒里放 2 支,右边笔 筒里放 1支。
“不管怎么放,总有一个笔筒里至少 有2支铅笔”这样的说法对吗?
“总有”和 “至少”是 什么意思?
总有:一定有。 至少:最少。
如果把4支铅笔放进3个笔筒里,会有 怎样的结论呢?
4支笔放进3个笔筒
学习要求: 1、分一分,看看有哪些不同的放法 2、画一画,借助“画图”或“数的分解”的方法把各
种情况表示出来。 3、找一找,每种放法中笔的支数最多的那一笔筒用笔
把25个小朋友看成25抽屉,把60件玩具放进25个 抽屉里,60÷25=2(件)……10(件),2+1=3 (件)总有一个抽屉中至少放了3件玩具,因此会 有小朋友得到3件或3件以上的玩具。
Байду номын сангаас
至少数=商+1
五、课后作业 1.完成同步练习册第51页的习题。
随意找 13 位老师,他们中至少有 2 位老师 的属相相同。为什么?
13÷12=1(位)……1 (位) 1+1=2(位)
大风车幼儿园大班有25个小朋友,班里有60件玩具。若把这 些玩具全部分给班里的小朋友,则会有小朋友得到3件或3件 以上的玩具吗?
5张扑克相当于5个物体,4种花色相当于4个抽屉
5÷4=1(张) …… 1(张) 1 + 1 = 2(张)
游戏里面也有鸽巢原理
5个人坐4把椅子,总有一把椅子上至少坐2人。为 什么?
第五单元数学广角《鸽巢问题(1)》示范公开课教学课件【人教版数学六年级下册】
假设法
把 m 支笔任意放进 n 个笔筒中(m > n ,m 和 n 是非0自然数),若m ÷ n = 1…… a,那么一定有一个笔筒中至少放进了 2 支笔。
根据假设这样列式: ÷ 5 = 1(支)…… 1(支) 1 + 1 = 2(支)
鸽巢问题(1)
第五单元 数学广角
“至少” 是什么意思?
输入标题
变魔术
一副牌,取出大、小王。
这5张牌至少有2张牌是同一花色的。
请一位同学随意抽5张。
游戏导入,激发兴趣
“至少” 表示一定有2张是同色的。
可能有2张是同色的,也可能有3张是同色的,也可能有4张是同色的,也可能5张都是同色的。
“至少” 是什么意思?
练习
输入标题
1. 5 只鸽子飞进了 3 个鸽笼,总有一个鸽笼至少飞进了 2 只鸽子。为什么?
练习
答:假设每个笼子都先飞进1只鸽子,最多飞进3只,剩下的2只可以一起飞进1个笼子,也可以分开飞进2个笼子。那么总有一个鸽笼至少飞进了 2 只鸽子。
输入标题
把 m 只鸽子任意放进 n 个鸽巢中,(m > n ,m 和 n 是非0自然数),若m ÷ n = 1…… a,那么一定有一个鸽巢中至少放进了 2 只鸽子。
鸽巢问题(1)
练习
输入标题
2.随意找 13 位老师,他们中至少有 2 个人的属相相同。为什么?
答:假设 12 位老师分别属于 12 生肖属相,那么第 13 位老师无论属于哪一属相,其中至少有 2 位老师属相相同。
练习
一级标题
输入标题
你有什么收获?
鸽巢问题(1)
人教版新插图小学六年级数学下册第5单元《数学广角-鸽巢问题》课件
答:至少取5个球,可以保证取到两个颜色相同的球。
(教材P69 做一做T2)
3.给一个正方体木块的6个面分别涂上蓝、黄两种颜色。不论怎么涂至少有3个面涂的颜色相同。为什么?
把两种颜色看成两个抽屉,正方体的6个面看成分放的物体。 6÷2=3(个) 至少有3个面涂的颜色相同。
至少要摸出3个球
只要摸出的球数比它们的颜色种数多1,就能保证有两个球同色。
盒子里有同样大小的红、黄、蓝球各6个,要想摸 出的球一定有2个同色的球,至少要摸出几个球?
