基于单片机的LED流水灯设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

交通与汽车工程学院
课程设计说明书
课程名称: 微机原理及应用课程设计
课程代码: 8234570 题目: 基于单片机的LED流水灯设计
年级/专业/班: 学生姓名: 学号: 开始时间: 2012 年 07 月 02 日完成时间: 2012 年 07 月 06 日课程设计成绩:
学习态度及平时成绩(30)技术水平与实际
能力(20)
创新(5)
说明书(计算书、图纸、分析
报告)撰写质量(45)
总分
(100)
指导教师签名:年月日
目录
摘要 (2)
1 引言 (3)
1.1 设计目的 (3)
1.2 设计任务 (3)
1.3 设计方法 (3)
2 设计内容和所用器件 (4)
2.1 基本功能 (4)
2.2 元件清单 (4)
3 系统硬件设计 (5)
3.1 AT89C52 (5)
3.2 单片机时钟电路 (11)
3.3 单片机复位电路 (11)
4系统软件设计 (12)
4.1 proteus软件环境介绍 (12)
4.2 protel软件环境介绍 (12)
4.3程序流程图 (13)
4.4 LED显示原理 (14)
5 系统的调试过程 (16)
5.1 原理图与ERC检查 (16)
5.2 PCB板图 (17)
6 仿真结果图 (18)
7系统调试存在的问题 (19)
8 总结 (20)
9 参考文献 (21)
10 附录 (22)
摘要
当今社会,随着人们物质生活的不断提高,电子产品已经走进了家家户户,无论是生活或学习,还是娱乐和消遣几乎样样都离不开电子产品,大型复杂的计算能力是人脑所不能胜任的,而且比较容易出错。

计算器作为一种快速通用的计算工具方便了用户的使用。

计算器可谓是我们最亲密的电子伙伴之一。

本设计着重在于分析计算器软件和开发过程中的环节和步骤,并从实践经验出发对计算器设计做了详细的分析和研究。

单片机由于其微小的体积和极低的成本,广泛的应用于家用电器、工业控制等领域中。

在工业生产中。

单片微型计算机是微型计算机称单片机,特别适用于控制领域,故又称为微控制器。

本系统是基于MCS-51系列单片机为核心的LED流水灯设计,实现8个LED灯变化方向和速度的可调。

关键词:单片机流水灯
1 引言
1.1 设计目的
通过本次课题设计,应用《单片机原理及应用》等所学相关知识及查阅资料,完成简易LED流水灯系统设计,以达到理论与实践更好的结合、进一步提高综合运用所学知识和设计的能力的目的。

通过本次设计的训练,可以使我在基本思路和基本方法上对基于MCS-51单片机的嵌入式系统设计有一个比较感性的认识,并具备一定程度的设计能力。

1.2 设计任务
1、掌握MCS-51系列的最小电路及外围扩展电路的设计方法;
2、了解单片机数据转换功能及工作过程;
3、设计LED流水灯系统,实现8个LED灯变化方向和速度的可调;
4、完成主要功能模块的硬件电路设计;
5、用protel软件完成原理电路图和PCB板的绘制;
6、用proteus软件实现系统的编程仿真。

1.3设计方法
本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的软件组成的单个单片机。

如果要让接在P1.0口的LED1亮起来,那么只要把P1.0口的电平变为低电平就可以了;相反,如果要接在P1.0口的LED1熄灭,就要把P1.0口的电平变为高电平;同理,接在P1.1~P1.7口的其他7个LED的点亮和熄灭的方法同LED1。

对于LED灯流速控制设计思路,是用两个灯点亮的时间差来控制流速,用延时的长短来启动下一个灯的点亮。

在方向控制子程序中判断速度控制键是否按下,如果按下,则表示速度快,否则则表示慢速。

对于主程序设计思路主程序中先判断启动键是否按下,如果按下,在判断方向控制键是否按下,如果按下则调用向左点亮灯的子程序,否则调用向右点亮灯的子程序。

如果启动键没有按下,则全部的灯都熄灭。

在此我们还应注意一点,由于人眼的视觉暂留效应以及单片机执行每条指令的时间很短,我们在控制二极管亮灭的时候应该延时一段时间,否则我们就看不到“流水”效果了。

2 设计内容和所用器件
2.1基本功能:
利用AT89C52作为主控器组成一个LED流水灯系统,实现8个LED灯变化方向和速度的可调。

2.2元件清单
表2-1 元件清单表
3 系统硬件设计
3.1 AT89C52
AT89C52是51系列单片机的一个型号,它是ATMEL公司生产的。

AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用A TMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。

AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C5 2可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在线编程)。

其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。

兼容MCS51指令系统· 8k可反复擦写(>1000次)Flash ROM
· 32个双向I/O口· 256x8bit内部RAM
· 3个16位可编程定时/计数器中断· 时钟频率0-24MHz
· 2个串行中断· 可编程UART串行通道
· 2个外部中断源· 共6个中断源
· 2个读写中断口线· 3级加密位
· 低功耗空闲和掉电模式· 软件设置睡眠和唤醒功能
AT89C52 P为40 脚双列直插封装的8 位通用微处理器,采用工业标准的C51内核,在内部功能及管脚排布上与通用的8xc52 相同,其主要用于会聚调整时的功能控制。

功能包括对会聚主IC 内部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通信等。

主要管脚有:XTAL1(19 脚)和XTAL2(18 脚)为振荡器输入输出端口,外接12M Hz 晶振。

RST/Vpd(9 脚)为复位输入端口,外接电阻电容组成的复位电路。

VCC (40 脚)和VSS(20 脚)为供电端口,分别接+5V电源的正负端。

P0~P3 为可编程通用I/O 脚,其功能用途由软件定义,在本设计中,P0 端口(32~39 脚)被定义为N1 功能控制端口,分别与N1的相应功能管脚相连接,13 脚定义为IR输入端,10 脚和11脚定义为I2C总线控制端口,分别连接N1的SDAS(18脚)和SCLS(19脚)端口,12 脚、27 脚及28 脚定义为握手信号功能端口,连接主板CPU 的相应功能端,用于当前制式的检测及会聚调整状态进入的控制功能。

P0 口
P0 口是一组8 位漏极开路型双向I/O 口,也即地址/数据总线复用口。

作为输出口用时,每位能吸收电流的
方式驱动8 个TTL逻辑门电路,对端口P0 写“1”时,可作为高阻抗输入端用。

在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8 位)和数据总线复用,在访问期间激活内部上拉电阻。

在Flash 编程时,P0 口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

P1 口
P1 是一个带内部上拉电阻的8 位双向I/O 口, P1 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑
门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

作输入口使用时,因为内部存在上拉
电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

与AT89C51 不同之处是,P1.0 和P1.1 还可分别作为定时/计数器2 的外部计数输入(P1.0/T2)和输入(P1.1/T2EX),
参见表1。

Flash 编程和程序校验期间,P1 接收低8 位地址。

表.P1.0和P1.1的第二功能
P2 口
P2 是一个带有内部上拉电阻的8 位双向I/O 口,P2 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑
门电路。

对端口P2 写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

在访问外部程序存储器或16 位地址的外部数据存储器(例如执行MOVX @DPTR 指令)时,P2 口送出高8 位地址数据。

在访问8 位地址的外部数据存储器(如执行MOVX @RI 指令)时,P2 口输出P2 锁存器的内容。

Flash 编程或校验时,P2亦接收高位地址和一些控制信号。

P3 口
P3 口是一组带有内部上拉电阻的8 位双向I/O 口。

P3 口输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻
辑门电路。

对P3 口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。

此时,被外部拉低的P3 口将用上拉电阻输出电流(IIL)。

P3 口除了作为一般的I/O 口线外,更重要的用途是它的第二功能
P3 口还接收一些用于Flash 闪速存储器编程和程序校验的控制信号。

RST
复位输入。

当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。

ALE/PROG
当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8 位字节。

一般情况下,ALE 仍以时钟振荡频率的1/6 输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。

要注意的是:每当访问外部数据存储器时将跳过一个ALE 脉冲。

对Flash 存储器编程期间,该引脚还用于输入编程脉冲(P ROG)。

如有必要,可通过对特殊功能寄存器(SFR)区中的8EH 单元的D0 位置位,可禁止ALE 操作。

该位置位后,只有一条MOVX 和MOVC指令才能将ALE 激活。

此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 禁止位无效。

PSEN
程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C52 由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN 有效,即输出两个脉冲。

