北师大版数学九年级(上册)(全册)复习课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[解析] 连接AP,AE,由正方形关于对角线对称将PC转移到 PA,要求PE与PC和的最小值即求PE与PA和的最小值,易知当P在 AE上时,PA+PE最小.
8.中点四边形 中点四边形就是连接四边形各边中点所得的四边形,我们 可以得到下面的结论: (1)顺次连接四边形四边中点所得的四边形是_平__行__四__边__形___ (2)顺次连接矩形四边中点所得的四边形是_菱__形_____. (3)顺次连接菱形四边中点所得的四边形是__矩__形____. (4)顺次连接正方形四边中点所得的四边形是__正__方__形____. (5)顺次连接等腰梯形四边中点所得的四边形是__菱__形____.
方法技巧
在证明一个四边形是菱形时,要注意:首先判断是平 行四边形还是任意四边形.若是任意四边形,则需证四条边 都相等;若是平行四边形,则需利用对角线互相垂直或一 组邻边相等来证明.
► 考点二 和矩形有关的折叠计算问题
例2 如图S1-3,将矩形ABCD沿直线AE折叠,顶点D恰好落 在BC边上的F点处.已知CE=3 cm,AB=8 cm,求图中阴影部分
北师大版九年级上册 期末总复习典型题
CONTEN
目T录
第一章 特殊的平行四边形
第二章 一元二次方程 第三章 概率的进一步认识
第四章 图形的相似 第五章 投影与视图
第六章 反比例函数
第一章 特殊的平行四边形
┃知识归纳┃
1.菱形的定义和性质
(1)定义:有一组邻边相等的平行四边形叫做菱形. (2)性质:①菱形的四条边都____相_等______;②菱形的对角线互 相___垂__直__平__分_____,并且每一条对角线平分一组对角;③菱形 是中心对称图形,它的对称中心是两条对角线的交点;菱形也 是轴对称图形,两条对角线所在的直线是它的对称轴.
方法技巧
矩形的折叠问题,一般是关于面积等方面的计算问题,主要 考查同学们的逻辑思维能力和空间想象能力.解决与矩形折叠有 关的面积问题,关键是将轴对称的特征、勾股定理以及矩形的有 关性质结合起来
► 考点三 和正方形有关的探索性问题
例3 如图S1-4,在正方形ABCD中,点E在BC上,BE=3,
CE=2,点P在BD上,求PE与PC的长度和的最小值.
3.菱形的面积
(1)由于菱形是平行四边形,所以菱形的面积=底×高;
(2)因为菱形的对角线互相垂直平分,所以其对角线将菱形 分成4个全等的三角形,故菱形的面积等于两对角线乘积的一 半.
4.矩形的性质 (1)矩形的对边_平__行__且__相__等______; (2)矩形的对角__相__等_______; (3)矩形的对角线__互__相__平__分____、__相__等______;
(4)矩形的四个角都是直角(或矩形的四个角相等); (5)矩形的两条对角线把矩形分成四个面积相等的___等__腰____三 角形;
(6)矩形既是轴对称图形,又是中心对称图形,对称轴有__两___ 条,对称中心是对角线的交点.
(7)矩形的面积等于两邻边的___乘__积____.
[注意] 利用“矩形的对角线相等且互相平分”这一性质可 以得出直角三角形的一个常用的性质:直角三角形斜边上的中 线等于斜边长的____一__半____.
[解析] 由点E,F分别为边AB,AD的 中 点 , 可 知 OE∥AD , OF∥AB , 而 AE = AF , 故四边形AEOF是菱形.
证明:∵点E,F分别为AB,AD的中点, ∴AE=12AB,AF=12AD. ∵四边形ABCD是菱形,∴AB=AD, ∴AE=AF. 又∵菱形ABCD的对角线AC与BD相交于点O, ∴O为BDL 的中点, ∴OE,OF是△ABD的中位线, ∴OE∥AD,OF∥AB,即四边形AEOF是平行四边形. 又∵AE=AF,∴四边形AEOF是菱形.
[总结] 顺次连接对角线相等的四边形四边中点所得的四边 形是_菱__形_____;顺次连接对角线互相垂直的四边形四边中点所 得的四边形是_矩__形_____.
┃考点攻略┃
► 考点一 菱形的性质和判定
例1 如图S1-2,菱形ABCD的对角线
AC与BD相交于点O,点E,F分别为边AB, AD的中点,连接EF,OE,OF.求证:四 边形AEOF是菱形.
5.矩形的判定 (1)有一个角是直角的__平__行__四__边__形___是矩形; (2)有三个角是直角的___四__边__形____是矩形; (3)对角线相等的__平__行__四__边__形____是矩形.
6.正方形的性质
(1)正方形的对边平__行_______; (2)正方形的四边_相__等______; (3)正方形的四个角都是_直__角_____; (4)正方形的对角线相等、互相垂直、互相平分,每条对角 线平分一组对角; (5)正方形既是轴对称图形,又是中心对称图形,对称轴有 ___四_____条,对称中心是对角线的交点.
7.正方形的判定
(1)有一组邻边相等,并且有一个角是直角的平行四边形叫 做正方形;
(2)有一组邻边相等的__矩__形____是正方形; (3)有一个角是直角的___菱__形___是正方形.
[注意] 矩形、菱形、正方形都是平行四边形,且是特殊的 平行四边形.矩形是有一个内角为直角的平行四边形;菱形是 有一组邻边相等的平行四边形;正方形既是矩形,又是菱形.
[注意] 菱形是特殊的平行四边形,故它具有平行四边形 的一切性质.
2.菱形的判定方法 (1)有一组邻边相等的___平__行__四__边__形___是菱形; (2)对角线互相垂直的___平__行__四__边__形___是菱形; (3)四边相等的___四__边__形______是菱形.

[辨析] 四边形、平行四边形、菱形关系如图S1-1:
的面积.
[解析] 要求阴影部分的面积,由于阴 影部分由两个直角三角形构成,所以只要 根据勾股定理求出直角三角形的直角边即 可.
解:由已知,得 EF=DE=5 cm,由勾股定理,得 CF= 52-32 =4 (cm),设 BF=x,则 AF=AD=BC=x+4,
在 Rt△ABF 中,由勾股定理,得 82+x2=(x+4)2, 解得 x=6, 所以阴影部分的面积为12×6×8+12×4×3=30(cm2).
相关文档
最新文档