3+1=4(个)
答:至少要摸出4个球。
拓展思维
巩固运用
1.向东小学六年级共有367名学生,其中六(2)班有 37名学生。
2.给一个正方体木块的6个面分别涂上蓝、黄两种颜色。不论怎么涂至少有3个面涂的颜色相同。为什么?
把两种颜色看成两个抽屉,正方体的6个面看成分放的物体。 6÷2=3(个) 至少有3个面涂的颜色相同。
3.把红、蓝、黄3种颜色的筷子各3根混在一起。如果让你闭上眼睛,从中最少拿出几根才能保证一定有2根同色的筷子?如果要保证有2双不同色的筷子(指一双筷子为其中一种颜色,另一双筷子为另一种颜色。)呢?
答:每次最少拿出4根才能保证一定有2根同色的筷子。每次最少拿6根才能保证一定有2双不同色的筷子。
4.任意给出3个不同的自然数,其中一定有2个数的和是偶数,请说明理由。
任意给出3个不同的自然数,共有4种情况。(1)1个奇数,2个偶数,偶数+偶数=偶数;(2)2个奇数,1个偶数,奇数+奇数=偶数;(3)3个奇数,奇数+奇数=偶数;(4)3个偶数,偶数+偶数=偶数。所以任意给出3个不同的自然数,其中一定有2个数的和是偶数。
六年级下册数学课件鸽巢问题人教版(共17页)PPT
二、选择 1、5个人逛商店共花了301元钱,每人花的钱 数都是整数,其中至少有一人花的钱数不低
于( )元。 A.60 B.61 C.62 D.59
2、3种商品的总价是13元,每商品的价格都 是整数,至少有一种商品的价格不低于( )
元。 A.3 B.4 C.5 D.无法确定
•
1.通过画上学路线图和玩交通安全棋 ,培养 学生的 自我保 护意识 和珍爱 生命的 情感。
•
7、月球运行到太阳和地球中间,地球 处于月 影中时 ,因月 球挡住 了太阳 照射到 地球上 的光形 成了日 食。而 月食则 是月球 运行到 地球的 影子中 ,地球 挡住了 太阳射 向月球 的光。
•
8.关心科技新产品、新事物,意识到 科学技 术会给 人类与 社会发 展带来 好处。
•
9人体的观察活动中,将想象与实际的 观察区 分开, 保证观 察活动 的真实 性。
六年级数学下册
新疆吉木萨尔县第三小学
把4枝铅笔放进3个笔筒,无论怎么放,总有一个
笔筒里至少放进2枝铅笔。怎么放?有几种不同
的放法?
