向量法求空间点到平面的距离最新.ppt

合集下载

用空间向量求点到面的距离 PPT

用空间向量求点到面的距离 PPT

2、求向量—求点到平面内任一点对应的向量AP
3、求法向量—求出平面的一个uuu法r 向r 量
4、代入公式—通过公式 d
|
A
P r
n
|
代入求解.
n
练考题、验能力、轻巧夺冠
[题后感悟] 用向量法求点面距的方法与步骤,n
O
为法向量。
练习.已知平面α的一个法向量n=(-2,-2,1), 点A(-1,3,0)在α内,则P(-2,1,4)到α的距离为________. 解析: d=|P→|An·|n|=|1×-2-+222×+--22+2+-124×1| =130.
答案:
10 3
变式练习:已知正方形ABCD的边长为1,PD⊥平面ABCD, 且PD=1,E,F分别为AB,BC的中点.求点D到平面PEF的距 离;
解析:建立以D为坐标原点,DA,DC,DP分别为x轴, y轴,z轴的空间直角坐标系,如图所示.
则P(0,0,1),A(1,0,0),C(0,1,0), E1,12,0,F12,1,0, E→F=-12,12,0,P→E=1,12,-1, 设平面PEF的法向量n=(x,y,z), 则n·E→F=0,且n·P→E=0, 所以-12x+12y=0, x+12y-z=0.
[例1] 正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别 是C1C,D1A1,AB的中点,求点A到平面EFG的距离.
解: 建系 如图,建立空间直角坐标系,
求向量 求法向量
则 A(2,0,0),E(0,2,1),F(1,0,2),G(2,1,0),
uuur
uuur
∴ EF =(1,-2,1), EG =(2,-1,-1),
uur GA=(0,-1,0).设 n=(x,y,z)是平面 EFG 的法向量,

向量法求空间点到平面的距离课件

向量法求空间点到平面的距离课件
2、向量数量积公式
a•b abcos(为a与b的夹角)
学习交流PPT
2
二、新课
向量法求点到平面的距离
B
n
A
O
1 、剖析 B O : 平 , 如 面垂 图 O ,则 足 , B 到 点 为 平 的面 距离就是
线 B段 的 O 长度。
学习交流PPT
3
例 2、如图,已知正方形 ABCD 的边长为 4,E、F
AB ( 2,1, 0), CB ( 2, 0, 0), CP (0, 1,1) ,
设平面 PBC 的法向量为 n ( x, y, z) ,

n
CB
0
z
n CP 0
(x, y, z)( 2,0,0) 0
(
x,
y,
z)
(0,
1,1)
0

x y
0 z
x
令 y 1, n (0, 1, 1) ,d= 2
向量法求空间点到平面的距离
B
n
A
O
学习交流PPT
1
新课导入: 我们在路上行走时遇到障碍一般会绕过它,在生活中我们知道转弯,那 么在学习上也一样,要想求空间一点到平面距离,就必须找到或间接找 到它,而这样做恰恰是一个比较困难的问题,今天我们就让思维转个弯, 用向量法解决这个难题。
一、复习引入: 1、空间中如何求点到距面离? 方法1、直接做或找距离; 方法2、等体积法; 方法3、空间向量。
2
学习交流PPT
y
7
BE(2,0,0)
设平面 EFG 的一个法向量A
为 n (x, y, z)
E
B
y
学习交流PPT
4
练习1

