2018-2019学年江苏省宿迁市泗阳县八年级(下)期末数学试卷解析版

合集下载

2018-2019学年苏科版初二数学下册期末考试试题(含答案)

2018-2019学年苏科版初二数学下册期末考试试题(含答案)

2018-2019学年八年级(下)期末数学试卷一、选择题(每小题3分,共18分)1.(3分)化简的结果是()A.﹣4B.4C.C.±4D.162.(3分)如果把分式中x、y的值都扩大为原来的2倍,则分式的值()A.扩大为原来的4 倍B.扩大为原来的2倍C.不变D.缩小为原来的3.(3分)将一元二次方程x2﹣6x﹣3=0配方后为()A.(x+3)2=0B.(x+3)2=12C.(x﹣3)2=0D.(x﹣3)2=12 4.(3分)矩形不一定具有的性质是()A.对角线相等B.四个角相等C.对角线互相垂直D.对角线互相平分5.(3分)下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件6.(3分)如图,正方形ABCD的顶点A、B在x轴上,顶点D在反比例函数y=(k>0)的图象上,CA的延长线交y轴于点E,连接BE.若S=2,则k的值为()△ABEA.1B.2C.3D.4二、填空题(每小题3分,共30分)7.(3分)当x时,代数式有意义.8.(3分)若关于x 的方程+2=有增根,则增根为 .9.(3分)已知反比例函数(x >0),y 随x 的增大而增大,则m 的取值范围是 .10.(3分)已知x 1,x 2是方程3x 2﹣4x +1=0的两根,则x 12+x 22= .11.(3分)如图,在▱ABCD 中,E 是边BC 上一点,且AB =BE ,AE 、DC 的延长线相交于点F ,∠F =62°,则∠D = °.12.(3分)已知a 是的小数部分,则a 2+2a +2= .13.(3分)如图,在△ABC 中,已知BC =12,AC =14,点M 、N 、P 分别是AB 、BC 、AC 的中点,则四边形MNCP 的周长为 .14.(3分)函数y =与y =3x ﹣2图象的交点坐标为(a ,b ),则﹣的值为 .15.(3分)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,若AH =DH ,则∠DHO = .16.(3分)如图,矩形纸片ABCD 中,AB =8,BC =12,将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值为 .三、解答题(本大题共102分)17.(10分)计算:(1)(﹣)﹣2+﹣﹣(﹣3)0(2)(﹣1)2﹣(4+)(4﹣)18.(10分)解方程:(1)2x2﹣5x﹣3=0(用公式法)(2)+=419.(8分)先化简,再求值:+÷,其中a=+2.20.(8分)已知x、y为实数,且﹣6y+9=0,(1)分别求出x、y的值;(2)求+的值.21.(10分)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了一部分学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:根据以上提供的信息,解答下列问题:(1)补全条形统计图.(2)a=,n=;(3)若该校共有学生1500名,根据抽样调查结果,估计该校最喜爱《朗读者》节目的学生有多少名?22.(10分)已知,关于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求m的值.23.(10分)如图,已知△ABC的三个顶点坐标为A(﹣3,4)、B(﹣7,1)、C(﹣2,1).(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.24.(10分)某风景区的旅游信息如下表:某公司组织一批员工到该风景区旅游,支付旅行费用29250元.(1)请求出参加这次旅游的人数;(2)若该公司又组织第二批员工50人到该风景区旅游并支付了这批员工的费用.如果这两批员工合并成一批去旅游,则该公司可节约旅游费用多少元?25.(12分)如图,点A、B为反比例函数y=(k>0,x>0)图象上的两个动点,其横坐标分别为a、a+3,过点A、B分别作x轴的垂线交x轴于点C、D,过点B作y轴的垂线BE,垂足为E,BE交AC于点F,矩形OEBD的面积为4.(1)求k的值;=4,求a的值;(2)若S△ABE(3)若a>1,试比较AF、BF的大小,并说明理由.26.(14分)已知在正方形ABCD中,E为BC边上一点,F为CD边上一点.(1)若AE=BF.①如图1,AE与BF有怎样的位置关系?请说明理由.②如图2,连接AF、EF,如果AB=6,那么△AEF的面积有可能等于8吗?若有可能,请求出此时BE的长;若不可能,请说明理由.(2)如图3,G为AB边上一点,满足FG⊥AE,垂足为H,延长CD至点M,使DM =BE,连接AM.①求证:四边形AMFG是平行四边形.②当AG=4,DF=2,∠EAB=15°时,请直接写出正方形ABCD的边长.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共18分)1.(3分)化简的结果是()A.﹣4B.4C.C.±4D.16【分析】先算出的值,再根据算术平方根的定义直接进行计算即可.【解答】解:∵==4,∴的结果等于4.故选:B.【点评】本题考查的是算术平方根的定义,把化为的形式是解答此题的关键.2.(3分)如果把分式中x、y的值都扩大为原来的2倍,则分式的值()A.扩大为原来的4 倍B.扩大为原来的2倍C.不变D.缩小为原来的【分析】由于把分式中的x与y都扩大为原来的2倍,则分式中的分子扩大为原来的4倍,分母扩大为原来的2倍,于是得到分式的值扩大为原来的2倍.【解答】解:∵分式中的x与y都扩大为原来的2倍,∴分式中的分子扩大为原来的4倍,分母扩大为原来的2倍,∴分式的值扩大为原来的2倍.故选:B.【点评】本题考查了分式的基本性质:分式的分子和分母都乘以(或除以)一个不为0的数(或式子),分式的值不变.3.(3分)将一元二次方程x2﹣6x﹣3=0配方后为()A.(x+3)2=0B.(x+3)2=12C.(x﹣3)2=0D.(x﹣3)2=12【分析】移项,配方,即可得出选项.【解答】解:x2﹣6x﹣3=0,x2﹣6x=,3,x2﹣6x+9=3+9,(x﹣3)2=12,故选:D.【点评】本题考查了解一元二次方程,能够正确配方是解此题的关键.4.(3分)矩形不一定具有的性质是()A.对角线相等B.四个角相等C.对角线互相垂直D.对角线互相平分【分析】根据矩形的性质即可判断;【解答】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、D正确,故选:C.【点评】本题考查矩形的性质,解题的关键是记住矩形的性质:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.5.(3分)下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件【分析】根据普查和抽样调查的意义可判断出A的正误;根据概率的意义可判断出B、C、的正误;根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定D的正误.【解答】解:A、对载人航天器零部件的检查,应采用全面调查的方式,故错误;B、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故错误;C、抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故正确;D、掷一枚骰子,点数3朝上是随机事件,故错误;故选:C.【点评】本题考查了概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小.6.(3分)如图,正方形ABCD的顶点A、B在x轴上,顶点D在反比例函数y=(k>0)的图象上,CA的延长线交y轴于点E,连接BE.若S=2,则k的值为()△ABEA.1B.2C.3D.4【分析】设正方形ABCD的边长为a,A(x,0),则D(x,a),再由点D在反比例函数y=的图象上可知,k=xa,根据正方形的性质得出∠CAB的度数,根据对顶角相等可得出∠OAE的度数,进而判断出△OAE的形状,故可得出E点坐标,根据△ABE 的面积为2即可得出k的值.【解答】解:设正方形ABCD的边长为a,A(x,0),则D(x,a),∵点D在反比例函数y=的图象上,∴k=xa,∵四边形ABCD是正方形,∴∠CAB=45°,∴∠OAE=∠CAB=45°,∴△OAE是等腰直角三角形,∴E(0,﹣x),∴S=AB•OE=ax=2,△ABE∴ax=4,即k=4.故选:D.【点评】本题考查的是反比例系数k的几何意义,涉及到正方形的性质及反比例函数图象上点的坐标特点等相关知识,难度适中.二、填空题(每小题3分,共30分)7.(3分)当x x≥﹣2时,代数式有意义.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.8.(3分)若关于x的方程+2=有增根,则增根为x=4.【分析】分式方程去分母转化为整式方程,由分式方程有增根,求出x的值即可.【解答】解:分式方程的最简公分母为x﹣4,由分式方程有增根,得到x﹣4=0,解得:x=4,则增根为x=4,故答案为:x=4【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.(3分)已知反比例函数(x>0),y随x的增大而增大,则m的取值范围是m <1.【分析】根据反比例函数的性质可得m﹣1<0,解不等式即可.【解答】解:∵反比例函数(x>0),y随x的增大而增大,∴m﹣1<0,解得:m<1.故答案为:m<1.【点评】此题主要考查了反比例函数的性质,对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.10.(3分)已知x1,x2是方程3x2﹣4x+1=0的两根,则x12+x22=.【分析】由根与系数的关系求得x1+x2=,x1•x2=,然后将其代入变形后的所求代数式进行求值(x12+x22=(x1+x2)2﹣2x1•x2)【解答】解:∵x1,x2是方程3x2﹣4x+1=0的两根,∴x1+x2=,x1•x2=,∴x12+x22=(x1+x2)2﹣2x1•x2=()2﹣2×=.故答案是:.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.11.(3分)如图,在▱ABCD中,E是边BC上一点,且AB=BE,AE、DC的延长线相交于点F,∠F=62°,则∠D=56°.【分析】由平行四边形的性质得出∠D=∠B,AB∥CD,得出∠BAE=∠F=62°,由等腰三角形的性质和三角形内角和定理求出∠B=56°,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B,AB∥CD,∴∠BAE=∠F=62°,∵AB=BE,∴∠AEB=∠BAE=62°,∴∠B=180°﹣2×62°=56°,∴∠D=56°.故答案为56.【点评】本题考查了平行四边形的性质、等腰三角形的性质、三角形内角和定理;熟练掌握平行四边形的性质,由等腰三角形的性质和三角形内角和定理求出∠B是解决问题的关键.12.(3分)已知a是的小数部分,则a2+2a+2=4.【分析】先求出的范围,求出a的值,代入求出即可.【解答】解:∵1<<2,∴a=﹣1,∴a2+2a+2=+2=3﹣2+1+2﹣2+2=4.故答案为:4.【点评】本题考查了估算无理数的大小,解决本题的关键是估算出的范围.13.(3分)如图,在△ABC中,已知BC=12,AC=14,点M、N、P分别是AB、BC、AC的中点,则四边形MNCP的周长为26.【分析】首先证明四边形MNCP是平行四边形,根据三角形中位线定理求出MP、MN 即可解决问题.【解答】解:∵点M、N分别是AB、BC的中点,AC=14,∴MN是△ABC的中位线,MN=AC=7,MN∥AC,同理,MP是△ABC的中位线,∴MP=BC=6,MP∥BC,∴四边形MNCP是平行四边形,∴四边形MNCP的周长=2(MP+MN)=26.故答案为:26.【点评】本题考查三角形中位线定理、平行四边形的判定和性质等知识,解题的关键是出现中点想到三角形中位线定理,记住三角形中位线平行于第三边且等于第三边的一半,属于中考常考题型.14.(3分)函数y=与y=3x﹣2图象的交点坐标为(a,b),则﹣的值为.【分析】根据反比例函数与一次函数的交点问题,解方程组:,可得到交点坐标,则得到a与b的值,然后把a、b的值代入﹣中计算即可.【解答】解:根据题意得:,解得,,所以函数y=与y=3x﹣2图象的交点坐标为(1,1)或(﹣,﹣3),即a=1,b=1或a=﹣,b=﹣3当a=1,b=1时,则﹣=1﹣=当a=﹣,b=﹣3时,则﹣=﹣﹣=.