成都七中七年级上册数学期末试卷(带答案)-百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都七中七年级上册数学期末试卷(带答案)-百度文库
一、选择题
1.在数3,﹣3,13,1
3
-中,最小的数为( ) A .﹣3
B .
1
3
C .13
-
D .3
2.以下选项中比-2小的是( ) A .0 B .1 C .-1.5 D .-2.5 3.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )
A .10-
B .10
C .5-
D .5
4.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离
是( )
A .22
B .22﹣1
C .22+1
D .1
5.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM
的长( ) A .7cm
B .3cm
C .3cm 或 7cm
D .7cm 或 9cm
6.若21(2)0x y -++=,则2015()x y +等于( ) A .-1 B .1 C .20143 D .20143- 7.下列各数中,绝对值最大的是( )
A .2
B .﹣1
C .0
D .﹣3 8.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1
B .m=2,n=0
C .m=4,n=1
D .m=4,n=0
9.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查 D .对广州市中学生每周课外阅读时间情况的调查 10.如果代数式﹣3a 2m b 与ab 是同类项,那么m 的值是( ) A .0
B .1
C .
12
D .3
11.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )
A .a+b >0
B .ab >0
C .a ﹣b <o
D .a÷b >0
12.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于
( )
A .15°
B .25°
C .35°
D .45° 13.下列计算正确的是( )
A .-1+2=1
B .-1-1=0
C .(-1)2=-1
D .-12=1
14.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b == B .1,2a b ==
C .1,3a b ==
D .2,2a b ==
15.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的
长等于( )
A .3 cm
B .6 cm
C .11 cm
D .14 cm
二、填空题
16.如果实数a ,b 满足(a-3)2+|b+1|=0,那么a b =__________.
17.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.
18.9的算术平方根是________
19.如图,若12l l //,1x ∠=︒,则2∠=______.
20.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若
OC 6=,则线段AB 的长为______.
21.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.
22.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________. 23.|﹣
1
2
|=_____. 24.数字9 600 000用科学记数法表示为 .
25.当x= 时,多项式3(2-x )和2(3+x )的值相等. 26.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____. 27.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.
28.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每
个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______
29.已知7635a ∠=︒',则a ∠的补角为______°______′. 30.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.
三、压轴题
31.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.
(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.
(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.
32.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .
(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?
(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 33.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;
(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.
(3)在(2)的条件下,当∠COF =14°时,t = 秒.
34.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)
(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:
(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ
AB
的值.
(3)在(1)的条件下,若C、D运动5秒后,恰好有
1
CD AB
2
,此时C点停止运动,
D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN
的值不变;②MN
AB
的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并
求值.
35.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.
请你用以上知识解决问题:
如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.
(1)请你在图②的数轴上表示出A,B,C三点的位置.
(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.
①当t=2时,求AB和AC的长度;
②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
36.(阅读理解)
若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.
例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)
如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.
(1)数所表示的点是(M,N)的优点;
(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?
37.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.
(1)求A,B两点之间的距离;
(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;
(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.
设运动时间为t秒.
①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)
②求甲乙两小球到原点距离相等时经历的时间.
38.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)
(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是
∠AOC的平分线;
(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:∵3>1
3

1
3
->﹣3,
∴在数3,﹣3,1
3

1
3
-中,最小的数为﹣3.
故选:A.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.D
解析:D
【解析】
【分析】
根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.
【详解】
根据题意可得:
2.52 1.501
-<-<-<<,
故答案为:D.
【点睛】
本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.
3.D
解析:D
【解析】
【分析】
根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】
解:∵方程2k-3x=4与x-2=0的解相同,
∴x=2,
把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.
故选:D.
【点睛】
本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.
4.D
解析:D
【分析】
根据题意列出算式,计算即可得到结果.
【详解】
解:∵A,B两点表示的数分别是2﹣1和2,
∴A,B两点之间的距离是:2﹣(2﹣1)=1;
故选:D.
【点睛】
此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.
5.C
解析:C
【解析】
【分析】
应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.
【详解】
①如图1所示,当点C在点A与B之间时,
∵线段AB=10cm,BC=4cm,
∴AC=10-4=6cm.
∵M是线段AC的中点,
∴AM=1
2
AC=3cm,
②如图2,当点C在点B的右侧时,∵BC=4cm,
∴AC=14cm
M是线段AC的中点,
∴AM=1
2
AC=7cm.
综上所述,线段AM的长为3cm或7cm.
故选C.
【点睛】
本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.6.A
解析:A
【解析】
1
x (y+2)2=0,列出方程x-1=0,y+2=0,求出x=1、y=-2,代
入所求代数式(x+y)2015=(1﹣2)2015=﹣1.
故选A
7.D
解析:D
【解析】
试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.
考点:D.
8.A
解析:A
【解析】
根据同类项的相同字母的指数相同可直接得出答案.
解:由题意得:
m=2,n=1.
故选A.
9.A
解析:A
【解析】
【分析】
根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.
【详解】
A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;
B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;
C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;
D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,
故选A.
【点睛】
本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.
10.C
解析:C
【解析】
【分析】
根据同类项的定义得出2m=1,求出即可.
【详解】
解:∵单项式-3a2m b与ab是同类项,
∴m=1
2