空间向量解决空间距离问题PPT教学课件

空间向量解决空间距离问题PPT教学课件

取x=1,得平面A1BE的 一个法向量n (1, 2, 2)
z
D1 A1
E
C1 B1
选点B1到面A1BE的斜向量为A1B1 0,1,0,
D
得B1到面A1BE的距离为d
A1B1 n n2 3A来自xCyB
解:1)以D为坐标原点,DA所在的直线为x轴,DC所在的直线为y轴,
DD1所在的直线为z轴,建立空间直角坐标系D xyz,如图所示
位。
让我们走近这两位先哲,让他们思想 的光环也闪耀在我们这一代人的心中!
综合性学习
我所了解的孔子和孟子
圣人孔子
• 孔子,名丘,字仲尼, 春秋时期鲁国人。他 的祖先是宋国贵族, 大约在孔子前几世没 落了,失掉了贵族的 地位,《史记》称 “孔子贫且贱”,孔 子自己也说:“吾少 也贱,故能多鄙事。” (《论语·子罕》)
孔子十五岁立志学习,先后 做过吹鼓手、仓库和牧场管 理员、小司空(掌管工程)及 司寇(掌管刑法),曾拜老子 为师;五十多岁后周游列国, 宣传自己的政治主张。晚年 收徒讲学,并著书立说,编 修整理了《诗》、《书》、 《礼》、《乐》、《周易》、 《春秋》等书,直至七十三 岁逝世。
孔府
亚圣孟子
战国时期伟大的思想家, 名轲,邹(今山东邹县) 人。他幼年丧父,家庭贫 困,在母亲的教导下勤奋 学习。青年时以士的身份 游说诸侯,推行自己的政 治主张,后来退居讲学。 孟子继承和发展了孔子的 思想,提出一套完整的思 想体系,对后世产生了极 大的影响,被尊奉为“亚 圣”。
n
P
四种距离的统一向量形式:
点到平面的距离:
直线到平面的距离:
d
|
AP n |
平面到平面的距离:
n
异面直线的距离:

高中数学第二章空间向量与立体几何2.6距离的计算2.6.1

高中数学第二章空间向量与立体几何2.6距离的计算2.6.1

题型一
题型二
题型三
反思计算空间中两点间的距离一般有三种方法: (1)构造三角形,通过解三角形求解; (2)建立适当的空间直角坐标系,求出两点的坐标,利用公式求解; (3)把线段用向量表示,转化为求向量的模,利用|a|2=a· a求解.
题型一
题型二
题型三
【变式训练1】
如图所示,已知线段AB在平面α内,线段AC⊥α,线段BD⊥AB,线段 DD'⊥α于D',如果∠DBD'=30°,AB=a,AC=BD=b,求CD的长. 分析:求CD的长就是求 |������������|,把������������ 用已知的有向线段表示出来再 求.
=|������������|2+|������������ |2+| ������������ |2+2(������������ ·������������ + ������������ ·������������ + ������������ ·������������ ) =b2+a2+b2+2(0+b2cos 60° + 0)=a2+3b2,
2.6.1
点到直线的距离、点到平面的距离
1.理解点到直线的距离、点到平面的距离的概念. 2.掌握点到直线的距离公式、点到平面的距离公式. 3.体会用向量法求点到直线的距离、点到平面的距离的解题思 想.
1.点到直线的距离 (1)因为直线和直线外一点确定一个平面,所以空间点到直线的距 a 2
)
������ D. 2
B.a
C. 2a
答案 :A
2.点到平面的距离 (1)如图所示,设 π 是过点 P 垂直于向量 n 的平面 ,A 是平面 π 外 一定点.作 AA'⊥π,垂足为 A',则点 A 到平面 π 的距离 d 等于线段 AA' 的长度.而向量������������在 n 上的投影的大小| ������������· n0|等于线段 AA'的长度, 所以点 A 到平面 π 的距离 d=| ������������· n0|.

向量法求空间距离说课数学说课教学课件

向量法求空间距离说课数学说课教学课件
向量法求空间距离说课数学说课教 学课件
目 录
• 引言 • 向量法基础知识 • 空间距离的定义与计算 • 向量法求空间距离的原理 • 向量法求空间距离的教学设计 • 向量法求空间距离的实践与应用
01 引言
主题介绍
主题名称
向量法求空间距离
主题内容
本主题将介绍如何使用向量法来求解空间中两点之间的距离。通过向量法,我 们可以将三维空间中的距离问题转化为向量模长的计算问题,从而简化计算过 程。
利用向量的模长计算两点之间的距离。
04 向量法求空间距离的原理
向量法的基本原理
01
向量法是一种基于向量运算的数 学方法,通过向量的加、减、数 乘和向量的模长等运算来解决问 题。
02
向量法的基本原理是利用向量的 模长来表示空间距离,通过向量 的点乘和叉乘来计算空间角度和 方向。
向量法在求空间距离中的应用
空间距离的几何意义
空间距离表示点与点之间的最短 路径,即两点之间直线段长度。
空间距离具有度量性质,可以用 于测量和计算物体之间的距离。
空间距离具有对称性,即两点之 间的距离是相互的,一个点到另 一个点的距离等于另一个点到这
个点的距离。
空间距离的计算方法
通过勾股定理计算两点之间的距离。
利用三维坐标系中的坐标值计算两点 之间的距离。
步骤二
02 根据向量的坐标表示,计算向
量。
步骤三
03 利用向量的模长公式计算距离