故答案为.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.15.(3分)如图,菱形ABCD的对角线AC、BD相交于点O,DH⊥AB于点H,连接OH,若AH=DH,则∠DHO=22.5°.【分析】求出∠HDO,再证明∠DHO=∠HDO即可解决问题;【解答】解:∵AH=DH,DH⊥AB,∴∠DAH=∠ADH=45°,∵四边形ABCD是菱形,∴∠DAO=∠DAB=22.5°,AC⊥BD,∴∠AOD=90°,∠ADO=67.5°,∴∠HDO=∠ADO﹣∠ADH=22.5°,∵∠DHB=90°,DO=OB,∴OH=OD,∴∠DHO=∠HDO=22.5°故答案为22.5°【点评】本题考查了菱形的性质:有一组邻边相等的平行四边形叫做菱形.熟练掌握菱形的性质(菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角).解决(1)小题的关键是判断OH为直角三角形斜边上的中线.16.(3分)如图,矩形纸片ABCD中,AB=8,BC=12,将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值为10.【分析】因为要使剪掉的等腰直角三角形的面积最大,必须它的斜边最大.如图BC>AF,CE>CD,所以依次作出三个等腰直角三角形,此时剩下的面积最小【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF 是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD 中剪去△ABF ,△BCE ,△ECG 得到四边形EFDG ,余下部分为直角梯形,上底为12﹣8=4,下底为6,高为2,所以面积为10.故答案为:10【点评】本题考查几何最值问题、等腰直角三角形性质等知识,解题的关键是探究出如何确定三个等腰直角三角形,属于中考选择题中的压轴题.三、解答题(本大题共102分)17.(10分)计算:(1)(﹣)﹣2+﹣﹣(﹣3)0(2)(﹣1)2﹣(4+)(4﹣) 【分析】(1)根据零指数幂以及负整数指数幂的意义即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【解答】解:(1)原式=9+2﹣2﹣1=8(2)原式=5﹣2+1﹣(16﹣5)=6﹣2﹣11=﹣5﹣2 【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.18.(10分)解方程:(1)2x 2﹣5x ﹣3=0(用公式法)(2)+=4【分析】(1)求出b 2﹣4ac 的值,再代入公式求出即可;(2)先把分式方程转化成整式方程,求出方程的解,再进行检验即可.【解答】解:(1)2x 2﹣5x ﹣3=0,b 2﹣4ac =(﹣5)2﹣4×2×(﹣3)=49,x=,x1=3,x2=﹣;(2)方程两边都乘以x﹣7得:x﹣8﹣2=4(x﹣7),解得:x=6,检验:当x=6时,x﹣7≠0,所以x=6是原方程的解,即原方程的解是x=6.【点评】本题考查了解一元二次方程和解分式方程,能熟记公式是解(1)的关键,能把分式方程转化成整式方程是解(2)的关键.19.(8分)先化简,再求值:+÷,其中a=+2.【分析】先把除法变成乘法,算乘法,再算加法,最后代入求出即可.【解答】解:原式=+•=+==,当a=+2时,原式==.【点评】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.20.(8分)已知x、y为实数,且﹣6y+9=0,(1)分别求出x、y的值;(2)求+的值.【分析】(1)由原式得出+(y﹣3)2=0,根据非负数性质得4﹣x=0且y﹣3=0,解之可得答案;(2)将x、y的值代入计算可得.【解答】解:(1)∵﹣6y+9=0,∴+(y﹣3)2=0,∴4﹣x=0且y﹣3=0,解得:x=4、y=3;(2)当x=4、y=3时,原式=+=+=.【点评】本题主要考查非负数性质,解题的关键是掌握算术平方根和偶次乘方结果均为非负数及二次根式的运算法则.21.(10分)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了一部分学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:根据以上提供的信息,解答下列问题:(1)补全条形统计图.(2)a=30,n=144;(3)若该校共有学生1500名,根据抽样调查结果,估计该校最喜爱《朗读者》节目的学生有多少名?【分析】(1)用“最强大脑”人数除以对应百分比求得总人数,用总人数减去其他节目人数求得“中国诗词大会”的人数即可补全图形;(2)用“朗诵者”人数除以总人数可求得a的值,用360°乘以“中国诗词大会”对应的百分比可得n的值;(3)用总人数乘以“朗读者”对应的百分比可得.【解答】解:(1)∵总人数为5÷10%=50人,∴“中国诗词大会”的人数为50﹣(5+15+10)=20人,补全图形如下:(2)a%=×100%=30%,即a=30,“中国诗词大会”所对应的圆心角度数为360°×40%=144°,即n=144,故答案为:30、144;(3)估计该校最喜爱《朗读者》节目的学生有1500×30%=450人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(10分)已知,关于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求m的值.【分析】(1)由△=(﹣m)2﹣4×1×(m2﹣1)=4>0即可得;(2)将x=2代入方程得到关于m的方程,解之可得.【解答】解:(1)∵△=(﹣m)2﹣4×1×(m2﹣1)=m2﹣m2+4=4>0,∴方程有两个不相等的实数根;(2)将x=2代入方程,得:4﹣2m+m2﹣1=0,整理,得:m2﹣8m+12=0,解得:m=2或m=6.【点评】本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.23.(10分)如图,已知△ABC的三个顶点坐标为A(﹣3,4)、B(﹣7,1)、C(﹣2,1).(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标(3,﹣4);(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标(2,4)或(﹣8,4)或(﹣6,﹣2).【分析】(1)直接利用关于原点对称点的性质得出对应点位置进而得出答案;(2)利用平行四边形的性质进而得出答案.【解答】解(1)如图所示:△A′B′C′,即为所求,A′(3,﹣4);故答案为:(3,﹣4);(2)如图所示:以A、B、C为顶点的平行四边形的第四个顶点D的坐标为:(2,4)或(﹣8,4)或(﹣6,﹣2).故答案为:(2,4)或(﹣8,4)或(﹣6,﹣2).【点评】此题主要考查了旋转变换以及平行四边形的性质,正确得出对应点位置是解题关键.24.(10分)某风景区的旅游信息如下表:某公司组织一批员工到该风景区旅游,支付旅行费用29250元.(1)请求出参加这次旅游的人数;(2)若该公司又组织第二批员工50人到该风景区旅游并支付了这批员工的费用.如果这两批员工合并成一批去旅游,则该公司可节约旅游费用多少元?【分析】(1)设有x人参加这次旅游,求出人数为30时的旅游费用,比较后可得出x >30,根据旅游费用=人数×人均费用,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)求出公司为第二批员工支付的旅游费,求出两批员工合并成一批后的人均费用,再根据节约的费用=前两批旅游费用的和﹣人数×人均费用,即可求出结论.【解答】解:(1)设有x人参加这次旅游,∵30×800=24000(元),24000<29250,∴x>30.根据题意得:x[800﹣10(x﹣30)]=29250,解得:x1=45,x2=65(不合题意,舍去).答:参加这次旅游的有45人.(2)公司为第二批员工支付旅游费50×[800﹣10×(50﹣30)]=30000(元),两批员工合并成一批后的人均费用800﹣10×(45+50﹣30)=150(元),∵150<550,∴两批员工合并成一批后的人均费用为550元,∴节约的旅游费用为29250+30000﹣(45+50)×550=7000(元).答:如果这两批员工合并成一批去旅游,则该公司可节约旅游费用7000元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.25.(12分)如图,点A、B为反比例函数y=(k>0,x>0)图象上的两个动点,其横坐标分别为a、a+3,过点A、B分别作x轴的垂线交x轴于点C、D,过点B作y轴的垂线BE,垂足为E,BE交AC于点F,矩形OEBD的面积为4.(1)求k的值;=4,求a的值;(2)若S△ABE(3)若a>1,试比较AF、BF的大小,并说明理由.【分析】(1)根据反比例函数系数k的几何意义即可求解;(2)根据反比例函数图象上点的坐标特征可得A(a,),B(a+3,),那么BE=4列出方程,解方程即可;=a+3,AF=﹣,利用S△ABE(3)先表示出AF=﹣=,BF=(a+3)﹣a=3,再由a>1,利用不等式的性质得出a(a+3)>1×4=4,那么<3,即AF<BF.【解答】解:(1)∵点B为反比例函数y=(k>0,x>0)图象上的点,矩形OEBD的面积为4,∴k=4;(2)∵点A、B为反比例函数y=(k>0,x>0)图象上的两个动点,其横坐标分别为a、a+3,∴A(a,),B(a+3,),∴BE=a+3,AF=﹣,=BE•AF=(a+3)(﹣)=4,∴S△ABE解得a=;(3)∵AF=﹣=,BF=(a+3)﹣a=3,∵a>1,∴a(a+3)>1×4=4,∴<3,∴AF<BF.【点评】本题考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.也考查了反比例函数图象上点的坐标特征,三角形的面积,不等式的性质.26.(14分)已知在正方形ABCD中,E为BC边上一点,F为CD边上一点.(1)若AE=BF.①如图1,AE与BF有怎样的位置关系?请说明理由.②如图2,连接AF、EF,如果AB=6,那么△AEF的面积有可能等于8吗?若有可能,请求出此时BE的长;若不可能,请说明理由.(2)如图3,G为AB边上一点,满足FG⊥AE,垂足为H,延长CD至点M,使DM =BE,连接AM.①求证:四边形AMFG是平行四边形.②当AG=4,DF=2,∠EAB=15°时,请直接写出正方形ABCD的边长4+2.【分析】(1)①只要证明Rt△ABE≌Rt△BCF,即可解决问题;②根据一元二次方程,利用判别式解决问题即可;(2)①想办法证明AM∥FG,FM∥AG即可解决问题;②如图3﹣1中,在AB上截取一点H,使得AH=EH.构造30度角的直角三角形即可解决问题;【解答】(1)解:①结论:AE⊥BF.理由:如图1在,设AE交BF于K.∵四边形ABCD是正方形,∴∠ABE=∠ACF=90°,AB=BC,∵AE=BF,AB=BC,∴Rt△ABE≌Rt△BCF,∴∠BAE=∠CBF,∵∠BAE+∠AEB=90°,∴∠CBF+∠AEB=90°,∴∠BKE=90°,∴AE⊥BF.②∵Rt△ABE≌Rt△BCF,∴BE=CF,设BE=x,则FC=x,CE=6﹣x,∴S △FAE =S 四边形ABCF ﹣S △ABE ﹣S △ECF=×6﹣×6×x ﹣×x ×(6﹣x )=x 2﹣3x +18若△FBE 的面积等于8,则x 2﹣3x +16=8,整理得:x 2﹣6x +16=0,∵△<0,∴方程无解,∴△AEF 的面积不可能等于8;(2)①证明:如图3中,∵AD =AB ,∠ADM =∠ABE =90°,DM =BE ,∴△ADM ≌△ABE ,∴∠MAD =∠EAB ,∴∠MAE =∠DAB =90°,∴AM ⊥AE ,∵FG ⊥AE ,∴AM ∥FG ,∵MF ∥AG ,∴四边形AGFM 是平行四边形.②如图3﹣1中,在AB 上截取一点T ,使得AT =ET .∵∠EAB=15°,TA=TE,∴∠TAE=∠TEA=15°,∴∠ETB=30°,∵四边形AGFM是平行四边形,∴AG=FM=4,∵DF=2,∴DM=BE=2,∴AT=ET=4,BT=2,∴AB=AT+BT=4+2.故答案为4+2.【点评】本题考查四边形综合题、全等三角形的判定和性质、平行四边形的判定和性质、直角三角形30度角的性质等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,构造特殊三角形解决问题,属于中考压轴题.。