合作要求: 1、四人小组互相摆一摆、说一说。 2、把摆的过程用喜欢的方式记录下来
把4枝笔放进3个笔筒里,有几种放法? 请同学们摆一摆,再把你的想法在小组 内交流。
把4枝铅笔放进3个笔筒,无论怎么放,
•
5.通过观察整理、分析推理、模拟实 验等方 法研究 日食的 成因和 变化过 程,以 及研究 、发现 日食过 程中的 更多信 息。并 能根据 实验发 现,用 模型或 图示解 释各类 日食的 成因和 更多的 现象。
•
6.能够有依据地进行推理与联想,大 胆表达 对日食 现象的 更多看 法。进 而产生 继续研 究关于 日食和 月食更 多现象 的兴趣 。
人教版数学六年级下册第五单元《鸽巢原理》-含解析-(知识精讲+典型例题+同步练习+进门考)
人教版数学六年级下册第第五单元《鸽巢原理》知识点1:鸽巢原理知识讲解抢凳子游戏,5个人抢4个椅子要求每个人都坐到椅子上思考:“至少有两个人”用数学语言描述是:≥2如何理解“一定有一个凳子至少有两个人”?最少有一个凳子上有大于或等于2个人就可以考虑最大符合条件的范围,有一个凳子上的人数≥2就可以,所以只需要看(A)的凳子A.人数最多B.人数最少让我们来看一下,每一种情况吧!提问:哪种情况下的最大值是最小的?定义:上述现象在数学里叫做抽屉原理(又叫鸽巢原理)在多个抽屉里放入一些物品,物品个数大于抽屉个数时,一定有一个抽屉至少有2个物品总结:通过分析我们知道,遇到“一定有......至小......”时用到平均思想,尽可能平均分配来求解相关问题思考:如果把7个苹果放进三个抽屉里一定有一个抽屉里至少有3个苹果尽可能平均分:多余的一个苹果随便放进一个抽屉,所以一定有一个抽屉里至少有2+1=3(个)苹果.总结:把m个苹果放进n个抽屉(m大于n),有两种可能: (1)如果m÷n没有余数,那么一定有一个抽屉至少有“m÷n”个苹果:(2)如果m÷n有余数,那么一定有一个抽屉至少有“m÷n的商再加1”个苹果.思考:一个班有30人,那么这个班一定能找到至少多少人同一个月的生日.题目中一共有多少个“抽屉”?每一个月可以看成一个抽屉,年有12个月,所以有12个抽屉; 根据题意列出式子 30÷12=2(人).....6(人)根据式子结果补充题目中的描述.一定有至少2+1=3(人)同一个月的生日.总结:解决抽屉原理问题时,找准抽屉个数是关键思考:把一些苹果分给8个人,要保证有一个人至少拿了3个苹果,那么至少需要多少个苹果?步骤:题中有几个“抽屉” 8个;每一个抽屉先放几个? (3-1)个;列式计算结果 8x(3-1)+1=17(个)总结:抽屉原理逆运算时,要保证有一个人至少拿了a个用总人数x(a-1)+1.小练习把11个人分成三个小组,请你说明:一定有一个小组至少有4个人.答案:根据抽屉原理,11+3=3(人)....2(人),无论怎么分一定有一个小组至少有3+1=4(人)笔记部分:抽屉原理把m个苹果放进n个抽屉(m大于n),有两种可能:(1)如果 m÷n没有余数,那么一定有一个抽屉至少有“m÷n”个苹果;(2)如果m÷n有余数,那么一定有一个抽屉至少有“ m÷n的商再加1”个苹果.例题1简答(1)把4个相同的小球,放进3个相同的抽屉里有几种放法?(2)把5个相同的小球,放进3个相同的抽屉里有几种放法?答案 (1)4种; (2)5种练习1填空(1)如果把96个桃子放入8个抽屉中,那么一定有抽屉至少放了()个桃子(2)如果把97片培根放在8个盘子中,那么一定有盘子至少放了()片培根(3)如果把98只羊放在8个笼子里,那么一定有笼子至少放()只羊.答案 (1)12; (2)13;(3)13例题2简答(1)任意13个人中至少有几个人的生日在同一月份?(2)任意25个人中至少有几个人的生日在同一月份?答案 (1)2人;(2)3人练习2(1)中国奥运代表团的32名运动员到超市买饮料,已知超市有可乐、雪碧、芬达3种饮料,每人买一种饮料,那么至少多少人买的饮料相同?