故选C.
【点睛】
本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.
11.C
解析:C
【解析】
【分析】
利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
【详解】
解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,
∴a+b<0,ab<0,a﹣b<0,a÷b<0.
故选:C.
12.B
解析:B
【解析】
【分析】
利用直角和角的组成即角的和差关系计算.
【详解】
解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,
∵∠BOD+∠AOC=∠AOB+∠COD,
∵∠AOB=155°,
∴∠COD等于25°.
故选B.
【点睛】
本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.
13.A
解析:A
【解析】
解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;
C,底数为-1,一个负数的偶次方应为正数(-1)2=1;
D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.
14.C
解析:C
【解析】
由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得. 【详解】
解:根据题意得:a+1=2,b=3, 则a=1. 故选:C . 【点睛】
本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.
15.B
解析:B 【解析】 【分析】
由CB =4cm ,DB =7cm 求得CD=3cm ,再根据D 是AC 的中点即可求得AC 的长 【详解】
∵C ,D 是线段AB 上两点,CB =4cm ,DB =7cm , ∴CD =DB ﹣BC =7﹣4=3(cm ), ∵D 是AC 的中点, ∴AC =2CD =2×3=6(cm ). 故选:B . 【点睛】
此题考察线段的运算,根据图形确定线段之间的数量关系即可正确解答.
二、填空题 16.-1; 【解析】
解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.
解析:-1; 【解析】
解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3
(1)a b =-=-1. 故答案为-1.
点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.
17.2或8. 【解析】 【分析】
根据绝对值的性质去掉绝对值符号,分类讨论解题即可 【详解】 ∵|a-m|=5,|n-a|=3
∴a−m=5或者a−m=-5;n−a=3或者n−a=-3
当a−m=5,n
解析:2或8.
【解析】
【分析】
根据绝对值的性质去掉绝对值符号,分类讨论解题即可
【详解】
∵|a-m|=5,|n-a|=3
∴a−m=5或者a−m=-5;n−a=3或者n−a=-3
当a−m=5,n−a=3时,|m-n|=8;
当a−m=5,n−a=-3时,|m-n|=2;
当a−m=-5,n−a=3时,|m-n|=2;
当a−m=-5,n−a=-3时,|m-n|=8
故本题答案应为:2或8
【点睛】
绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键18.【解析】
【分析】
根据算术平方根的定义,即可得到答案.
【详解】
解:∵,
∴的算术平方根是;
故答案为:.
【点睛】
本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.
【解析】
【分析】
根据算术平方根的定义,即可得到答案.
【详解】
3


【点睛】
本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.19.(180﹣x)°.
【解析】
【分析】
根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.
【详解】
∵l1∥l2,∠1=x°,
∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.

解析:(180﹣x)°.
【解析】
【分析】
根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.
【详解】
∵l1∥l2,∠1=x°,
∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.
故答案为(180﹣x)°.
【点睛】
本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
20.4或36
【解析】
【分析】
分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.
【详解】
解:,
设,,
若点C在线段AB上,则,
点O为AB的中点,
解析:4或36
【解析】
【分析】
分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关
系可求AB 的长.
【详解】
解:
AC 2BC =,
∴设BC x =,AC 2x =,
若点C 在线段AB 上,则AB AC BC 3x =+=,
点O 为AB 的中点, 3AO BO x 2∴==,x CO BO BC 6x 12AB 312362
∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,
点O 为AB 的中点,
x AO BO 2∴==,3CO OB BC x 6x 4AB 42
∴=+==∴=∴= 故答案为4或36
【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 21.100
【解析】
【分析】
原式利用已知的新定义计算即可得到结果
【详解】
5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案
解析:100
【解析】
【分析】
原式利用已知的新定义计算即可得到结果
【详解】
-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.
故答案为100.
【点睛】
此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
22.6×
【解析】
试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.
所以,4 600 000 0
解析:6×910
【解析】
试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于
4 600 000 000有10位,所以可以确定n=10-1=9.
所以,4 600 000 000=4.6×109.
故答案为4.6×109.
23.【解析】
【分析】
当a是负有理数时,a的绝对值是它的相反数﹣a.
【详解】
解:|﹣|=.
故答案为:
【点睛】
考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0
解析:1 2
【解析】
【分析】
当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】
解:|﹣1
2
|=
1
2