苏教版2018-2019学年八年级(下)期末考试数学试卷(附答案详解)

苏教版2018-2019学年八年级(下)期末考试数学试卷(附答案详解)

苏教版2018-2019学年八年级(下)期末考试数学试卷一、选择题(每小题3分,共24分)1.若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3C.a<3 D.a≤32.要反映一个家庭在教育方面支出占总收入的比,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图3.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大4.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,结果书法、绘画、舞蹈及其他的频数分别为8、11、12、9,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.35.反比例函数y=的图象经过点M(﹣1,2),则反比例函数的解析式为()A.y=﹣B.y=C.y=﹣D.y=6.根据分式的基本性质,分式可以变形为()A.B.C.﹣D.﹣7.若关于x的方程+=0有增根,则m的值是()A.﹣2 B.﹣3 C.5 D.38.如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.50°B.55°C.60°D.45°二、填空题(每小题4分,共40分)9.为了解淮安市八年级学生的身高情况,从中任意抽取2000名学生的身高进行统计,在这个问题中,样本容量是.10.小红说:“明天下雨”,你认为这是(填“随机事件”、“不可能事件”或“必然事件”).11.化简的结果为.12.化简+=.13.已知反比例函数y=,当1<x≤3时,则y的取值范围是.14.反比例函数在第一象限内的图象如图所示,点P是图象上的一点PQ⊥x轴,垂足为Q,△OPQ的面积为2,则k=.15.如图,点D、E是AB、AC边的中点,AH是△ABC的高,DE=a,AH=b,△ABC的面积为12,则a与b的函数关系式是:.16.已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为.17.如图,▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为.18.如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB 为边在第一象限作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是.三、解答题(共86分)19.计算:(1)+(2)(+)×(﹣)20.化简:(1)÷(2)(﹣)×.21.解方程:(1)+3=(2)﹣=1.22.请在方格内画出△ABC,使它的顶点都在格点上,且三边长1,,,①求△ABC的面积;②求出最长边上的高.23.某校九年级(1)班所有学生参加2019年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是,等级C对应的圆心角的度数为;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有人.24.如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表x(cm)10 15 20 25 30y(g)30 20 15 12 10(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?25.果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?26.如图,在▱ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=C B.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.27.如图1,已知点A(﹣1,0),点B(0,﹣2),AD与y轴交于点E,且E为AD的中点,双曲线y=经过C,D两点且D(a,4)、C(2,b).(1)求a、b、k的值;(2)如图2,线段CD能通过旋转一定角度后点C、D的对应点C′、D′还能落在y=的图象上吗?如果能,写出你是如何旋转的,如果不能,请说明理由;(3)如图3,点P在双曲线y=上,点Q在y轴上,若以A、B、P、Q为顶点的四边形为平行四边形,试求满足要求的所有点P、Q的坐标.参考答案与试题解析一、选择题(每小题3分,共24分)1.若式子在实数范围内有意义,则a的取值范围是()A.a>3 B.a≥3C.a<3 D.a≤3【考点】72:二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,a﹣3≥0,解得a≥3.故选B.2.要反映一个家庭在教育方面支出占总收入的比,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图【考点】VE:统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:由统计图的特点,知要反映一个家庭在教育方面支出占总收入的比,宜采用扇形统计图.故选:B.3.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大【考点】X2:可能性的大小.【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:A、因为袋中扑克牌的花色不同,所以无法确定抽取的扑克牌的花色,故本选项错误;B、因为黑桃的数量最多,所以抽到黑桃的可能性更大,故本选项正确;C、因为黑桃和红桃的数量不同,所以抽到黑桃和抽到红桃的可能性不一样大,故本选项错误;D、因为红桃的数量小于黑桃,所以抽到红桃的可能性小,故本选项错误.故选B.4.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,结果书法、绘画、舞蹈及其他的频数分别为8、11、12、9,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.3【考点】V6:频数与频率.【分析】根据各小组频数之和等于数据总和.频率=,可得答案.【解答】解:∵书法兴趣小组的频数是8,∴频率是8÷40=0.2,故选:C.5.反比例函数y=的图象经过点M(﹣1,2),则反比例函数的解析式为()A.y=﹣B.y=C.y=﹣D.y=【考点】G7:待定系数法求反比例函数解析式;G6:反比例函数图象上点的坐标特征.【分析】首先把M点坐标代入y=,可得k的值,进而可得函数解析式.【解答】解:∵反比例函数y=的图象经过点M(﹣1,2),∴2=,k=﹣2,∴反比例函数的解析式为y=﹣,故选:C.6.根据分式的基本性质,分式可以变形为()A.B. C.﹣D.﹣【考点】65:分式的基本性质.【分析】根据分式的基本性质即可求出答案.【解答】解:原式==故选(A)7.若关于x的方程+=0有增根,则m的值是()A.﹣2 B.﹣3 C.5 D.3【考点】B5:分式方程的增根.【分析】根据分式方程增根的定义进行选择即可.【解答】解:∵关于x的方程+=0有增根,∴x﹣5=0,∴x=5,∴2﹣x+m=0,∴m=3,故选D.8.如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC的度数为()A.50°B.55°C.60°D.45°【考点】L8:菱形的性质.【分析】首先延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数.【解答】解:延长PF交AB的延长线于点G.如图所示:在△BGF与△CPF中,,∴△BGF≌△CPF(ASA),∴GF=PF,∴F为PG中点.又∵由题可知,∠BEP=90°,∴EF=PG,∵PF=PG,∴EF=PF,∴∠FEP=∠EPF,∵∠BEP=∠EPC=90°,∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,∵四边形ABCD为菱形,∴AB=BC,∠ABC=180°﹣∠A=80°,∵E,F分别为AB,BC的中点,∴BE=BF,∠BEF=∠BFE==50°,∴∠FPC=50°;故选:A.二、填空题(每小题4分,共40分)9.为了解淮安市八年级学生的身高情况,从中任意抽取2000名学生的身高进行统计,在这个问题中,样本容量是2000.【考点】V3:总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:从中任意抽取2000名学生的身高进行统计,在这个问题中,样本容量是2000,故答案为:2000.10.小红说:“明天下雨”,你认为这是随机事件(填“随机事件”、“不可能事件”或“必然事件”).【考点】X1:随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:小红说:“明天下雨”,你认为这是随机事件,故答案为:随机事件.11.化简的结果为3.【考点】73:二次根式的性质与化简.【分析】根据二次根式的性质即可求出答案.【解答】解:原式=3故答案为:312.化简+=﹣1.【考点】6B:分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣==﹣1,故答案为:﹣113.已知反比例函数y=,当1<x≤3时,则y的取值范围是≤y<1.【考点】G4:反比例函数的性质.【分析】利用反比例函数的增减性即可求得答案.【解答】解:∵y=,∴当x>0时,y随x的增大而减小,当x=1时,y=2,当x=3时,y=,∴当1<x≤3时,≤y<1,故答案为:≤y<1.14.反比例函数在第一象限内的图象如图所示,点P是图象上的一点PQ⊥x轴,垂足为Q,△OPQ的面积为2,则k=4.【考点】G5:反比例函数系数k的几何意义;G2:反比例函数的图象;G6:反比例函数图象上点的坐标特征.【分析】先设反比例函数的解析式为y=(k≠0),根据△POQ的面积为2,得出|k|=2,k=±4,再根据反比例函数y=在第一象限内,即可求出k.【解答】解:设反比例函数的解析式为y=(k≠0),∵△POQ的面积为2,∴|k|=2,|k|=2,k=±4,∵反比例函数y=在第一象限内,∴k=4;故答案为4.15.如图,点D、E是AB、AC边的中点,AH是△ABC的高,DE=a,AH=b,△ABC的面积为12,则a与b的函数关系式是:ab=12.【考点】KX:三角形中位线定理.【分析】利用三角形的中位线定理求出BC,根据三角形的面积公式列出等式即可解决问题.【解答】解:∵AD=DB,AE=EC,∴BC=2DE=2a,∵S△ABC=12,AH⊥BC,∴•2a•b=12,∴ab=12.故答案为ab=12.16.已知四边形ABCD为平行四边形,要使得四边形ABCD为矩形,则可以添加一个条件为∠BAD=90°.【考点】LC:矩形的判定;L5:平行四边形的性质.【分析】根据矩形的判定方法:已知平行四边形,再加一个角是直角填空即可.【解答】解:∵四边形ABCD是平行四边形,∠BAD=90°,∴四边形ABCD是矩形,故答案为:∠BAD=90°(答案不唯一).17.如图,▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为8.【考点】L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO==4,∴AE=2AO=8.故答案为:8.18.如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB 为边在第一象限作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度后,点C 恰好落在双曲线在第一象限的分支上,则a的值是3.【考点】G6:反比例函数图象上点的坐标特征;F8:一次函数图象上点的坐标特征;G4:反比例函数的性质;LE:正方形的性质;Q3:坐标与图形变化﹣平移.【分析】如图作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,CN交反比例函数于H,利用三角形全等,求出点C、点H坐标即可解决问题.【解答】解:如图,作CN⊥OB于N,DM⊥OA于M,CN与DM交于点F,CN交反比例函数于H.∵直线y=﹣4x+4与x轴、y轴分别交于A、B两点,∴点B(0,4),点A(1,0),∵四边形ABCD是正方形,∴AB=AD=DC=BC,∠BAD=90°,∵∠BAO+∠ABO=90°,∠BAO+∠DAM=90°,∴∠ABO=∠DAM,在△ABO和△DAM中,,∴△ABO≌△DAM,∴AM=BO=4,DM=AO=1,同理可以得到:CF=BN=AO=1,DF=CN=BO=4,∴点F(5,5),C(4,1),D(5,1),设点D在双曲线y=(k≠0)上,则k=5,∴反比例函数为y=,∴直线CN与反比例函数图象的交点H坐标为(1,5),∴正方形沿x轴负方向平移a个单位长度后,顶点C恰好落在双曲线y=上时,a=4﹣1=3,故答案为3.三、解答题(共86分)19.计算:(1)+(2)(+)×(﹣)【考点】79:二次根式的混合运算.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.【解答】解:(1)原式=2+=;(2)原式=3﹣2=1.20.化简:(1)÷(2)(﹣)×.【考点】6C:分式的混合运算.【分析】(1)原式利用除法法则变形,约分即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:(1)原式=÷=•=;(2)原式=[﹣]•=﹣•=﹣=.21.解方程:(1)+3=(2)﹣=1.【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+3=,方程两边同乘以(x﹣2),得:1+3(x﹣2)=x﹣1,去括号得:1+3x﹣6=x﹣1,称项得:3x﹣x=﹣1﹣1+6,合并同类项得:2x=4,系数化为1得:x=2,经检验:x=2不是原方程的解,原方程无解;(2)﹣=1,方程两边同乘以(x﹣1)(x+1),得:(x+1)2﹣2=x2﹣1,去括号得:x2+2x+1﹣2=x2﹣1,称项得:2x=﹣1﹣1+2,合并同类项得:2x=0,系数化为1得:x=0,经检验:x=0是原方程的解,∴原方程的解为:x=0.22.请在方格内画出△ABC,使它的顶点都在格点上,且三边长1,,,①求△ABC的面积;②求出最长边上的高.【考点】N4:作图—应用与设计作图;KQ:勾股定理.【分析】①所作△ABC如图所示,延长BA,过点C作CP⊥AP交BA延长线于点P,根据三角形的面积公式求解可得;②作AH⊥BC,由S△ABC=BC•AH=且BC=可得AH的长.【解答】解:①如图所示,△ABC即为所求,其中AB=1、AC=、BC=,延长BA,过点C作CP⊥AP交BA延长线于点P,S△ABC=×AB×CP=×1×1=;②如图,过点A作AH⊥BC于点H,∵S△ABC=BC•AH=,且BC=,∴AH=,∴最长边上的高为.23.某校九年级(1)班所有学生参加2019年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有50人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是40%,等级C对应的圆心角的度数为72°;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有595人.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由A等的人数和比例,根据总数=某等人数÷所占的比例计算;(2)根据“总数=某等人数÷所占的比例”计算出D等的人数,总数﹣其它等的人数=C等的人数;(3)由总数=某等人数÷所占的比例计算出B等的比例,由总比例为1计算出C等的比例,对应的圆心角=360°×比例;(4)用样本估计总体.【解答】(1)总人数=A等人数÷A等的比例=15÷30%=50人;(2)D等的人数=总人数×D等比例=50×10%=5人,C等人数=50﹣20﹣15﹣5=10人,如图:(3)B等的比例=20÷50=40%,C等的比例=1﹣40%﹣10%﹣30%=20%,C等的圆心角=360°×20%=72°;(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(15+20)÷50×850=595人.24.如图1,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如表x(cm)10 15 20 25 30y(g)30 20 15 12 10(1)把表中(x,y)的各组对应值作为点的坐标,在图2的坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式;(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少?【考点】GA:反比例函数的应用.【分析】(1)根据各点在坐标系中分别描出即可得出平滑曲线;(2)观察可得:x,y的乘积为定值300,故y与x之间的函数关系为反比例函数,将数据代入用待定系数法可得反比例函数的关系式;(3)把y=24代入解析式求解,可得答案.【解答】解:(1)如图所示:(2)由图象猜测y与x之间的函数关系为反比例函数,∴设y=(k≠0),把x=10,y=30代入得:k=300,∴y=,将其余各点代入验证均适合,∴y与x的函数关系式为:y=;(3)把y=24代入y=得:x=12.5,∴当砝码的质量为24g时,活动托盘B与点O的距离是12.5cm.25.果品店刚试营业,就在批发市场购买某种水果销售,第一次用500元购进若干千克水果,并以每千克定价7元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用660元所购买的数量比第一次多10千克.仍以原来的单价卖完.求第一次该种水果的进价是每千克多少元?【考点】B7:分式方程的应用.【分析】第一次该种水果的进价是每千克x元,第二次该种水果的进价是每千克1.2x元.根据用660元所购买的数量比第一次多10千克,列出方程即可解决问题.【解答】解:第一次该种水果的进价是每千克x元,第二次该种水果的进价是每千克1.2x 元.由题意:﹣=10,解方程得到:x=5,经检验:x=5是用方程的解,且符合题意.答:第一次该种水果的进价是每千克5元26.如图,在▱ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=C B.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【考点】L7:平行四边形的判定与性质;KD:全等三角形的判定与性质.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=A B.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CF B.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FC B.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.27.如图1,已知点A(﹣1,0),点B(0,﹣2),AD与y轴交于点E,且E为AD的中点,双曲线y=经过C,D两点且D(a,4)、C(2,b).(1)求a、b、k的值;(2)如图2,线段CD能通过旋转一定角度后点C、D的对应点C′、D′还能落在y=的图象上吗?如果能,写出你是如何旋转的,如果不能,请说明理由;(3)如图3,点P在双曲线y=上,点Q在y轴上,若以A、B、P、Q为顶点的四边形为平行四边形,试求满足要求的所有点P、Q的坐标.【考点】GB:反比例函数综合题.【分析】(1)如图1,过点D做DP⊥y轴于点P,由△PDE≌△OAE(ASA),PD=OA,求出点D坐标,即可解决问题;(2)能,点C、D绕点O顺时针旋转180度时,点C′、D′落在y=图象上.或点C、D关于原点中心对称的点在图象上;(3)分两种情形分别求解①当AB为边时,如图1中,若四边形ABPQ为平行四边形,则=0;如图2中,若四边形ABQP是平行四边形时,AP=BQ,且AP∥BQ,求点P坐标,即可解决问题;②如图3中,当AB为对角线时,AP=BQ,AP∥BQ,求出点P坐标,即可解决问题.【解答】解:(1)如图1,过点D做DP⊥y轴于点P,∵点E为AD的中点,∴AE=DE.又∵DP⊥y轴,∠AOE=90°,∴∠DPE=∠AEO.∵在△PDE与△OAE中,,∴△PDE≌△OAE(ASA),∴PD=OA,∵A(﹣1,0),∴PD=1,∴D(1,4).∵点D在反比例函数图象上,∴k=xy=1×4=4.∵点C在反比例函数图象上,C的坐标为(2,b),∴b==2,∴a=1,k=4,b=2;(2)能,点C、D绕点O顺时针旋转180度时,点C′、D′落在y=图象上.或点C、D关于原点中心对称的点在图象上;(3)∵由(1)可知k=4,∴反比例函数的解析式为y=,∵点P在y=上,点Q在y轴上,∴设Q(0,y),P(x,).①当AB为边时,如图1中,若四边形ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6).如图2中,若四边形ABQP是平行四边形时,AP=BQ,且AP∥BQ,此时P2(﹣1,﹣4),Q2(0,﹣6).②如图3中,当AB为对角线时,AP=BQ,AP∥BQ,此时P3(﹣1,﹣4),Q3(0,2),综上所述,满足条件的P、Q坐标分别为P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2).。