(2)随意找121位老师,他们中至少多少人属相相同?答案 (1)11人;(2)11人例题3:某小学六个年级共有2017名学生,那么至少有多少名学生在同一个年级?(答案337名)练习3:某小学六个年级共有231名学生,那么至少有多少名学生在同一年级?(答案 39名)知识点2:最不利原则知识讲解思考:将52张扑克牌全部合上,任意摸两张一定是两个红桃吗?如果,摸出的牌中一定有两张是同一花色(两个红桃或者两个黑桃或者两个梅花或者两个方块),至少要摸几张牌?思考:保证至少有两张同一花色,摸3张牌可以吗?4张?5张?分析:这种分析方法是抽屉原理的逆向思维,又叫“最不利原则”考虑最差的情况,要摸出相同花色,先把所有不同花色摸一遍,需要摸4_张牌,再摸1张牌就有两张相同花色.思考:一个袋子里有4个白球,5个红球,6个黑球,至少要摸出几个球才能保证有相同颜色的球?最不利的情况是怎样?摸到的都是颜色不同的。
六年级数学下册课件-5 鸽巢问题-人教版(共16张PPT)
课题:鸽巢问题
难点名称:理解鸽巢问题的规律
目录
CONTENTS
导入知识讲解课堂练习 Nhomakorabea小节
导入
导入
根据实际需要新增页
料事如神
3
知识讲解
小红在整理自己的学习用品时有这样的发现,如果 把4枝笔放在3个笔筒里,不管怎么放,总有一个笔 筒里至少有两枝铅笔。
(4,0,0)
(3,1,0)
我们把n+1个物体放进n个抽屉 里(n是非 零的自然数),总有一个抽屉里至少 有2个物 体。其实在我们的生活中还存在很多可以用鸽 巢原理去解决的问题, 最后老师还给大家推荐一 个有关鸽巢原理的二桃杀三士的故事,我们课 下可以去看看,期待同学们下次更精彩的表现! 同学们再见!
知识讲解
n+1
n
物体数 比 抽屉数
多1
把n+1个物体放进n个抽屉 里,总有一个抽屉里至少 有2个物体。
抽屉原理是组合数学中的一个重要原理,它最早由 德国数学家狄利克雷提出并运用于解决数论中的问题, 所以该原理又称“狄利克雷原理”。这个原理有两个经 典案例,一个是把10个苹果放进9个抽屉里,总有一个 抽屉至少放了2个苹果,所以这个原理又称为“抽屉原 理”;另一个是6只鸽子飞进5个鸽巢,总有一个鸽巢至 少飞进2只鸽子,所以也称为“鸽巢原理”。
(2,1,1)
(2,2,0)
总有一个笔筒里至少放2枝笔。
知识讲解
枚举法
知识讲解
怎样才能最快地知道这个放得最多的笔筒里至少有2枝笔?
平均分
先平均分,每个笔筒里都放一枝,剩下的一枝不管怎么放,总有一个文具盒里至少 放进2枝铅笔。
知识讲解
假设法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级下册数学鸽巢问题练习题六年级下册数学鸽巢问题练习题第1节鸽巢问题测试题一、填空1.把一些苹果平均放在3个抽屉里,总有一个抽屉至少放入几个呢?请完成下表:2.研究发现,在抽屉原理的问题中,“抽屉”至少放入物体数的求法是用物体数除以数,当除得的商没有余数时,至少放入的物体数就等于;当除得的商有余数时,至少放入的物体数就等于。
3.箱子中有5个红球,4个白球,至少要取出个才能保证两种颜色的球都有,至少要取个才能保证有2个白球。
4.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有个小朋友才能保证两人拿的水果是相同的。
5.将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子有两种颜色,至少应取出顶帽子;要保证三种颜色都有,则至少应取出顶;要保证取出的帽子中至少有两顶是同色的,则至少应取出顶。
二、选择1.把25枚棋子放入下图的三角形内,那么一定有一个小三角形中至少放入枚。