步骤四
04 根据需要,进行相关的向量运
算(如点乘、叉乘)以得出最 终结果。
实例
05 求点A(1,2,3)和点B(4,5,6)之间量AB的坐标表示,
然后利用模长公式计算AB的长 度,即空间距离。

用向量法求空间距离课件

用向量法求空间距离课件
奇异点
在某些情况下,向量法求空间距离可 能会遇到奇异点,即某些点的坐标值 可能为无穷大或不确定。对于这些点 ,应采取适当的处理方式,如排除或 进行特殊处理。
实际应用中的考虑因素
坐标系选择
在实际应用中,应根据问题的具体情 况选择合适的坐标系,如笛卡尔坐标 系、极坐标系等。不同的坐标系可能 会影响向量法求空间距离的结果。
03
向量法求空间距离的实例解析
点到直线的距离实例
总结词
利用向量法求点到直线的最短距离
详细描述
首先,我们需要确定直线和点在三维空间中的坐标。然后,通过向量的点积和向量的模长,我们可以计算出点到 直线的向量。最后,利用向量法公式,我们可以求出点到直线的最短距离。
点到平面的距离实例
总结词
利用向量法求点到平面的最短距离
未来研究的方向与展望
1 2
深入研究向量法的理论基础
进一步探讨向量法的数学基础和原理,提高其理 论水平。
拓展向量法的应用领域
发掘向量法在其他领域的应用价值,如机器学习 、数据分析和人工智能等。
3
开发向量法的算法优化
针对向量法的计算过程进行优化,提高其计算效 率和精度。
THANKS
感谢观看
用向量法求空间距离课件
目 录
• 向量法求空间距离的基本概念 • 向量法求空间距离的公式推导 • 向量法求空间距离的实例解析 • 向量法求空间距离的注意事项 • 总结与展望
01
向量法求空间距离的基本概念
向量的概念
向量
既有大小又有方向的量。
向量的表示
用有方向的线段表示向量,线段的长度表示向量 的大小,箭头表示向量的方向。
向量法求空间距离的优势与局限性
• 适用范围广:向量法不仅可以用于求解空间距离,还可以 用于解决其他几何问题。

空间向量求距离PPT课件

空间向量求距离PPT课件

D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2).
EF (2, 2,0), EG (2, 4, 2),
设平面 EFG 的一个法向量为 n (x, y, z)x
D
C
n
EF,n
EG
2x 2y 0 2x 4 y 2
0
F
n ( 1 , 1 ,1) ,BE (2,0,0) A
M
22
解得 2 x y z ,
A
2
x
B
∴可取 m ( 2,1, 1)
∴ MA 在 n 上的射影长 d MA n a 即点 A 到平面 MNC 的距离为 a .
n2
2
第6页/共17页
二、求直线与平面间距离
例2、已知正方形ABCD的边长为4,CG⊥平面ABCD,
CG=2,E、F分别是AB、AD的中点,求直线BD到平面 GEF的距离。
.
练习5
已知正方体ABCD-A1B1C1D1的棱长为1,求
异面直线DA1与AC的距离。z
D1
C1
A1
B1
D
A x
第15页/共17页
C y
B
练习6:如图,
ABCD是正方形,SB 面ABCD,且SA与 面ABCD所成的角为45,点S到面ABCD的 距离为1,求AC与SD的距离。
z S
B
Ay
xC
D
第16页/共17页
n CE 0 即 x y 0
(
x,
y,
z).则
A1
C1
z
B1
n AB1 0
2x 2 y 4z 0
C
取x=1,z则y=-1,z=1,所以 n (1,1,1)