泗阳期末数学试卷初二答案

泗阳期末数学试卷初二答案

一、选择题(每题5分,共50分)1. 下列数中,是质数的是()A. 16B. 17C. 18D. 20答案:B2. 一个长方形的长是8cm,宽是5cm,它的周长是多少cm?()A. 18cmB. 20cmC. 26cmD. 32cm答案:C3. 若一个数的平方根是3,那么这个数是()A. 9B. 6C. 3D. -3答案:A4. 下列各式中,正确的是()A. 2^3 = 8B. 3^2 = 9C. 4^2 = 16D. 5^2 = 25答案:D5. 一个等腰三角形的底边长为6cm,腰长为8cm,它的面积是多少平方厘米?()A. 24B. 32C. 36D. 48答案:B6. 下列各数中,能被3整除的是()A. 14B. 21C. 25D. 28答案:B7. 下列各数中,是偶数的是()A. 0.5B. 1.2C. 2.3D. 3.4答案:B8. 一个正方形的边长为4cm,它的周长是多少cm?()A. 8cmB. 12cmC. 16cmD. 24cm答案:C9. 下列各式中,正确的是()A. 5^2 = 25B. 6^2 = 36C. 7^2 = 49D. 8^2 = 64答案:D10. 一个梯形的上底长为5cm,下底长为10cm,高为6cm,它的面积是多少平方厘米?()A. 30B. 60C. 90D. 120答案:C二、填空题(每题5分,共50分)1. 2的平方根是______,3的平方根是______。

2. 5+5+5+5+5=______,5×5=______。

3. 一个圆的半径是3cm,它的直径是______cm。

4. 一个三角形的底边长是8cm,高是6cm,它的面积是______平方厘米。

5. 下列各数中,质数有______个。

6. 下列各数中,偶数有______个。

7. 下列各数中,能被3整除的数有______个。

8. 一个长方形的长是12cm,宽是6cm,它的周长是______cm。

江苏省泗阳县2018-2019学年八年级数学下学期期末考试试题

江苏省泗阳县2018-2019学年八年级数学下学期期末考试试题

江苏省泗阳县实验初中2018-2019学年八年级数学下学期期末考试试题分值:1 20分 时间:100分钟 一、选择 有8小 分,共24 1 .在下列 题(本大题共 题,每小题3 分)四个图形中,既是轴对称图形,又是中心对称图形的是【 ▲A B C D 2.今年我校初中有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取 绩进行统计分析,以下说法正确的是【 A.这50名考生是总体的一个样本C.每位考生的数学成绩是个体 1 1 】 B.近1千名考生是总体D. 50名学生是样本容量 3. 在式子 50名考生的数学成A. , ,x -2, ^3 中, x 可以取2和3的是【 x _ 2 x _ 3 B .丄 x -3 4. A. C. 5. A. C. 1 x -2 下列事件中,属于必然事件的是【 经过路口,恰好遇到红灯; 打开电视,正在播放动画片; 下列各式计算正确的是【 2、一 2 -、2 二2(4) (_9)=.匸.-9C. 】 .3个人分成两组,其中一组必有 2人; .抛一枚硬币,正面朝上; 】 .25 二 才6 :・..;3 = 3BD 相交于点Q H 为AD ▲ D 1 = 0合适的方法,分别是【 因式分解法,直接开平方法、 直接开平方法、配方法、因式分解法 A B 两点向x 轴、 _5如图,菱形 ABC 即,对角线 AC 边中点,菱形 ABCD的周长为48,则OH 的长等于【A. 3 B . 4 C . 6 7.解方程① x — 4 = 0;② x — x = 0:③ x — x — 1 A.直接开平方法,因式分解法、公式法B.C.公式法、因式分解法,直接开平方法D. &如图, 6. 第6题▲ 公式法 是曲线y = 5上的点,经过 x S 阴影=1,则S 1+S 2 =【▲ C . 6 D . 8 10小题,每小题3分,共30 分) x 一 3y轴作垂线段,若 A. 4 B 二、填空题 .5 (本大题共有 9.当 x =▲ 时,分式 ------ 的值为零. x10 .已知 x - :2 1,,则 x 2 -2x 1 二▲。

(苏科版)2018-2019学年八年级数学下学期期末考试试卷(含答案)

(苏科版)2018-2019学年八年级数学下学期期末考试试卷(含答案)

★绝密★启用前2018-2019学年下学期期末考试八年级 数学(苏科版)一、选择题(本大题共有8小题,每小题3分,共24分)1.如图所示的四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有(▲)A .1个B .2个C . 3个D . 4个 2.下列调查中适合采用普查的是( ▲ )A .调查市场上某种白酒中塑化剂的含量B .调查鞋厂生产的鞋底能承受的弯折次数C .了解某火车的一节车厢内感染禽流感病毒的人数D .了解某城市居民收看江苏卫视的时间3.在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1 个球,摸到红球的概率是(▲)A .52B .53C .51D .31 4.下列代数式是最简形式的是(▲)A .242--x xB .121442+++x x x C .34x D .215- 5.已知点1(1,)A y ,2(2,)B y ,3(3,)C y -都在反比例函数21k y x+=的图像上,则321,,y y y 的大小关系是( ▲ )A .312y y y <<B .123y y y <<C . 213y y y <<D .321y y y <<6.如图,直线l 与函数xky =的图像相交,C B A 、、是直线l 的三点,过点C B A 、、分别作x 轴的垂线,垂足分别为F E D 、、,连接OC OB OA 、、,设OAD ∆的面积是1S , OBE ∆的面积是2S ,OCF ∆的面积是3S ,则( ▲ )A .123S S S <<B .123S S S ==C .213S S S >>D .312S S S >>7.图1所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是(▲)A .当3=x 时,EC EM <B .当9=y 时,EM EC >C .当x 增大时,EC CF 的值不变D .当y 增大时,BE DF 的值增大8.如图,点A 为函数)0(16>=x x y 图像上一点,连接OA ,交函数)0(4>=x xy 的图像于点B ,点C 是x 轴上一点,且AC AO =,则ABC ∆的面积为( ▲ )A .6B .8C . 10D .12二、填空题(本大题共有10小题,每小题3分,共30分)9.若代数式12+x 在实数内范围有意义,则x 的取值范围为 ▲ . 10.有五张不透明卡片,每张卡片上分别写有3,1-,327,19,π,除正面的数不同外其余都相同,将它们背面朝上洗匀后从中任取一张,取到的数是无理数的概率是 ▲ .11.函数x y 3=与42+=x y 图象的交点坐标为()b a , ,则ba 121-的值为 ▲ . 12.关于x 的分式方程3333x m mx x++=--的解为正数,则m 的取值范围是 ▲ . 13.已知一个对角线长分别为6cm 和8cm 的菱形,顺次连接它的四边中点得到的四边形的面积是▲ 2cm .14.若关于x 的方程311x a x x--=-无解,则a = ▲ . 15.如果三角形有一边上的中线长恰好等于这条边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt ABC ∆中,90C ∠=,一条直角边为1,如果Rt ABC ∆是“有趣三角形”,那第7题第7题 第6题xy FE D AOBC 第8题yxB COA么这个三角形“有趣中线”的长等于 ▲ .16.如图,菱形ABCD 中,P 为AB 中点,60A ∠=,折叠菱形ABCD ,使点C 落在DP 所在的直线上,得到经过点D 的折痕DE ,则DEC ∠的大小为 ▲ .图,一次函数11y k x b =+的图像与反比例函数22k y x=的图17.如像相交与A ,B 两点,其横坐标分别为2和6,则不等式21k k x b x<-的解集是 ▲ .18.已知一个菱形的两个顶点与一个正方形的两个顶点重合,并且这两个四边形没有公共边,菱形的面积为224cm ,正方形的面积为232cm ,则菱形的边长为 ▲ cm .三、解答题(本大题共有10道题,共96分)19.(每小题4分,共8分)计算或化简: (1)()211832733÷-⨯ (2)228244244x x x x x x +-⎛⎫-÷ ⎪---+⎝⎭20.(本题8分) 解方程:22216224x x x x x -+-=+--21.(本题8分)先化简再求值:2344111a a a a a -+⎛⎫-+÷⎪++⎝⎭,再从0,1-,2,中选一个数作为a 的值代入求值.22.(本题8分)为了更好地了解近阶段九年级学生的近期目标,某区设计了如下调查问卷:你认为近阶段的主要学习目标是哪一个?(此为单选题)A .升入四星级普通高中,为考上理想大学作准备;B .升入三星级普通高中,将来能考上大学就行;C .升入五年制高职类学校,以后做一名高级技师;D .升入中等职业类学校,做一名普通工人就行;E .等待初中毕业,不想再读书了.在该区9000名九年级学生中随机调查了部分学生后整理并制作了如下的统计图: 根据以上信息解答下列问题: (1)补全条形统计图;(2)计算扇形统计图中m =__▲__;C'PC A BD E第16题第17题 y xB A OyxD CBEAO(3)计算扇形统计图中A 区的圆心角的度数. (4)我区想继续升入普通高中 (含四星和三星)的大约有多少人?23.(本题10分) 如图,在四边形ABCD中,A B //,点E 、F 是对角线AC 上两点,且ABF CDE ∠=∠,AE CF =(1)求证:ABF CDE ∆∆≌;(2)当四边形ABCD 的边AB ,AD 满足什么条件时,四边形BFDE 是菱形?说明理由.24. (本题10分)如图,已知()4,A n -,()4,4B n --是直线y kx b =+和双曲线my x=的两个交点,过点A ,B 分别作AC y ⊥轴,BD x ⊥轴,垂足为C ,D . (1)求两个函数的表达式;(2)观察图像,直接写出不等式0mkx b x+-≥的解集; (3)判断CD 与AB 的位置关系,并说明理由.25. (本题10分)动车的开通为江都市民的出行带来更多方便,从江都到南京,路程120公里,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少20分钟,求该动车的平均速度.(1)根据题意填空:①若小慧设 ▲ 为x 公里/小时,列出尚不完整的方程:xx 5.1120120=+( ▲ ); ②若小聪设 ▲ 为y 小时,列出尚不完整的方程:1201201.5y =⨯(▲); (2)请选择其中一名同学的设法,写出完整的解答过程. 26.(本题10分)阅读题:)0,0(≥≥=⋅b a ab b a 逆写为)0,0(≥≥⋅=b a b a ab ;)0,0(>≥=b a b a b a 逆写为)0,0(>≥=b a ba b a ;())0(2≥=a a a 逆写为 ▲ .应用知识:(1).在实数范围内分解因式:BACDEFyxH DEBAFCO=+-3322x x ▲ ; (2).化简:=+-yx yx ▲ ;(3).求值:已知621012331a b c a b c ++---+--=-,求c b a ++的值.27.(本题12分)如图,四边形ABCO 是平行四边形且点()4,0C -,将平行四边形ABCO 绕点A 逆时针旋转得到平行四边形ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上,若点A ,D 在反比例函数xky =的图像上,过A 作AH x ⊥轴,交EF 于点H . (1)证明:AOF ∆是等边三角形,并求k 的值;(2)在x 轴上找点G ,使ACG ∆是等腰三角形,求出G 的坐标; (3)设P ()1,x a ,()2,Q x b ()210x x >>,()1,M m y ,()2,N n y 是双曲线ky x=上的四点,,2a bm k+=122n x x =+,试判断21,y y 的大小,说明理由.28.(本题12分)已知,,45ABC AB AC ABC ∆=∠=︒,点D 为直线BC 上一动点(点D 不与C B ,重合),以AD 为边作正方形ADEF (F E D A ,,,按逆时针排列),连接CF .(1)如图①,当点D 在边BC 上时,求证:CA CD CF 2=+;(2)如图②,当点D 在边BC 的延长线上且其他条件不变时,请写出CA CD CF ,,之间存在的数量关系,并说明理由;(3)如图③,当点D 在边CB 的延长线上且其他条件不变时,补全图形,并直接写出....CA CD CF ,,之间的数量关系;(4)当点D 在直线BC 上运动时,请你用文字语言描述点F 的运动轨迹,并直接写出....DA DC DB ,,之间的数量关系.答案一、 选择题(3×8=24分) 题号 12345678答案B C B D D C C B二、填空题(3×10=30分) 9. 21-≥x 10. 52 11. 32 12.9322m m <≠且 13. 12 14.1或2- 15. 1或23316.︒75 17. 02x <<或6x > 18.5,26,8 三、解答题19.(每题4分,共8分)(1) 22- (2) 22x x --+ 20.(本题8分)2x =- 经检验2x =-是原方程的增根,∴原方程无解21.(本题8分) 原式22a a +=-- 1a ≠-,2a ≠∴当0a =时,原式1=22.(本题8分)(每小题2分) (1)画图45 (2)12 (3)︒=︒⨯14436020080 (4)567020046809000=+⨯23.(本题10分)(1)证明:AB CD //∴BAC DCA ∠=∠ AE CF = ∴AF CE =且ABF CDE ∠=∠∴ABF CDE ∆∆≌(AAS ) …………………………………………4分(2)当四边形ABCD 满足AB AD =时,四边形BFDE 时菱形。