第 1 页共页A. B.C.D.92.某班有男生25人,女生18人,下面说法正确的是。
A.至少有2名男生是在同一个月出生的B.至少有2名女生是在同一个月出生的C.全班至少有5个人是在同一个月出生的D.以上选项都有误3.某班48名同学投票选一名班长,候选人是小华、小红和小明三人,计票一段时间后的统计结果如下:规定得票最多的人当选,那么后面的计票中小华至少还要得票才能当选?A. B.C. D.94.学校有若干个足球、篮球和排球,体育老师让二班52名同学到体育器材室拿球,每人最多拿2个,那么至少有名同学拿球的情况完全相同。
A.8B.C.D.25.如图,在小方格里最多放入一个“☆”,要想使得同一行、同一列或对角线上的三个小方格都不同时出现三个“☆”,那么在这九个小方格里最多能放入个“☆”。
A.4B.C.D.7第页共页一、填空1.考查目的:简单的抽屉原理。
答案:解析:解决此类抽屉原理问题的一般思路为:放苹果最多的抽屉至少放进的个数=苹果个数除以抽屉数所得的商+1。
2. 考查目的:解决简单抽屉原理问题的一般思路。
答案:抽屉;商;商+1。
解析:重点考查学生的归纳概括能力,加深对已学知识的理解。
根据简单的抽屉原理:把多于个的物体放到个抽屉中,至少有一个抽屉里的东西的个数不少于2;把多于不少于个物体放到个抽屉中,至少有一个抽屉里有)个物体。
5. 考查目的:综合运用抽屉原理的知识解决问题。
答案:6;11;4。
解析:解答此题的关键是从极端的情况进行分析。
假设取出的前5顶都是同一种颜色的帽子,再取一顶就一定有两种颜色;假设前10次取出的是前两种颜色的帽子,再取出一顶,就能保证三种颜色都有;把三种颜色看作三个抽屉,保证取出的帽子中至少有两个是同色的,至少应取4顶。
二、选择1. 考查目的:简单的抽屉原理。
答案:B。
解析:把大三角形中包含的4个小三角形看作4个抽屉,把25枚棋子放入其中,那么每个“抽屉”放入的物体数25÷4=6??1,所以不管怎么放,总有一个小三角形里至少放入6+1=7棋子。
2. 考查目的:用抽屉原理的知识解决实际问题。
答案:B。
解析:一年有12个月,因为25÷12=2??1,2+1=3,所以至少有3名男生是在同一个月出生的;18÷12=1??6,1+1=2,至少有2名女生是在同一个月出生的;43÷12=3??7,3+1=4,全班至少有4个人是在同一个月出生的。
3.考查目的:抽屉原理的实际应用。
答案:C。
解析:根据题意一共48票,已经计了30票,还有48-30=18票没计。
现在小华得了13票,小红得了10票,只要小华得到的票数比小红多1票就能当选。
÷2=7??1,7+1=8,所以小华至少还要得8票才能当选。
4. 考查目的:抽屉原理知识的综合应用。
答案:B。
第页共页解析:解决此题的关键是先求出抽屉数。
根据“每人最多拿2个”共有10种不同的拿法,将其看作10个抽屉,则有52÷10=5??2,5+1=6。
即至少有6名同学拿球的情况是完全相同的。
5. 考查目的:抽屉原理的变式练习。
答案:C。
解析:因为同一行、同一列或对角线上的三个小方格都不同时出现三个“☆”,且使小方格里的“☆”最多,所以每行每列都有2个“☆”,同时保证正方形的对角线上不同时出现三个“☆”即可。
第页共页人教版六年级数学下册第五单元《数学广角》测试卷一、填一填。
1.一个小组13个人,其中至少有人是同一个月出生的。
2.6只鸽子飞回5个鸽舍,至少有只鸽子要飞进同一个鸽舍里。
4.盒子里有同样大小的红球、黄球各3个,要想摸出的球一定有2个是同色的,最少要摸出个球。
5.49名中年妇女在广场上载歌载舞,她们中至少有名妇女是同一个月出生6.“世界水日”是每年的月日。
7.盒子里有红,黑,黄,蓝四种颜色的球各5个,想摸出的球一定有2个是同色的,最少要摸出个球。
摸出的球一定有2个是不同色的,最少要摸出个球。