向量法求空间点到平面的距离ppt课件

向量法求空间点到平面的距离ppt课件

BA BO
BO
AB n
量的方向,可以得到点B到平面的距离为BO

n
3、因此要求一个点到平面的距离,可以分为以下三个步骤:(1)找 出从该点出发的平面的任一条斜线段对应的向量;(2)求出该平 面的一个法向量;(3)求出法向量与斜线段对应的向量的数量积 的绝对值再除以法向量的模,即可求出点到平面距离。
5
例 2、如图,已知正方形 ABCD 的边长为 4,E、F
分别是 求点 B
AB、AD 的中点,GC⊥平面 到平面 EFG 的距离.
ABCD,且
GC=2z,
G
解:如图,建立空间直角坐标系 C-xyz.
由题设 C(0,0,0),A(4,4,0),B(0,4,0),
D(4,0,0),E(2,4,0),
F(4,2,0),G(0,0,2).
AB ( 2,1, 0), CB ( 2, 0, 0), CP (0, 1,1) ,
设平面 PBC 的法向量为 n ( x, y, z) ,

n

CB

0
n CP 0
(x, y, z)( 2,0,0) 0
(
x,
பைடு நூலகம்
y,
z)

(0,
xD
C
EF (2, 2, 0), EG (2, 4, 2), F
BE (2, 0, 0)
设平面 EFG 的一个法向量A
为 n (x, y, z)
E
B
y
6
n EF,n EG
2x 2y 0 2x 4 y 2 0
n ( 1 , 1 ,1) 33
向量法求空间点到平面的距离

用向量方法求空间中的距离 课件

用向量方法求空间中的距离  课件
||·cos∠ABO=
||||cos∠
.
||
如果令平面 α 的法向量为 n,考虑到法向量的方向,可以得到点 B
到平面 α 的距离为|| =
|·|
.
||
因此要求一个点到平面的距离,可以分以下几步完成:(1)求出该
平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应
|·|
||
=
3 3
5
=
3 15
.
5
错因分析:错误的根本原因是忽视了求点面距时,应是用平面内
一点与该点构成的向量与平面的法向量来求.实际上本例中 O∉平面
MBC,选择求点A 到平面 MBC 的距离是错误的,应选向量(或
, ).
正解:(接错解)又 = (0,0,2 3),
则点 A 到平面 MBC 的距离 d=
解:建立坐标系如图,则 A(1,0,0),F(1,1,0),C(0,0,1).
(1)∵CM=BN=a(0<a< 2), 且四边形ABCD,ABEF 为正方形,

2
2
,0,1-
2
2
2
2
, ,0
2
2
,
,
2
2
∴ = 0,
,
-1 .
2
2
∴|| = 2 - 2 + 1,
即 MN 的长为 2 - 2 + 1.
的向量;(3)求出法向量与斜线段对应的向量的数量积的绝对值再除

以法向量的模,即可求出点到平面的距离.因为 =n0 可以视为平面
||
的单位法向量,所以点到平面的距离实质就是平面的单位法向量与
从该点出发的斜线段对应的向量的数量积的绝对值,即 d=| ·n0|.

用向量法求空间距离ppt课件

用向量法求空间距离ppt课件
9.8 距离 用向量法求空间距离
1
上节课,我们学习了用立几的方法求距离,我
们来简单回忆一下:
点到平面的距离 直线到与它平行平面的距离
两个平行平面的距离 异面直线的距离
2
如何用向量法求解点到平面的距离呢?
已知点P和面ABCD, 用向量法求解就得构造向量,比如说 AP
过P点作PH垂直平面并交平面于点H,则PH的长为所求
A x x
A
Cy B
B
1200
y C
接下来我们要求面SBC的法向量了
SB (a, 3a, 3a), SC (0, 2 3a, 3a)
n (x, y, z), n SB, n SC
ax 3ay 3az 0, 2 3ay 3az 0
一个平面的法向量有很多,只要满足 上面的这个等式即可,为了计算的方 便,我们通常会要相对简洁的数字组 成的法向量,可以令z=1,则得到平 面SBC的一个法向量了:
首先我们建立空间直角坐标系,求出两异面直线的法向量
A D
A1
D1
B C
B1
AC (1,1, 0), A1D (1, 0,1) n (1, 1, 1)
则两异面直线间的距离d为:
C1
d A1A n (0, 0,1) (1, 1, 1) 3
n
3
3
经过了上面几道例题,我们已经熟悉并掌握了用向量法求空间距
P
我们发现,PH 垂直平面ABCD,
我们可以理解成面ABCD的法向量 n
AP, PH
AP, n
PH AP COS AP, PH
A
B AP COS AP, n
AP n
H
AP AP n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设平面 PBC 的法向量为 n ( x, y, z) ,