苏教版2018-2019学年八年级(下)期末考试数学试卷(含答案详解)

苏教版2018-2019学年八年级(下)期末考试数学试卷(含答案详解)

2018~2019学年第二学期期末调研 初二数学本试卷由选择题、填空题和解答题三大题组成,共29小题,满分100分.考试时间120分钟. 注意事项:1. 答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2. 答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3. 考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1. 下面四个黑体字母中,既是轴对称图形,又是中心对称图形的果A. XB. LC. CD. Z 2. 若分式23x x +-的值为零,则 A.3x = B.3x =- C.2x = D.2x =-3. 一只不透明的袋子中装有一些红球和白球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是A.确定事件B.必然事件C.不可能事件D.随机事件 4. 为了解我市老年人的健康状况,下列抽样调查最合理的是 A.在公园调查部分老年人的健康状况 B.在医院调查部分老年人的健康状况 C.利用户籍网调查部分老年人的健康状况 D.在周围邻居中调查部分老年人的健康状况 5. 下列各式成立的是A.2= 3= C.22(3=- 3=6. 若(2)2m =⨯-,则有 A.21m -<<- B.10m -<< C.01m << D.12m <<7. ①平行四边形,②矩形,③菱形,④正方形中,对角线的交点到各边中点的距离都相等的是A. ①②B. ③④C. ②③D.②④8. 在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。

江苏省宿迁市沭阳县2018-2019年八年级(下)期末数学试卷(含解析)

江苏省宿迁市沭阳县2018-2019年八年级(下)期末数学试卷(含解析)