9.一个由6个边长为2厘米的正方形组成的长方形,这个图形的周长是厘米。
10.一个长方形的周长是l8米,如果它的长和宽都是整数米,那么这个长方形的面积多少种可能值?请一一列举。
二、选一选。
1.9只白鸽飞回4个鸽笼,至少有一个鸽笼里要飞进白鸽。
A.2只 B.3只 C.4只 D.5只2.1987年某地一年新生婴儿有368名,他们中至少有是同一天出生的。
A.2名 B.3名 C.4名 D.10名以上3.10个孩子分进4个班,则至少有一个班分到的学生人数不少于个。
A.1 B. C. D.44.7只兔子要装进6个笼子,至少有只兔子要装进同一个笼子里。
A. B. C.4D.55.张阿姨给孩子买衣服,有红、黄、白三种颜色,但结果总是至少有两个孩子的颜色一样,她至少有孩子。
A. B. C.4D.66.李叔叔要给房间的四面墙壁涂上不同的颜色,但结果是至少有两面的颜色是一致的,颜料的颜色种数是种。
A. B. C.4D.5.一个盒子里装有黄、白乒乓球各5个,要想使取出的乒乓球中一定有两个黄乒乓球,则至少应取出个。
A. B. C.6D.78.7只兔子要装进6个笼子,至少有只兔子要装进同一个笼子里。
A. B. C.4D.5三、聪明的小法官1.5只小鸡装入4个笼子,至少有一个笼子放小鸡3只。
2.任意给出3个不同的自然数,其中一定有2个数的和是偶数。
3.把7本书分别放进3个抽屉里,至少有一个抽屉放4本。
4.六班有学生50人,至少有5个人是同一月出生的。
5.10个保温瓶中有2个是次品,要保证取出的瓶中至少有一个是次品,则至少应取出3个。
四、解决问题。
1.从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,那么至少有3张是同花色你认为这个说法对吗?你的理由是什么?2.如果任意给出3个不同的自然数,其中一定有2个数的和是偶数,为什么会这样?3.有红、黄、蓝、绿、白五种颜色的球各5个,至少取多少个球,可以保证有两个颜色相同的球?六、综合应用。
2、把9本书放进2个抽屉里,总有一个抽屉至少放进5本书,为什么?3、希望小学有367人,请问有没有两个学生的生日是同一天?为什么?4、一个盒子里装有黑白两种颜色的跳棋各10枚,从中最少摸出几枚才能保证有2枚颜色相同?从中至少摸出几枚,才能保证有3枚颜色相同?六年级数学鸽巢问题测试题一、判断题。
1. 因为11÷3=3……2,所以把11本书放进3个抽屉中,总有一个抽屉至少放5本书。
二、选择题。
1. 小东玩掷股子游戏,要保证掷出的股子数至少有两次是相同的,小东至少应掷次。
A. B. C. D.2. 李阿姨给幼儿园的孩子买衣服,有红、黄、白三种颜色,结果总是有两个孩子的衣服颜色一样,她至少给个孩子买衣服。
A.B. C. D.三、问答题。
1. 一个幼儿园有40名小朋友。
现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友可以得到4件或4件以上的玩具?为什么?2. 金星小学六年级有30名学生是2月份出生的,所以六年级至少有2名学生的生日是在2月份的同一天,为什么?四、解决问题。
1. 一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。
一次至少取出多少块木块,才能保证其中至少有3块木块的号码相同?2. 篮子里有苹果、梨、橘子,现有35个小朋友,如果每个小朋友都从中任意拿2个水果,那么至少有多少个小朋友拿的水果是相同的?3. 六年级有100名学生,他们分别订阅了甲、乙、丙三种杂志中的一种、两种或三种。
至少有多少名学生订阅的杂志种类相同?4. 学校图书馆有科普读物、故事书、连环画三种图书。
每个学生从中任意借阅2本,那么至少要几名学生借阅才能保证其中有2名学生所借阅的2本图书是完全一样的?。