n
CB
0
n CP 0
(x, y, z)( 2,0,0) 0
(
x,
y,
z)
(0,
1,1)
0

x y
0 z
令 y 1, n (0, 1, 1) ,d= 2
2
;.;
z x
y
10
课下作业、在三棱锥B ACD中, 平面ABD 平面ACD,若棱长 AC CD AD AB 1,且BABA BO
BO
AB• n
量的方向,可以得到点B到平面的距离为BO

n
3、因此要求一个点到平面的距离,可以分为以下三个步骤:(1)找 出从该点出发的平面的任一条斜线段对应的向量;(2)求出该平 面的一个法向量;(3)求出法向量与斜线段对应的向量的数量积 的绝对值再除以法向量的模,即可求出点到平面距离。
2、向量数量积公式
a • b a b cos (为a与b的夹角)
;.;
2
二、新课
向量法求点到平面的距 离
B
n
A
O
1、剖析:如图, BO 平面,垂足为 O,则点B到平面的距离就是
线段BO的长度。
;.;
3
2、若AB是平面的任一条斜线段,则在RtBOA中,BO BA • cosABO
BA BA• BO BA• BO ,如果令平面的法向量为n,考虑到法向
13
;.;
11
小结:向量法求点到平面的距离 要求一个点到平面的距离,可以分为以下三个步骤: (1)找出从该点出发的平面的任一条斜线段对应的向量; (2)求出该平面的一个法向量; (3)求出法向量与斜线段对应的向量的数量积的绝对值 再除以法向量的模,即可求出点到平面距离。
;.;
12
分别是 求点 B
AB、AD 的中点,GC⊥平面 到平面 EFG 的距离.
ABCD,且
GC=2z,
G
解:如图,建立空间直角坐标系 C-xyz.
由题设 C(0,0,0),A(4,4,0),B(0,4,0),
D(4,0,0),E(2,4,0),
F(4,2,0),G(0,0,2).
xD
C
EF (2, 2, 0), EG (2, 4, 2), F
;.;
8
;.;
9
练习 2、如图,PA⊥平面 ABC,AC⊥BC,PA=AC=1, BC= 2 ,求点 P 到面 PBC 的距离.
解:建立坐标系如图, 则 A(0,0,0),B( 2 ,1,0),C(0,1,0),P(0,0,1),
AB ( 2,1, 0), CB ( 2, 0, 0), CP (0, 1,1) ,
;.;
4
思考、已知不共线的三点坐标,如何求经过这三点的 平面的一个法向量? 例 1、在空间直角坐标系中,已知 A(3,0,0), B(0,4,0) , C(0,0, 2) ,试求平面 ABC 的一个法向量.
解:设平面 ABC 的一个法向量为 n ( x, y, z)
则 n AB ,n AC .∵ AB (3, 4, 0) , AC (3, 0, 2)
BE (2, 0, 0)
设平面 EFG 的一个法向量A
为 n (x, y, z)
E
B
y
;.;
6
n EF,n EG
2x 2y 0 2x 4 y 2 0
n ( 1 , 1 ,1) 33
d | n BE| 2 11
n
11
点评:斜线段也可以选择BF或者BG都行,
;.;
7
练习1
向量法求空间点到平面的距离
B
n
A
O
;.;
1
新课导入: 我们在路上行走时遇到障碍一般会绕过它,在生活中我们知道转弯,那 么在学习上也一样,要想求空间一点到平面距离,就必须找到或间接找 到它,而这样做恰恰是一个比较困难的问题,今天我们就让思维转个弯, 用向量法解决这个难题。
一、复习引入: 1、空间中如何求点到面 距离? 方法1、直接做或找距离; 方法2、等体积法; 方法3、空间向量。

( (
x, x,
y, y,
z) z)
(3, (3,
4, 0,
0) 2)
0 0

3 x 3 x
4y 2z
0 0
取 x 4,则 n (4, 3, 6)

y z
3 4 3 2
x x
∴ n (4, 3, 6) 是平面 ABC 的一个法向量.
;.;
5
例 2、如图,已知正方形 ABCD 的边长为 4,E、F
相关文档
最新文档