2018-2019学年江苏省宿迁市沭阳县八年级(下)期末数学试卷姓名: 得分: 日期:一、选择题(本大题共 8 小题,共 24 分)1、(3分) 下列图标中,是中心对称图形的是( )A.B. C. D.2、(3分) 下列各式:x π+2,5p 2q ,a 2−b 22,1m +m ,其中分式共有( ) A.1个 B.2个C.3个D.4个3、(3分) 下列调查适合做普查的是( )A.了解初中生晚上睡眠时间B.百姓对推广共享单车的态度C.了解某中学某班学生使用手机的情况D.了解初中生在家玩游戏情况4、(3分) “十次投掷一枚硬币,十次正面朝上”这一事件是( )A.必然事件B.随机事件C.确定事件D.不可能事件5、(3分) 某反比例函数的图象经过点(-2,3),则此函数图象也经过点( )A.(2,-3)B.(-3,-3)C.(2,3)D.(-4,6)6、(3分) 菱形具有而一般平行四边形不具有的性质是( )A.对边相等B.对角相等C.对角线互相垂直D.对角线互相平分7、(3分) 下列二次根式中属于最简二次根式的是( )A.√24B.√36C.√a bD.√28、(3分) 如图,A ,B 是反比例函数y=4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A.4B.3C.2D.1二、填空题(本大题共 10 小题,共 30 分)9、(3分) 二次根式√a −1中,a 的取值范围是______.10、(3分) 一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到______球的可能性最大.11、(3分) 正方形的对角线长为1,则正方形的面积为______. 12、(3分) 反比例函数y =m−1x 的图象在第一、三象限,则m 的取值范围是______.13、(3分) 若√m −3+(n +1)2=0,则m-n 的值为______.14、(3分) 某班级40名学生在期中学情分析考试中,分数段在90~100分的频率为0.2,则该班级在这个分数段内的学生有______人.15、(3分) 若关于x 的分式方程x x−1=3a 2x−2-2有非负数解,则a 的取值范围是______.16、(3分) 如图,点O 是矩形ABCD 的对角线AC 的中点,OM∥AB 交AD 于点M ,若OM=2,BC=6,则OB 的长为______. 17、(3分) 如图,B (3,-3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A的反比例函数的解析式为______.18、(3分) 如图,已知点A ,B 在双曲线y=k x (x >0)上,AC⊥x 轴于点C ,BD⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点.若△ABP 的面积为4,则k=______.三、解答题(本大题共 9 小题,共 88 分)19、(8分) 计算:(1)|1−√2|+(2018−π)0−√18(2)√3(√2−√3)−√24−|√6−3|20、(8分) 先化简,再求值:(x2x−1+11−x)÷1x,其中x=√2-1.21、(8分) 已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.22、(10分) 某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有______人,并补全条形统计图;(2)在扇形统计图中,m=______,n=______,表示区域C的圆心角为______度;(3)全校学生中喜欢篮球的人数大约有多少?23、(10分) 某商场计划购进冰箱、彩电相关信息如表:若商场用80000元购进冰箱的数量与用64000元购进彩电的数量相等,求表中a的值.24、(10分) 如图,一次函数y=x+m的图象与反比例函数y=k的图象交于A,B两点,且与xx轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤k的解集.x25、(10分) 驾驶员血液中每毫升的酒精含量大于或等于200微克即为酒驾,某研究所经实验测得:成人饮用某品牌38度白酒后血液中酒精浓度y(微克/毫升)与饮酒时间x(小时)之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中酒精浓度上升和下降阶段y与x之间的函数表达式.(2)问血液中酒精浓度不低于200微克/毫升的持续时间是多少小时?26、(12分) 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2√2=(1+√2)2,善于思考的小明进行了以下探索:设a+b√2=(m+n√2)2(其中a、b、m、n均为整数),则有:a+b√2=m2+2n2+2mn√2,∴a=m2+2n2,b=2mn,这样小明就找到了一种把类似a+b√2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b√3=(m+n√3)2,用含m、n的式子分别表示a、b得:a=______,b=______;(2)利用所探索的结论,用完全平方式表示出:7+4√3=______.(3)请化简:√12−6√327、(12分) 如图,在平面直角坐标系xOy 中,△OAB 如图放置,点P 是AB 边上的一点,过点P 的反比例函数y=k x (k >0,x >0)与OA 边交于点E ,连接OP .(1)如图1,若点A 的坐标为(3,4),点B 的坐标为(5,0),且△OPB 的面积为5,求直线AB 和反比例函数y=k x 的解析式;(2)如图2,若∠AOB=60°,过P 作PC∥OA ,与OB 交于点C ,若OE=4,并且△OPC 的面积为3√32,求反比例函数y=kx 的解析式及点P 的坐标.四、计算题(本大题共 1 小题,共 8 分)28、(8分) 解方程: (1)2x+3=1x(2)x+1x−1−4x 2−1=12018-2019学年江苏省宿迁市沭阳县八年级(下)期末数学试卷D【解析】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.【第 2 题】【答案】B【解析】解:5p 2q ,1m+m是分式,故选:B.根据分式的定义即可求出答案.本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.【第 3 题】【答案】C【解析】解:A、了解初中生晚上睡眠时间,人数较多,适合抽查,故选项错误;B、百姓对推广共享单车的态度,人数较多,不容易普查,适合抽查,故选项错误;C、了解某中学某班学生使用手机的情况,人数不多,容易普查,选项正确;D、了解初中生在家玩游戏情况,人数较多,适合抽查,故选项错误.故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.B【解析】解:“十次投掷一枚硬币,十次正面朝上”可能发生,这一事件是随机事件,故选:B.根据随机事件的概念可知是随机事件.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【第 5 题】【答案】A【解析】,将点(-2,3)代入解析式得k=-2×3=-6,解:设反比例函数解析式为y=kx符合题意的点只有点A:k=2×(-3)=-6.故选:A.即可求出k的值,再根据k=xy解答即可.将(-2,3)代入y=kx本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.【第 6 题】【答案】C【解析】解:∵菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选:C.由菱形具有的性质是:对边相等,对角相等,对角线互相垂直且平分;平行四边形具有的性质是:对边相等,对角相等,对角线互相平分;即可求得答案.此题考查了菱形的性质以及平行四边形的性质.注意熟记定理是解此题的关键.D【 解析 】解:(A )原式=2√6,故A 错误;(B )原式=6,故B 错误;(C )原式=√ab b ,故C 错误;故选:D .根据最简二次根式的定义即可求出答案.本题考查最简二次根式,解题的关键是正确理解最简二次根式,本题属于基础题型.【 第 8 题 】【 答 案 】B【 解析 】解:∵A ,B 是反比例函数y=4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,∴当x=2时,y=2,即A (2,2),当x=4时,y=1,即B (4,1).如图,过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,则S △AOC =S △BOD =12×4=2.∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD+AC )•CD=12(1+2)×2=3, ∴S △AOB =3.故选:B .先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC⊥x 轴于C ,BD⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC=12(BD+AC )•CD=12(1+2)×2=3,从而得出S △AOB =3. 本题考查了反比例函数y =k x 中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|.也考查了反比例函数图象上点的坐标特征,梯形的面积.【 第 9 题 】【 答 案 】a≥1【 解析 】解:由题意得,a-1≥0,解得,a≥1,故答案为:a≥1.根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.【 第 10 题 】【 答 案 】红【 解析 】解:∵袋中装有6个红球,4个黄球,1个白球,∴总球数是:6+4+1=11个, ∴摸到红球的概率是=611;摸到黄球的概率是411;摸到白球的概率是111;∴摸出红球的可能性最大.故答案为:红.先求出总球的个数,再分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性最大.本题主要考查可能性的大小,只需求出各自所占的比例大小即可,求比例时,应注意记清各自的数目.【 第 11 题 】【 答 案 】12【 解析 】解:∵正方形对角线相等且互相垂直平分,而正方形的对角线长为1,11故答案为12. 根据正方形的性质得到正方形对角线相等且互相垂直平分,则正方形的面积等于对角线乘积的一半.本题考查了正方形的性质:正方形的四边相等,四个角都为90°,对角线相等且互相垂直平分.【 第 12 题 】【 答 案 】m >1【 解析 】解:∵反比例函数y =m−1x 的图象在第一、三象限,∴m -1>0,解得m >1.故答案为:m >1.先根据反比例函数所在的象限列出关于m 的不等式,求出m 的取值范围即可.本题考查的是反比例函数的性质,即反比例函数y=k x (k≠0)的图象是双曲线,当k >0时,双曲线的两支分别位于第一、第三象限.【 第 13 题 】【 答 案 】4【 解析 】解:根据题意得:{m −3=0n +1=0, 解得:{m =3n =−1. 则m-n=3=(-1)=4.故答案是:4.根据任何非负数的平方根以及偶次方都是非负数,两个非负数的和等于0,则这两个非负数一定都是0,即可得到关于m .n 的方程,从而求得m ,n 的值,进而求解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.【 第 14 题 】【 答 案 】8【 解析 】解:40×0.2=8,故答案为:8.利用频数=总数×频率可得答案.此题主要考查了频数与频率,关键是掌握频率=频数总数.【 第 15 题 】【 答 案 】a ≥−43且a ≠23【 解析 】解:分式方程去分母得:2x=3a-4(x-1),移项合并得:6x=3a+4,解得:x=3a+46,∵分式方程的解为非负数, ∴3a+46≥0且3a+46-1≠0,解得:a≥-43且a≠23.故答案为:a ≥−43且a ≠23.将a 看做已知数,表示出分式方程的解,根据解为非负数列出关于a 的不等式,求出不等式的解集即可得到a 的范围.此题考查了分式方程的解,分式方程的解即为能使方程左右两边相等的未知数的值,本题注意x-1≠0这个隐含条件.【 第 16 题 】【 答 案 】 √13【 解析 】解:∵四边形ABCD 是矩形,∴∠D=90°,∵O 是矩形ABCD 的对角线AC 的中点,OM∥AB ,∴OM 是△ADC 的中位线,∵OM=2,∴DC=4,∵AD=BC=6,∴AC=√AD 2+CD 2=2√13, ∴BO=12AC=√13,故答案为:√13已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.【 第 17 题 】【 答 案 】y=6x【 解析 】解:设A 坐标为(x ,y ),∵B (3,-3),C (5,0),以OC ,CB 为边作平行四边形OABC ,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A (-2,-3),设过点A 的反比例解析式为y=k x ,把A (-2,-3)代入得:k=6,则过点A 的反比例解析式为y=6x ,故答案为:y=6x设A 坐标为(x ,y ),根据四边形OABC 为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可.此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.【 第 18 题 】【 答 案 】16【 解析 】解:∵△ABP 的面积为12•BP•AP=4,∴BP•AP=8,∵P 是AC 的中点,∴A 点的纵坐标是B 点纵坐标的2倍,又∵点A 、B 都在双曲线y=k x (x >0)上, ∴B 点的横坐标是A 点横坐标的2倍,∴OC=DP=BP ,∴k=OC•AC=BP•2AP=16.故答案为:16.由△ABP 的面积为4,知BP•AP=8.根据反比例函数y=k x 中k 的几何意义,知本题k=OC•AC ,由反比例函数的性质,结合已知条件P 是AC 的中点,得出OC=BP ,AC=2AP ,进而求出k 的值.主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.【第 19 题】【答案】解:(1)原式=√2-1+1-3√2=4√2;(2)原式=√6-3-2√6+√6-3=-6.【解析】(1)利用绝对值和零指数幂的意义计算;(2)先进行二次根式的乘法运算,然后去绝对值后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【第 20 题】【答案】解:原式=x 2−1x−1•x=x2+x,当x=√2-1时,原式=(√2-1)2+(√2-1)=2+1-2√2+√2-1=2-√2.【解析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.【第 21 题】【答案】证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AFCE是平行四边形,∴AF=CE.【解析】根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.【第 22 题】【答案】解:(1)观察统计图知:喜欢乒乓球的有20人,占20%,故被调查的学生总数有20÷20%=100人,喜欢跳绳的有100-30-20-10=40人,条形统计图为:(2)∵A组有30人,D组有10人,共有100人,∴A组所占的百分比为:30%,D组所占的百分比为10%,∴m=30,n=10;×360°=144°;表示区域C的圆心角为40100(3)∵全校共有2000人,喜欢篮球的占10%,∴喜欢篮球的有2000×10%=200人.【解析】(1)用B组频数除以其所占的百分比即可求得样本容量;(2)用A组人数除以总人数即可求得m值,用D组人数除以总人数即可求得n值;(3)用总人数乘以D类所占的百分比即可求得全校喜欢篮球的人数;本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.【 第 23 题 】【 答 案 】解:依题意,得:80000a =64000a−400,解得:a=2000,经检验,a=2000是原方程的解,且符合题意.答:表中a 的值为2000.【 解析 】根据数量=总价÷单价结合用80000元购进冰箱的数量与用64000元购进彩电的数量相等,即可得出关于a 的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.【 第 24 题 】【 答 案 】解:(1)由题意可得:点A (2,1)在函数y=x+m 的图象上,∴2+m=1即m=-1,∵A (2,1)在反比例函数y =k x 的图象上,∴k 2=1, ∴k=2;(2)∵一次函数解析式为y=x-1,令y=0,得x=1,∴点C 的坐标是(1,0),由图象可知不等式组0<x+m≤k x 的解集为1<x≤2.【 解析 】(1)把点A 坐标代入一次函数y=x+m 与反比例函数y=k x ,分别求得m 及k 的值;(2)令直线解析式的函数值为0,即可得出x 的值,从而得出点C 坐标,根据图象即可得出不等式组0<x+m≤k x 的解集.本题考查了反比例函数和一次函数的交点问题,掌握用待定系数法求一次函数和反比例函数是解题的关键.【 第 25 题 】【 答 案 】解:(1)当0≤x≤4时,设直线解析式为:y=kx ,将(4,400)代入得:400=4k , 解得:k=100,故直线解析式为:y=100x , 当4≤x≤10时,设反比例函数解析式为:y=a x ,将(4,400)代入得:400=a 4,解得:a=1600,故反比例函数解析式为:y=1600x ;因此血液中药物浓度上升阶段的函数关系式为y=100x (0≤x≤4),下降阶段的函数关系式为y=1600x (4≤x≤10).(2)当y=200,则200=100x ,解得:x=2,当y=200,则200=1600x ,解得:x=8,∵8-2=6(小时),∴血液中药物浓度不低于200微克/毫升的持续时间6小时.【 解析 】(1)当0≤x≤4时,设直线解析式为:y=kx ,当4≤x≤10时,设反比例函数解析式为:y=a x ,利用待定系数法即可解决问题;(2)分别求出y=200时的两个函数值,再求时间差即可解决问题.本题考查一次函数的应用、反比例函数的应用等知识,解题的关键是灵活应用待定系数法解决问题,学会利用函数图象解决实际问题,属于中考常考题型.【 第 26 题 】【 答 案 】解:(1)(m+n √3)2=m 2+3n 2+2√3mn ,∴a=m 2+3n 2,b=2mn .故答案为m 2+3n 2,2mn ;(2)7+4√3=(2+√3)2;故答案为:(2+√3)2;(3)∵12-6√3=(3-√3)2,∴√12−6√3=√(3−√3)2=3-√3.【 解析 】(1)利用完全平方公式展开得到(m+n √3)2=m 2+3n 2+2√3mn ,从而可用m 、n 表示a 、b ;(2)直接利用完全平方公式,变形得出答案;(3)直接利用完全平方公式,变形化简即可.本题考查了二次根式的性质与化简,完全平方公式,解决本题的关键是熟记完全平方公式.【 第 27 题 】【 答 案 】解:(1)如图1,过点P 作PQ⊥x 轴交x 轴于点Q ,∵点A 的坐标为(3,4),点B 的坐标为(5,0),∴设直线AB 的解析式为y=kx+b (k≠0), ∴{3k +b =45k +b =0,解得{k =−2b =10, ∴直线AB 的解析式为:y=-2x+10.∵点B 的坐标为(5,0),且△OPB 的面积为5,∴PQ=2,点P 纵坐标为2.∵点P 在直线AB 上-2x+10=2,解得x=4,∴点P 坐标为(4,2) ∴此反比例函数的解析式为y=8x ; (2)如图2,过点E 作EF⊥x 轴交x 轴于点F ,过点P 作PS⊥x 轴交x 轴于点S ,∵∠AOB=60°,∠EFO=90°,OE=4,∴OF=2,EF=2√3,∴此反比例函数的解析式为y=4√3x. ∵S △OCP =3√32=12OC•PS , ∴OC•PS=3√3.∵OS•PS=4√3,∴CS•PS=√3.∵∠AOB=60° PC∥OA ,∴∠PCS=60°,∴PS=√3CS ,∴CS=1.∴点P 坐标为(4,√3).【 解析 】(1)过点P 作PQ⊥x 轴交x 轴于点Q ,利用待定系数法求出直线AB 的解析式,根据△OPB 的面积为5求出PQ 的长,代入直线AB 的解析式可得出P 点坐标,进而可得出反比例函数的解析式;(2)过点E 作EF⊥x 轴交x 轴于点F ,过点P 作PS⊥x 轴交x 轴于点S ,利用锐角三角函数的定义求出OF 及EF 的长,故可得出反比例函数的解析式,根据△OPC 的面积为3√32求出OC•PS 的长,再由锐角三角函数的定义得出PS 的长,进而可得出P 点坐标.本题考查的是反比例函数与一次函数的交点问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.【 第 28 题 】【 答 案 】解:(1)去分母得:2x=x+3,解得:x=3经检验x=3是分式方程的解;(2)去分母得:x 2+2x+1-4=x 2-1,解得:x=1,经检验x=1是增根,分式方程无解.【 解析 】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.。

2018-2019学年苏科版八年级数学第二学期期末试卷 (附答案)

2018-2019学年苏科版八年级数学第二学期期末试卷 (附答案)