故答案为:1 2
【点睛】
考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
24.6×106
【解析】
试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中
1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n 的值时,看该数是大于或等于1还是
解析:6×106
【解析】
试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9
600 000=9.6×106.
25.【解析】
试题解析:根据题意列出方程3(2-x)=2(3+x)
去括号得:6-3x=6+2x
移项合并同类项得:5x=0,
化系数为1得:x=0.
考点:解一元一次方程.
解析:【解析】
试题解析:根据题意列出方程3(2-x)=2(3+x)
去括号得:6-3x=6+2x
移项合并同类项得:5x=0,
化系数为1得:x=0.
考点:解一元一次方程.
26.8
【解析】
【分析】
把x=﹣2代入方程2x+a﹣4=0求解即可.
【详解】
把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.
故答案为:8.
【点睛】
本题考查了一
解析:8
【解析】
【分析】
把x=﹣2代入方程2x+a﹣4=0求解即可.
【详解】
把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.
故答案为:8.
【点睛】
本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.27.17
【解析】
【分析】
【详解】
解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.
故答案为:17
【点睛】
本题考查代数式的求值,利用整体代入思想解题是关键
解析:17
【解析】
【分析】
【详解】
解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.
故答案为:17
【点睛】
本题考查代数式的求值,利用整体代入思想解题是关键
28.①③④
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概
解析:①③④
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
①这10000名考生的数学中考成绩的全体是总体,正确;
②每个考生的数学中考成绩是个体,故原说法错误;
③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;
④样本容量是200,正确;
故答案为:①③④.
【点睛】
本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
29.25
【解析】
【分析】
根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.
【详解】
的补角为
故答案为103;25.
【点睛】
此题主要考查补角的求解,熟练掌握,即可解题
解析:25
【解析】
【分析】
根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.
【详解】
a ∠的补角为180762313550'='︒-︒︒
故答案为103;25.
【点睛】
此题主要考查补角的求解,熟练掌握,即可解题.
30.11
【解析】
【分析】
对整式变形得,再将2a ﹣b=4整体代入即可.
【详解】
解:∵2a ﹣b=4,
∴=,
故答案为:11.
【点睛】
本题考查代数式求值——已知式子的值,求代数式的值.能根据已
解析:11
【解析】
【分析】
对整式423a b -+变形得2(2)3a b -+,再将2a ﹣b=4整体代入即可.
【详解】
解:∵2a ﹣b=4,
∴423a b -+=2(2)324311a b -+=⨯+=,
故答案为:11.
【点睛】
本题考查代数式求值——已知式子的值,求代数式的值.能根据已知条件对代数式进行适当变形是解决此题的关键.
三、压轴题
31.(1)10;(2)
21
2
±;(3)
28
8.
5
±±,
【解析】
【分析】
(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.
(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.
(3)画数轴,结合数轴分四种情况讨论计算即可.
【详解】
(1)解:若b=-4,则a的值为 10
(2)解:当A在原点O的右侧时(如图):
设OB=m,列方程得:m+3m=14,
解这个方程得,
7
m
2 =,
所以,OA=21
2
,点A在原点O的右侧,a的值为
21
2
.
当A在原点的左侧时(如图),
a=-21 2
综上,a的值为±21
2
.
(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5
.
当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.
当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5
.
当点A在原点的左侧,点B在点C的左侧时,图略,c=8.
综上,点c的值为:±8,±28 5
.
【点睛】
本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.
32.(1)10
7
秒或10秒;(2)
14
13

114
13

【解析】
【分析】
(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;
(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,
由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.
【详解】
(1)∵|a-20|+|c+10|=0,
∴a-20=0,c+10=0,
∴a=20,c=﹣10.
设点B对应的数为b.
∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).
解得:b=10.
当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.
∵Q到B的距离与P到B的距离相等,
∴|﹣10+5t﹣10|=|20+2t﹣10|,
即5t﹣20=10+2t或20﹣5t=10+2t,
解得:t=10或t=10
7

答:运动了10
7
秒或10秒时,Q到B的距离与P到B的距离相等.
(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.
∵点M为线段PR的中点,点N为线段RQ的中点,
∴点M对应的数为22420
2
x x
++-
=
44
2
x
+