在此期间,当访问外部数据存储器,将跳过两次PSEN信号。

EA/VPP
外部访问允许。

欲使CPU 仅访问外部程序存储器(地址为0000H—FFFFH),EA 端必须保持低电平(接地)。

需注意的是:如果加密位LB1 被编程,复位时内部会锁存EA端状态。

如EA端为高电平(接Vcc端),CPU 则执行内部程序存储器中的指令。

Flash 存储器编程时,该引脚加上+12V 的编程允许电源Vpp,当然这必须是该器件是使用12V 编程电压Vpp。

XTAL1
振荡器反相放大器的及内部时钟发生器的输入端。

XTAL2
振荡器反相放大器的输出端。

特殊功能寄存器
在AT89C52 片内存储器中,80H-FFH 共128 个单元为特殊功能寄存器(SFE),SF R 的地址空间映象如表2 所示。

并非所有的地址都被定义,从80H—FFH 共128
个字节只有一部分被定义,还有相当一部分没有定义。

对没有定义的单元读写将是无效的,读出的数值将不确定,而写入的数据也将丢失。

不应将数据“1”写入未定义的单元,由于这些单元在将来的产品中可能赋予新的功能,在这种情况下,复位后这些单元数值总是“0”。

AT89C52除了与AT89C51所有的定时/计数器0 和定时/计数器1 外,还增加了一个定时/计数器2。

定时/计数器2 的控制和状态位位于T 2CON、T2MOD,寄存器对(RCAO2H、RCAP2L)是定时器2 在16 位捕获方式或16 位自动重装载方式下的捕获/自动重装载寄存器。

数据存储器
AT89C52 有256 个字节的内部RAM,80H-FFH 高128 个字节与特殊功能寄存器(SFR)地址是重叠的,也就是高128字节的RAM 和特殊功能寄存器的地址是相同的,但物理上它们是分开的。

当一条指令访问7FH 以上的内部地址单元时,指令中使用的寻址方式是不同的,也即寻址方式决定是访问高128 字节RAM 还是访问特殊功能寄存器。

如果指令是直接寻址方式则为访问特殊功能寄存器。

例如,下面的直接寻址指令访问特殊功能寄存器0A0H(即P2 口)地址单元。

MOV 0A0H,#data
间接寻址指令访问高128 字节RAM,例如,下面的间接寻址指令中,R0 的内容为0A0H,则访问数据字节地址为0A0H,而不是P2 口(0A0H)。

MOV @R0,#data
堆栈操作也是间接寻址方式,所以,高128 位数据RAM 亦可作为堆栈区使用。

定时器0和定时器1:
AT89C52的定时器0和定时器1 的工作方式与AT89C51 相同。

定时器2
定时器2 是一个16 位定时/计数器。

它既可当定时器使用,也可作为外部事件计数器使用,其工作方式由特殊功能寄存器T2CON的C/T2 位选择。

定时器2 有三种工作方式:捕获方式,自动重装载(向上或向下计数)方式和波特率发生器方式,工作方式由T2CON 的控制位来选择。

定时器2 由两个8 位寄存器TH2 和TL2 组成,在定时器工作方式中,每个机器周期TL2 寄存器的值加1,由于一个机器周期由12个振荡时钟构成,因此,计数速率为振荡频率的1/12。

在计数工作方式时,当T2 引脚上外部输入信号产生由1 至0 的下降沿时,寄存器的值加1,在这种工作方式下,每个机器周期的5SP2 期间,对外部输入进行采样。

若在第一个机器周期中采到的值为1,而在下一个机器周期中采到的值为0,则在紧跟着的下一个周期的S3P1 期间寄存器加1。

由于识别1 至0 的跳变需要2
个机器周期(24 个振荡周期),因此,最高计数速率为振荡频率的1/24。

为确保采样的正确性,要求输入的电平在变化前至少保持一个完整周期的时间,以保证输入信号至少被采样一次。

捕获方式
在捕获方式下,通过T2CON 控制位EXEN2 来选择两种方式。

如果EXEN2=0,定时器2 是一个16 位定时器或计数器,计数溢出时,对T2CON 的溢出标志TF2 置位,同时激活中断。

如果EXEN2=1,定时器2 完成相同的操作,而当T2EX 引脚外部输入信号发生1 至0 负跳变时,也出现TH2 和TL2 中的值分别被捕获到RCAP2 H 和RCAP2L 中。