2018-2019学年八年级(下)期末数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并填在答题卡相对应的位置上.)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.2.(3分)下列事件是随机事件的是()A.如果a,b都是实数,那么a+b=b+aB.同时抛掷两枚骰子,向上一面的点数之和为13C.10张相同的标签,分别标有数字1~10,从中任抽一张,抽到11号签D.射击一次中靶3.(3分)方程4x2﹣1=0的根是()A.B.C.2D.±24.(3分)如图,平行四边形ABCD的对角线相交于点O,BC=7cm,BD=10cm,AC=6cm,则△AOD的周长是(A.23B.1 5C.12D.85.(3分)如图,矩形ABCD的对角线AC,BD相交于点O,∠AOD=120°,AB=4cm,则矩形对角线长为()A.4 cm B.6 cm C.8 cm D.12 cm6.(3分)如图,==2,则=()A.B.2C.D.37.(3分)某中学组织学生去离学校15km的东山农场,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍甲若先遣队比大队早到了0.5h,设大队的速度为vkm/h,可得方程为()A.B.C.D.8.(3分)如图,点B在线段AC上,且,设AC=2,则AB的长为()A.B.C.D.9.(3分)已知,则的值为()A.1B.C.D.10.(3分)已知点A(4,0),B(0,﹣4),C(a,2a)及点D是一个平行四边形的四个顶点,则线段CD的长的最小值为()A.B.C.D.二、填空题:(本大题共8小题,每小题3分,共24分,请把答案直接填在答题卡相应位置上.)11.(3分)三角形三条中线交于一点,这个点叫做三角形的.12.(3分)当x=时,分式的值为0.13.(3分)某种水果的售价是a千克b元,那么表示的实际意义是.14.(3分)两个相似多边形的面积比是9:16,其中较小多边形周长为36cm,则较大多边形周长为.15.(3分)已知点A(2,y1),B(1,y2)在反比例函数y=(k<0)的图象上,则y1 y2.(选填“>”、“=”、“<”)16.(3分)如图,A,B两地被建筑物遮挡,为测量A,B两地的距离,在地面上选一点C,连结CA,CB,分别取CA,CB的中点D,E,若DE的长为36m,则A,B两地距离为m.17.(3分)观察下列的式子:=1﹣,=﹣,=﹣……类比这种计算方法,可以求得+++…+=.18.(3分)如图,一块直角三角形木板,一条直角边AC的长1.5m,面积为1.5m2.按图中要求加工成一个正方形桌面,则桌面的边长为m.三、解答题:(本大题共10小题,共76分.解答时写出必要的计算过程、推演步骤或文字说明.)19.(5分)计算:(6﹣)﹣(﹣4).20.(5分)先化简,再求值:÷(x+1﹣),其中x=﹣2.21.(6分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复上述过程,下表是活动进行中的一组统计数据:(1)请将表中的数据补充完整,(2)请估计:当n很大时,摸到白球的概率约是.(精确到0.1)22.(8分)解方程:(1)2x2﹣5x+2=0;(2).23.(6分)按下列要求在如图格点中作图:(1)作出△ABC关于原点成中心对称的图形△A'B'C';(2)以点B为位似中心,作出△ABC放大2倍的图形△BA″C″.24.(6分)一列货车从北京开往乌鲁木齐,以58km/h的平均速度行驶需要65h.为了实施西部大开发,京乌线决定全线提速.(1)如果提速后平均速度为vkm/h,全程运营时间为t小时,试写出t与v之间的函数表达式;(2)如果提速后平均速度为78km/h,求提速后全程运营时间;(3)如果全程运营的时间控制在40h内,那么提速后,平均速度至少应为多少?25.(8分)如图,在四边形ABCD中,AB=DC,E,F,G,H分别是AD,BC,BD,AC的中点.(1)证明:EG=EH;(2)证明:四边形EHFG是菱形.26.(10分)如图,在平行四边形ABCD中,AC,BD相交于点O,点E在BC上,AE 交BD于F.(1)若E是靠近点B的三等分点,求;①的值;②△BEF与△DAF的面积比;(2)当时,求的值.27.(10分)如图,已知反比例函数的图象经过点A(﹣1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为.(1)求k的值;(2)若一次函数y=mx+n图象经过点A和反比例函数图象上另一点,且与x轴交于M点,求AM的值;(3)在(2)的条件下,如果以线段AM为一边作等边△AMN,顶点N在另一个反比例函数上,则k'=.28.(12分)如图,在平面直角坐标系中,已知矩形OABC的顶点B(6,8),动点M,N同时从O点出发,点M沿射线OA方向以每秒1个单位的速度运动,点N沿线段OB 方向以每秒0.6个单位的速度运动,当点N到达点B时,点M,N同时停止运动,连接MN,设运动时间为t(秒).(1)求证△ONM~△OAB;(2)当点M是运动到点时,若双曲线的图象恰好过点N,试求k的值;(3)△MNB与△OAB能否相似?若能试求出所有t的值,若不能请说明理由.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并填在答题卡相对应的位置上.)1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.2.(3分)下列事件是随机事件的是()A.如果a,b都是实数,那么a+b=b+aB.同时抛掷两枚骰子,向上一面的点数之和为13C.10张相同的标签,分别标有数字1~10,从中任抽一张,抽到11号签D.射击一次中靶【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、如果a,b都是实数,那么a+b=b+a,是必然事件;B、同时抛掷两枚骰子,向上一面的点数之和为13,是不可能事件;C、10张相同的标签,分别标有数字1~10,从中任抽一张,抽到11号签是不可能事件;D、射击一次中靶是随机事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.(3分)方程4x2﹣1=0的根是()A.B.C.2D.±2【分析】先把方程变形为x2=,然后利用直接开平方法解方程.【解答】解:x2=,x=.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.4.(3分)如图,平行四边形ABCD的对角线相交于点O,BC=7cm,BD=10cm,AC=6cm,则△AOD的周长是(A.23B.1 5C.12D.8【分析】根据平行四边形的对边相等,对角线互相平分即可解决问题;【解答】解:∵四边形ABCD是平行四边形,AC=6cm,BD=10cm,∴AO=AC3cm,OD=BD=5cm,AD=BC=7cm,∴△AOD的周长=AO+OD+AD=8cm+BC=15cm,故选:B.【点评】本题考查了平行四边形的性质,属于基础题,关键是掌握平行四边形的对边相等,对角线互相平分,对角相等.5.(3分)如图,矩形ABCD的对角线AC,BD相交于点O,∠AOD=120°,AB=4cm,则矩形对角线长为()A.4 cm B.6 cm C.8 cm D.12 cm【分析】根据邻补角的定义求出∠AOB=60°,再根据矩形的对角线互相平分且相等可得AO=BO=CO,然后判断出△AOB是等边三角形,根据等边三角形三条边都相等可得AO=AB,然后求解即可.【解答】解:∵∠AOD=120°,∴∠AOB=180°﹣∠AOD=180°﹣120°=60°,∵四边形ABCD是矩形,∴AO=BO=CO,∴△AOB是等边三角形,∴AO=AB=4cm,∴AC=AO+CO=4+4=8cm.故选:C.【点评】本题考查了矩形的性质,等边三角形的判定与性质,熟记各性质并判断出△AOB 是等边三角形是解题的关键.6.(3分)如图,==2,则=()A.B.2C.D.3【分析】设AD=2k,BD=k,则AB=3k,既可求得结果.【解答】解:∵,设AD=2k,BD=k,∴AB=3k,∴=故选:D.【点评】此题考查平行线分线段成比例,关键是根据平行线分线段成比例解答.7.(3分)某中学组织学生去离学校15km的东山农场,先遣队与大队同时出发,先遣队的速度是大队的速度的1.2倍甲若先遣队比大队早到了0.5h,设大队的速度为vkm/h,可得方程为()A.B.C.D.【分析】设大队的速度为y千米/时,则先遣队的速度是1.2y千米/时,由题意可知先遣队用的时间+0.5小时=大队用的时间.【解答】解:设大队的速度为y千米/时,则先遣队的速度是1.2y千米/时,,故选:A.【点评】此题主要考查了分式方程的应用,关键是弄懂题意,表示出大队和先遣队各走15千米所用的时间,根据时间关系:先遣队比大队早到0.5h列出方程解决问题.8.(3分)如图,点B在线段AC上,且,设AC=2,则AB的长为()A.B.C.D.【分析】根据题意列出一元二次方程,解方程即可.【解答】解:∵,∴AB2=2×(2﹣AB),∴AB2+2AB﹣4=0,解得,AB1=,AB2=(舍去),故选:C.【点评】本题考查的是黄金分割的概念以及黄金比值,掌握一元二次方程得到解法、理解黄金分割的概念是解题的关键.9.(3分)已知,则的值为()A.1B.C.D.【分析】根据,可以求得a、b的值,从而可以求得所求式子的值,本题得以解决.【解答】解:∵,∴a﹣3=0,2﹣b=0,解得,a=3,b=2,∴===,故选:D.【点评】本题考查二次根式的化简求值、非负数的性质,解答本题的关键是明确题意,求出a、b的值.10.(3分)已知点A(4,0),B(0,﹣4),C(a,2a)及点D是一个平行四边形的四个顶点,则线段CD的长的最小值为()A.B.C.D.【分析】讨论两种情形:①CD是对角线,②CD是边.CD是对角线时CF⊥直线y=x时,CD最小.CD是边时,CD=AB=4,通过比较即可得出结论.【解答】解:如图,由题意点C在直线y=2x上,如果AB、CD为对角线,AB与CD交于点F,当FC⊥直线y=2x时,CD最小,易知直线AB为y=x﹣4,∵AF=FB,∴点F坐标为(2,﹣2),∵CF⊥直线y=2x,设直线CF为y=﹣x+b′F(2,﹣2)代入得b′=﹣1∴直线CF为y=﹣x﹣1,由解得,∴点C坐标(﹣,﹣).∴CD=2CF=2×=.如果CD是平行四边形的边,则CD=AB=4>,∴CD的最小值为.故选:B.【点评】本题考查平行四边形的性质、坐标与图形的性质、垂线段最短等知识,学会分类讨论是解题的关键,灵活运用垂线段最短解决实际问题,属于中考常考题型.二、填空题:(本大题共8小题,每小题3分,共24分,请把答案直接填在答题卡相应位置上.)11.(3分)三角形三条中线交于一点,这个点叫做三角形的重心.【分析】根据三角形的重心的概念解答.【解答】解:三角形三条中线交于一点,这个点叫做三角形的重心,故答案为:重心.【点评】本题考查的是三角形重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.12.(3分)当x=2时,分式的值为0.【分析】直接利用分式的值为零的条件得出答案.【解答】解:∵分式的值为0,∴x﹣2=0,解得:x=2,故答案为:2.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.13.(3分)某种水果的售价是a千克b元,那么表示的实际意义是每元买千克.【分析】根据代数式表示的意义解答即可.【解答】解:表示的实际意义是每元买千克,故答案为:每元买千克【点评】此题考查代数式的问题,关键是根据代数式表示的意义解答.14.(3分)两个相似多边形的面积比是9:16,其中较小多边形周长为36cm,则较大多边形周长为48cm.【分析】根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.【解答】解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为xcm,则有=,解得:x=48.大多边形的周长为48cm.故答案为48cm.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.15.(3分)已知点A(2,y1),B(1,y2)在反比例函数y=(k<0)的图象上,则y1>y2.(选填“>”、“=”、“<”)【分析】先判断出函数的增减性,再根据其坐标特点解答即可.【解答】解:∵k<0,∴反比例函数图象的两个分支在第二四象限,且在每个象限内y 随x的增大而增大,又∵A(2,y1),B(1,y2)在反比例函数y=(k<0)的图象上,且2>1>0,∴y1>y2.故答案为y1>y2.【点评】本题考查利用反比例函数的增减性质判断图象上点的坐标特征.16.(3分)如图,A,B两地被建筑物遮挡,为测量A,B两地的距离,在地面上选一点C,连结CA,CB,分别取CA,CB的中点D,E,若DE的长为36m,则A,B两地距离为72m.【分析】根据三角形中位线定理计算即可. 【解答】解:∵点D ,E 分别为CA ,CB 的中点, ∴AB =2DE =72m , 故答案为:72.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.(3分)观察下列的式子:=1﹣,=﹣,=﹣……类比这种计算方法,可以求得+++…+=.【分析】根据=×(﹣)裂项求和可得.【解答】解:原式=×(﹣)+×(﹣)+×(﹣)+……+×(﹣)=×(﹣+﹣+﹣+……+﹣)=×(﹣)=×=,故答案为:.【点评】本题主要考查分式的加减运算,解题的关键是掌握=×(﹣)和分式的加减运算法则.18.(3分)如图,一块直角三角形木板,一条直角边AC 的长1.5m ,面积为1.5m 2.按图中要求加工成一个正方形桌面,则桌面的边长为m .【分析】先求出点C到AB边的距离,再根据相似三角形△ACB和△DCE对应高的比等于相似比列式求解即可.【解答】解:∵一块直角三角形木板,一条直角边AC的长1.5m,面积为1.5m2,∴另一直角边长为:=2(m),则斜边长为:=2.5,设点C到AB的距离为h,=×2.5h=1.5,则S△ABC解得:h=1.2,∵正方形GFDE的边DE∥GF,∴△ACB∽△DCE,=,即=,解得:x=,故答案为:.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,相似三角形对应高的比等于相似比的性质,读懂题目信息并熟记性质是解题的关键.三、解答题:(本大题共10小题,共76分.解答时写出必要的计算过程、推演步骤或文字说明.)19.(5分)计算:(6﹣)﹣(﹣4).【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:原式=(6×﹣×3)﹣(﹣4×)=﹣2﹣+2=0.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.20.(5分)先化简,再求值:÷(x+1﹣),其中x=﹣2.【分析】将原式括号中各项通分并利用同分母分式的减法法则计算,整理后再利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,即可得到原式的值.【解答】解:÷(x+1﹣)=÷[﹣]=÷=×=当x=﹣2时,原式==.【点评】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.21.(6分)在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复上述过程,下表是活动进行中的一组统计数据:(1)请将表中的数据补充完整,(2)请估计:当n很大时,摸到白球的概率约是0.6.(精确到0.1)【分析】(1)利用频率=频数÷样本容量直接求解即可;(2)根据统计数据,当n很大时,摸到白球的频率接近0.6.【解答】解:(1)填表如下:故答案为:0.58,0.59;(2)当n很大时,摸到白球的概率约是0.6,故答案为:0.6.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.22.(8分)解方程:(1)2x2﹣5x+2=0;(2).【分析】(1)直接利用十字相乘法分解因式进而解方程即可;(2)首先去分母进而解分式方程得出答案.【解答】解:(1)2x2﹣5x+2=0(2x﹣1)(x﹣2)=0,则2x﹣1=0或x﹣2=0,解得:x1=,x2=2;(2)1﹣x+2(x﹣2)=﹣1,则x=2,检验:当x=2时,x﹣2=0,故此方程无解.【点评】此题主要考查了因式分解法解方程以及分式方程的解法,正确分解因式是解题关键.23.(6分)按下列要求在如图格点中作图:(1)作出△ABC关于原点成中心对称的图形△A'B'C';(2)以点B为位似中心,作出△ABC放大2倍的图形△BA″C″.【分析】(1)直接利用关于原点对称图形的性质得出答案;(2)直接利用位似图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示:△A'B'C',即为所求;(2)如图所示:△BA″C″,即为所求.【点评】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.24.(6分)一列货车从北京开往乌鲁木齐,以58km/h的平均速度行驶需要65h.为了实施西部大开发,京乌线决定全线提速.(1)如果提速后平均速度为vkm/h,全程运营时间为t小时,试写出t与v之间的函数表达式;(2)如果提速后平均速度为78km/h,求提速后全程运营时间;(3)如果全程运营的时间控制在40h内,那么提速后,平均速度至少应为多少?【分析】(1)直接利用路程=时间×速度得出总路程进而得出函数关系式;(2)利用总路程除以速度即可得出时间;(3)利用总路程除以时间即可得出平均速度.【解答】解:(1)由题意可得,总路程为58×65=3770(km),则提速后平均速度为vkm/h,全程运营时间为t小时,故t与v之间的函数表达式为:t=;(2)当v=78km/h时,t==48(小时),答:提速后全程运营时间为48小时;(3)∵全程运营的时间控制在40h内,∴平均速度应为:t≥=94.25,答:提速后,平均速度至少应为94.25km.【点评】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.25.(8分)如图,在四边形ABCD中,AB=DC,E,F,G,H分别是AD,BC,BD,AC的中点.(1)证明:EG=EH;(2)证明:四边形EHFG是菱形.【分析】(1)利用三角形中位线定理证明即可;(2)首先运用三角形中位线定理可得到FG∥AB,HE∥AB,FH∥CD,GE∥DC,从而再根据平行于同一条直线的两直线平行得到GE∥FH,GF∥EH,可得到四边形ABCD 是平行四边形,再运用三角形中位线定理证明邻边相等,从而证明它是菱形.【解答】证明:(1)∵四边形ABCD中,点E、F、G、H分别是BC、AD、BD、AC 的中点,∴EG是△ABD的中位线,EH是△ADC的中位线,∴EG =AB ,EH =CD , ∵AB =CD , ∴EG =EH ;(2)∵四边形ABCD 中,点E 、F 、G 、H 分别是BC 、AD 、BD 、AC 的中点, ∴FG ∥AB ,HE ∥AB ,FH ∥CD ,GE ∥DC ,∴GE ∥FH ,GF ∥EH (平行于同一条直线的两直线平行); ∴四边形GFHE 是平行四边形,∵四边形ABCD 中,点E 、F 、G 、H 分别是BC 、AD 、BD 、AC 的中点, ∴FG 是△ABD 的中位线,GE 是△BCD 的中位线,∴GF =AB ,GE =CD , ∵AB =CD , ∴GF =GE ,∴四边形EHFG 是菱形.【点评】此题主要考查了三角形中位线定理和菱形的判定方法,利用三角形中位线定理解答是关键.26.(10分)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,点E 在BC 上,AE 交BD 于F .(1)若E 是靠近点B 的三等分点,求;①的值;②△BEF 与△DAF 的面积比;(2)当时,求的值.【分析】(1)①利用平行线分线段成本定理定理即可解决问题; ②利用相似三角形的性质即可解决问题;(2)利用平行四边形的性质以及平行线分线段成比例定理即可解决问题; 【解答】解:(1)①∵四边形ABCD 是平行四边形,∴BC=AD,BC∥AD,∵BE:BC=1:3,∴==.②∵BE∥AD,∴△BEF∽△DAF,∴=()2=.(2)∵四边形ABCD是平行四边形,∴OB=OD,BC∥AD,BC=AD,∵BF:OF=n:m,∴BF:DF=n:(2m+n),∴BE:AD=BF:DF=n:(2m+n),∴=.【点评】本题考查相似三角形的判定和性质、平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.(10分)如图,已知反比例函数的图象经过点A(﹣1,a),过点A作AB⊥x轴,垂足为点B,△AOB的面积为.(1)求k的值;(2)若一次函数y=mx+n图象经过点A和反比例函数图象上另一点,且与x轴交于M点,求AM的值;(3)在(2)的条件下,如果以线段AM为一边作等边△AMN,顶点N在另一个反比例函数上,则k'=4或.【分析】(1)根据点A的坐标以及三角形的面积公式即可求出a值,再根据反比例函数图象上点的坐标特征即可求出k的值;(2)根据反比例函数解析式可求出点C的坐标,由点A、C的坐标利用待定系数法即可求出直线AM的解析式,令线AM的解析式中y=0求出x值,即可得出点M的坐标,再利用勾股定理即可求出线段AM的长度;(3)设点N的坐标为(m,n),由等边三角形的性质结合两点间的距离公式即可得出关于m、n的二元二次方程组,解方程组即可得出n与m之间的关系,由此即可得出b 值.=OB•AB=,【解答】解:(1)∵S△AOB∴×1×a=,∴a=.∴点A(﹣1,).∵反比例函数y=的图象经过点A(﹣1,),∴k=﹣.(2)∵C(t,﹣)在反比例函数y=﹣的图象上,∴﹣t=﹣,解得:t=3,∴C(3,﹣).将A(﹣1,)、C(3,﹣)代入y=mx+n中,得:,解得:,∴直线AM的解析式为y=﹣x+.令y=﹣x+中y=0,则x=2,∴M(2,0).在Rt△ABM中,AB=,BM=2﹣(﹣1)=3,∴AM==2.(3)设点N的坐标为(m,n),∵△AMN为等边三角形,且AM=2.∴∠AMN=60°,∵tan∠AMB==,∴∠AMB=30°,∴∠NMB=90°,∴N(2,2),同法可得:当△AMN′是等边三角形时,可得N′(﹣1,﹣),∵顶点N在另一个反比例函数上,∴k′=4或故答案为:4或.【点评】本题考查了三角形的面积公式、反比例函数图象上点的坐标特征、勾股定理以及解二元二次方程组,解题的关键是:(1)求出点A的坐标;(2)求出点M的坐标;(3)根据等边三角形的性质找出关于m、n的二元二次方程组.本题属于中档题,难度不大,解决该题型题目时,根据等边三角形的性质利用两点间的距离公式找出点的横纵坐标之间的关系是关键.28.(12分)如图,在平面直角坐标系中,已知矩形OABC的顶点B(6,8),动点M,N同时从O点出发,点M沿射线OA方向以每秒1个单位的速度运动,点N沿线段OB 方向以每秒0.6个单位的速度运动,当点N到达点B时,点M,N同时停止运动,连接MN,设运动时间为t(秒).(1)求证△ONM~△OAB;(2)当点M是运动到点时,若双曲线的图象恰好过点N,试求k的值;(3)△MNB与△OAB能否相似?若能试求出所有t的值,若不能请说明理由.【分析】(1)想办法证明=,即可解决问题;(2)只要证明点N是OB中点,即可求出点N坐标,再利用待定系数法即可解决问题;(3)分两种情形解决问题即可;【解答】(1)证明:由题意:OA=6,AB=8,OB=10,OM=t,ON=0.6t,∴=,∵∠MON=∠AOB,∴△ONM∽△OAB.(2)当OM=时,ON=5,∴ON=NB,∴N(3,4),∵双曲线的图象恰好过点N,∴k=12.(3)①当点M与点A重合时,△BNM∽△BAO,此时t=6s.②当OM=BM时,∠MBN=∠AOB,∵∠OAB=∠MNB=90°,∴△MBN∽△BOA,此时点M在线段OB的垂直平分线上,由(2)可知,此时OM=,t=s,综上所述,当t=6s或s时,△BMN与△AOB相似.【点评】本题考查反比例函数综合题、相似三角形的判定和性质、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