点N对应的数为205
2
x x
-+
=2x+10,
∴MN=|44
2
x
+
﹣(2x+10)|=|12﹣1.5x|.
∵MN+AQ=25,∴|12﹣1.5x|+|5x﹣20|=25.
分三种情况讨论:
①当0<x <4时,12﹣1.5x +20﹣5x =25,
解得:x =1413
; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,
解得:x =
667
>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 3
1141=. 综上所述:x 的值为
1413或11413. 【点睛】
本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.
33.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.
【解析】
【分析】
(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;
(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;
(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+
,解方程即可求出t 的值. 【详解】
解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022
︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;
(2)∠AOE ﹣∠BOF 的值是定值
由题意∠BOC =3t°,
则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,
∵OE 平分∠AOC ,OF 平分∠BOD ,
()
11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()
113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭,
∴∠AOE﹣∠BOF的值是定值,定值为35°;(3)根据题意得∠BOF=(3t+14)°,

3 31420
2
t t +=+,
解得4
t=.
故答案为4.
【点睛】
本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.
34.(1)点P在线段AB上的1
3
处;(2)
1
3
;(3)②MN
AB
的值不变.
【解析】
【分析】
(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在
线段AB上的1
3
处;
(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;
(3)当点C停止运动时,有CD=1
2
AB,从而求得CM与AB的数量关系;然后求得以AB
表示的PM与PN的值,所以MN=PN−PM=
1
12
AB.
【详解】
解:(1)由题意:BD=2PC
∵PD=2AC,
∴BD+PD=2(PC+AC),即PB=2AP.
∴点P在线段AB上的1
3
处;
(2)如图:
∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,
∴PQ=1
3 AB,

1
3 PQ AB
=
(3)②MN
AB
的值不变.
理由:如图,
当点C停止运动时,有CD=1
2 AB,
∴CM=1
4
AB ,
∴PM=CM-CP=1
4
AB-5,
∵PD=2
3
AB-10,
∴PN=12
23
(AB-10)=
1
3
AB-5,
∴MN=PN-PM=
1
12
AB,
当点C停止运动,D点继续运动时,MN的值不变,
所以
1
1
12
12
AB
MN
AB AB
==.
【点睛】
本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
35.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变
【解析】
【分析】
(1)根据点的移动规律在数轴上作出对应的点即可;
(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;
②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.
【详解】
(1)A,B,C三点的位置如图所示:

(2)①当t=2时,A点表示的数为-4,B点表示的数为5,C点表示的数为12,∴AB=5-(-4)=9,AC=12-(-4)=16.
②3AC-4AB的值不变.
当移动时间为t秒时,A点表示的数为-t-2,B点表示的数为2t+1,C点表示的数为3t +6,则:AC=(3t+6)-(-t-2)=4t+8,AB=(2t+1)-(-t-2)=3t+3,∴3AC-4AB=3(4t+8)-4(3t+3)=12t+24-12t-12=12.
即3AC﹣4AB的值为定值12,∴在移动过程中,3AC﹣4AB的值不变.
【点睛】
本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.36.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.
【解析】
【分析】
(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.
【详解】
解:(1)设所求数为x,
当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;
当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;
故答案为:2或10;
(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,
分三种情况:
①P为(A,B)的优点.
由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),
解得x=20,
∴t=(40﹣20)÷4=5(秒);
②P为(B,A)的优点.
由题意,得PB=2PA,即40﹣x=2(x+20),
解得x=0,
∴t=(40﹣0)÷4=10(秒);
③B为(A,P)的优点.
由题意,得AB=2PA,即60=2(x+20)
解得x=10,
此时,点P为AB的中点,即A也为(B,P)的优点,
∴t=30÷4=7.5(秒);
综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】
本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.
37.2+t6-2t或2t-6
【解析】
分析:(1)、先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B 两点之间的距离;(2)、设BC的长为x,则AC=2x,根据AB的长度得出x的值,从而得出
点C所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.
详解:(1)、由题意知a=-2,b=6,故AB=8.
(2)、设BC的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=8
3
,∴C点表示的数为6-
8 3=
10
3

(3)①2+t;6-2t或2t-6.
②当2+t=6-2t时,解得t=4
3
,当2+t=2t-6时,解得t=8.∴t=
4
3
或8.
点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.
38.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.
【解析】
整体分析:
(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.
解:(1)如图②,∠AOC=120°,
∴∠BOC=180°﹣120°=60°,
又∵OM平分∠BOC,
∴∠BOM=30°,
又∵∠NOM=90°,
∴∠BOM=90°﹣30°=60°,
故答案为60°;
(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,
∴∠AOP=1
2
∠AOC,
∴射线OP是∠AOC的平分线;
(3)如图④,∵∠AOC=120°,
∴∠AON=120°﹣∠NOC,
∵∠MON=90°,
∴∠AON=90°﹣∠AOM,
∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.。

相关文档
最新文档