另外,T2EX 引脚信号的跳变使得T2CON 中的EXF2 置位,与TF2相仿,EXF2 也会激活中断。

自动重装载(向上或向下计数器)方式
当定时器2工作于16位自动重装载方式时,能对其编程为向上或向下计数方式,这个功能可通过特殊功能寄存器T2CON的DCEN 位(允许向下计数)来选择的。

复位时,DCEN 位置“0”,定时器2 默认设置为向上计数。

当DCEN置位时,定时器2既可向上计数也可向下计数,这取决于T2EX 引脚的值,当DCEN=0 时,定时器2 自动设置为向上计数,在这种方式下,T2CON 中的EXEN2 控制位有两种选择,若E
XEN2=0,定时器2 为向上计数至0FFFFH 溢出,置位TF2 激活中断,同时把16 位计数寄存器RCAP2H 和RCAP2L重装载,RCAP2H 和RCAP2L 的值可由软件预置。

若EXEN2=1,定时器2 的16 位重装载由溢出或外部输入端T2EX 从1 至0 的下降沿触发。

这个脉冲使EXF2 置位,如果中断允许,同样产生中断。

定时器2 的中断入口地址是:002BH ——0032H 。

当DCEN=1 时,允许定时器2 向上或向下计数。

这种方式下,T2EX 引脚控制计数器方向。

T2EX 引脚为逻辑“1”时,定时器向上计数,当计数0FFFFH 向上溢出时,置位TF2,同时把16 位计数寄存器RCAP2H 和RCAP2L 重装载到TH2 和TL2 中。

T2EX 引脚为逻辑“0”时,定时器2 向下计数,当TH2 和TL2 中的数值等于RCAP2H 和RCAP2L中的值时,计数溢出,置位TF2,同时将0FFFFH 数值重新装入定时寄存器中。

当定时/计数器2 向上溢出或向下溢出时,置位EXF2 位。

波特率发生器
当T2CON中的TCLK 和RCLK 置位时,定时/计数器2 作为波特率发生器使用。

如果定时/计数器2 作为发送器或收器,其发送和接收的波特率可以是不同的,定时器1 用于其它功能。

若RCLK 和TCLK 置位,则定时器2工作于波特率发生器方式。

波特率发生器的方式与自动重装载方式相仿,在此方式下,TH2 翻转使定时器2 的寄存器用RCAP2H 和RCAP2L 中的16位数值重新装载,该数值由软件设置。

在方式1 和方式3 中,波特率由定时器2 的溢出速率根据下式确定:方式1和3的波特率=定时器的溢出率/16定时器既能工作于定时方式也能工作于计数方式,在大多数的应用中,是工作在定时方式(C/T2=0)。

定时器2 作为波特率发生器时,与作为定时器的操作是不同的,通常作为定时器时,在每个机器周期(1/12 振荡频率)寄存器的值加1,而作为波特率发生器使用时,在每个状态时间(1/2 振荡频率)寄存器的值加1。

波特率的计算公式如下:
方式1和3的波特率=振荡频率/{32*[65536-(RCP2H,RCP2L)]}
式中(RCAP2H,RCAP2L)是RCAP2H 和RCAP2L中的16 位无符号数。

T2CON 中的RCLK 或TCLK=1 时,波特率工作方式才有效。

在波特率发生器工作方式中,TH2 翻转不能使TF2 置位,故而不产生中断。

但若EXEN2 置位,且T2EX 端产生由1 至0 的负跳变,则会使EXF2 置位,此时并不能将(RCAP2H,RCAP2L)的内容重新装入TH2 和TL2 中。

所以,当定时器2 作为波特率发生器使用时,T2E X 可作为附加的外部中断源来使用。

需要注意的是,当定时器2 工作于波特率器时,作为定时器运行(TR2=1)时,并不能访问TH2 和TL2。

因为此时每个状态时间定时器都会加1,对其读写将得到一个不确定的数值。

然而,对RCAP2 则可读而不可写,因为写入操作将是重新装载,写入操作可能令写和/或重装载出错。

在访问定时器2或RCAP2 寄存器之前,应将定时器关闭(清除TR2)。

中断
AT89C52 共有6 个中断向量:两个外中断(INT0 和INT1),3 个定时器中断(定时器0、1、2)和串行口中断。

这些中断源可通过分别设置专用寄存器IE 的置位或清0 来控制每一个中断的允许或禁止。

IE 也有一个总禁止位EA,它能控制所有中断的允许或禁止。

定时器2 的中断是由T2CON 中的TF2 和EXF2 逻辑或产生的,当转向中断服务程序时,这些标志位不能被硬件清除,事实上,服务程序需确定是TF2 或EXF2 产生中断,而由软件清除中断标志位。

定时器0 和定时器1 的标志位TF0 和TF1 在定时器溢出那个机器周期的S5P 2 状态置位,而会在下一个机器周期才查询到该中断标志。

然而,定时器2 的标志位TF2 在定时器溢出的那个机器周期的S2P2 状态置位,并在同一个机器周期内查询到该标志。

时钟振荡器
AT89C52 中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1 和XT AL2 分别是该放大器的输入端和输出端。

这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器,振荡电路参见图10。

外接石英晶体(或陶瓷谐振器)及电容C1、C2 接在放大器的反馈回路中构成并联振荡电路。

对外接电容C1、C2 虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳定性,如果使用石英晶体,我们推荐电容使用30pF±10pF,而如使用陶瓷谐振器建议选择40pF±10F。

用户也可以采用外部时钟。

这种情况下,外部时钟脉冲接到XTAL1 端,即内部时钟发生器的输入端,XTAL2 则悬空。

由于外部时钟信号是通过一个2 分频触发器后作为内部时钟信号的,所以对外部时钟信号的占空比没有特殊要求,但最小高电平持续时间和最大的低电平持续时间应符合产品技术条件的要求。

编程方法
编程前,须设置好地址、数据及控制信号, AT89C52 编程方法如下:
1.在地址线上加上要编程单元的地址信号。

2.在数据线上加上要写入的数据字节。

3.激活相应的控制信号。

4.在高电压编程方式时,将EA/Vpp 端加上+12V 编程电压。

5.每对Flash 存储阵列写入一个字节或每写入一个程序加密位,加上一个A LE/PROG 编程脉冲。

每个字节写入周期是自身定时的,通常约为1.5ms。

重复1—5 步骤,改变编程单元的地址和写入的数据,直到全部文件编程结束。

3.2 单片机时钟电路
时钟电路用于产生单片机工作所需要的时钟信号,单片机本身就是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号的控制下严格地按时序进行工作。

在MCS-51芯片内部有一个高增益反相放大器,其输入端为芯片引脚X1,输出端为芯片引脚X2,在芯片的外部跨接晶体振荡器和微调电容,形成反馈电路,就构成了一个稳定的自激振荡器。

此电路采用12MHZ的石英晶体。

时钟电路如下图所示:
图3-1 时钟电路图
3.3 单片机复位电路
电阻的作用是用于上电复位的,VCC以上电,由于电容两端电压不能够突破,所以R ST上为高电平,然后电容放电,RST就为低电平了还可以用手动复位。

复位电路如下图所示:
图3-2 复位电路图
4 系统软件设计
4.1 proteus软件环境介绍
本系统的硬件设计首先是在Proteus软件环境中仿真实现的。

Proteus软件是来自英国Labcenter electronics公司的EDA工具软件,Proteus软件有十多年的历史,在全球广泛使用,除了具有和其它EDA工具一样的原理布图、PCB自动或人工布线及电路仿真的功能外,其革命性的功能是,它的电路仿真是互动的。

针对微处理器的应用,还可以直接在基于原理图的虚拟原型上编程,并实现软件源码级的实时调试。

如果有显示及输出,配合系统配置的虚拟仪器如示波器、逻辑分析仪等,还能看到运行后输入输出的效果。

Proteus 建立了完备的电子设计开发环境,尤其重要的是Proteus Lite可以完全免费,也可以花微不足道的费用注册达到更好的效果。

Proteus是目前最好的模拟单片机外围器件的工具。

可以仿真51系列、A VR、PIC等常用的MCU及其外围电路(如LCD,RAM,ROM,键盘,马达,LED,AD/DA,部分SPI器件,部分IIC器件...)。

其实Proteus 与multisim比较类似,只不过它可以仿真MCU,当然,软件仿真精度有限,而且不可能所有的器件都找得到相应的仿真模型,用开发板和仿真器当然是最好选择,可是初学者拥有它们的可能性比较小。

当然,硬件实践还是必不可少的。

在没有硬件的情况下,Proteus能像pspice仿真模拟/数字电路那样仿真MCU及外围电路。

另外,即使有硬件,在程序编写早期用软件仿真一下也是很有必要的。

Proteus软件主要具有以下几个方面的特点:
1、设计和仿真软件Proteus 是一个很有用的工具,它可以帮助学生和专业人士提高他们的模拟和数字电路的设计能力。

2、它允许对电路设计采用图形环境,在这种环境中,可以使用一个特定符号来代替元器件,并完成不会对真实电路造成任何损害的电路仿真操作。

3、它可以仿真仪表以及可描述在仿真过程中所获得的信号的图表。

4、它可以仿真目前流行的单片机,如PICS, ATMEL-AVR, MOTOROLA, 8051 等。

5、在设计综合性方案中,还可以利用ARES开发印制电路板。

4.2 Protel软件环境介绍
Protel印制板设计软件包是澳大利亚protel technology公司与1990年推出的电子CAD产品,具有方便、易学、实用、快速以及高速度、高步通率的特点。

它采用了分层次下拉窗口菜单结构形式,用户基本上不需要记背太多的键盘命令,用鼠标点击菜单命令
就能操作,protel有着很高的自动布线布通率。

布通率是电子产CAD产品的一项重要指标,它反映电子元件在电路图中连接关系有多少能在印刷版图中实现。

在设计常用的单、双面印制板时只要选择适当的元件布局和布线策略方法,protel就可以轻易的达到98%-100%的布通率。

对于极少数不能布通的定方,protel可以用飞线指示出来,引导用户用手工方法连通。

另外,protel有强大的宏命令设置功能,利用宏命令功能多定义的热键可以大大提高操作速度。

Protel对微机的软硬件配置要求很低:cpu在8088以上,dos2.0以上版本,内存640kb 以上,双软件(或一个软件一个硬盘),单色显示器(多层板设计时最好用彩色),各种兼容打印机。

也能在Windows9X平台的模拟DOS下运行。

Protel已成为印制板设计加工方面的工业标准。

据初步统计protel在CAD的市场占有率达 95%,成为电子产品制造业界的首选CAD软件。

4.3 程序流程图
1、主程序
图4-1 主程序流程图
2、子程序
LED流水灯方向控制
图4-2 LED流水灯方向控制流程图流水灯流程图
图4-3 流水灯流程图
4.4 LED显示原理
LED 点阵显示器亦称LED 矩阵板,具有亮度高、发光均匀、可靠性好、接线简单、拼装方便等优点,能构成各种尺寸的大屏幕显示器。

因此,它被广泛应用于大型LED 智能显示屏、智能仪器仪表和机电一体化设备的显示单元中,取得了较好的效果。

由于它经济、小型的显示系统,同时要求使用方便灵活,方便地组成了由多块大屏幕LED 显示器构成的显示系统,该系统可广泛用于商场、车站、码头及其它公共场合。

LED 显示屏由ED 点阵显示器(常见型号为P2158A) 构成。

它是以发光二极管为像素,按照行与列的顺序排列而成的显示器件,采用逐行(或逐列) 扫描方式工作,由峰值较大的窄脉冲驱动,从上到下逐次不断地对显示屏的各行进行选通,同时又向各列送出表示图形或文字信息的脉冲信号,反复循环以上操作,就可显示各种图形或文字信息。

5 系统的调试过程
通过上面的硬件设计和软件设计过程,设计的工作已经基本完成,接下来的工作就是。

相关文档
最新文档