八年级下册数学宿迁数学期末试卷测试题(Word版含解析)

八年级下册数学宿迁数学期末试卷测试题(Word版含解析)

八年级下册数学宿迁数学期末试卷测试题(Word 版含解析) 一、选择题 1.式子3x -在实数范围内有意义,则x 的取值范围是( )A .x <3B .x ≥3C .x ≤3D .x >3 2.下列条件中,能判断△ABC 是直角三角形的是( ) A .a :b :c =3:4:4B .a =1,b =2,c =3C .∠A :∠B :∠C =3:4:5D .a 2:b 2:c 2=3:4:5 3.如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .//AB DC ,DAB BCD ∠=∠B .AB DC =,AD BC = C .AO CO =,BO DO = D .//AB DC ,AD BC =4.远离白色垃圾从我做起,小明统计了上周一至周日7天他家使用塑料袋个数分别为:11,10,11,13,11,13,15关于这组数据,小明得出如下结果,其中错误的是( ) A .众数是11 B .平均数是12 C .方差是187 D .中位数是13 5.某三角形三条中位线的长分别为3、4、5,则此三角形的面积为( )A .6B .12C .24D .486.如图,在Rt ACB ∆中,90ACB ︒∠=,25A ︒∠=,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使B 点落在AC 边上的E 处,则ADE ∠等于( )A .25︒B .30︒C .35︒D .40︒7.如图,在直角三角形ABC 中,∠ACB =90°,AC =6,BC =8,点M 是边AB 上一点(不与点A ,B 重合),作ME ⊥AC 于点E ,MF ⊥BC 于点F ,若点P 是EF 的中点,则PF 的最小值是( )A .1.5B .2C .2.4D .2.58.正方形1112A B C A ,2223A B C A ,3334A B C A ,…,按如图所示的方式放置,点123A A A ,…和点123B B B ,…分别在直线1y x =+和x 轴上.则点2020C 的纵坐标是( )A .20202B .20192C .202021-D .201921-二、填空题9.当代数式241x x --有意义时,x 应满足的条件_____. 10.一个菱形的两条对角线的长分别为3和6,这个菱形的面积是______.11.如图,在△ABD 中,∠D =90°,CD =6,AD =8,∠ACD =2∠B ,BD 的长为_____.12.如图,点P 在矩形ABCD 的对角线AC 上,且不与点A C 、重合,过点P 分别作边AB AD 、的平行线,交两组对边于点E F 、和G H 、.四边形PEDH 和四边形PFBG 都是矩形并且面积分别为S 1,S 2,则S 1,S 2之间的关系为__________.13.已知直线2y x b =+经过点()2,0,那么b =_________.14.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,要使四边形EFGH 为菱形,则四边形ABCD 的对角线应满足的条件是__15.如图,在平面直角坐标系第一象限内,直线y x =与2y x =的交角内部作等腰Rt ABC △,使90ABC ∠=︒,边//BC x 轴,//AB y 轴,点()1,1A 在直线y x =上,点C 在直线2y x =上,CB 的延长线交直线y x =于点1A ,作等腰111Rt A B C ,使11190A B C ∠=︒,11//B C x 轴,11//A B y 轴,点1C 在直线2y x =上…按此规律,则等腰202120212021Rt A B C △的腰长为______.16.如图,Rt △ABC 中,AB 92=,BC =3,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为 _____.三、解答题17.计算:(1)1325045183++-; (2)163438222⎛⎫⨯-+÷ ⎪ ⎪⎝⎭. 18.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA 静止的时候,踏板离地高一尺(1AC =尺),将它往前推进两步(10EB =尺),此时踏板升高离地五尺(5BD =尺),求秋千绳索(OA 或OB )的长度.19.作图题(1)填空:如果长方形的长为3,宽为2,那么对角线的长为_________.(2)如下图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点(端点),分别按下列要求画图(不要求写画法和证明,但要标注顶点). ①在图1中,分别画三条线段AB 、CD 、EF ,使AB 5CD =22EF 13②在图2中,画三角形ABC ,使AB =3、BC =22、CA =5.③在图3中,画平行四边形ABCD ,使45A ∠=︒,且面积为6.20.在△ABC 中,∠ACB =90°,∠BAC =30°,D 为AB 的中点,四边形BCED 为平行四边形,DE ,AC 相交于F .连接DC ,AE .(1)试确定四边形ADCE 的形状,并说明理由.(2)若AB =16,AC =12,求四边形ADCE 的面积. (3)当△ABC 满足什么条件时,四边形ADCE 为正方形?请给予证明.21.21+2(21)(21)+-22(2)1-21-21 (132+ ; (21n n ++= ; (321+32+43+10099+. 22.小明爸爸为了让小明上学更近,决定在学校附近租套房子居住.现有甲、乙两家出租房屋,甲家已经装修好,每月租金为2500元;乙家未装修,每月租金为1800元,但需要支付装修费14000元.设租用时间为x 个月,所需租金为y 元.(1)请分别写出租用甲、乙两家房屋的租金x 甲、x 乙与租用时间x 之间的函数关系; (2)试判断租用哪家房屋更合算,并说明理由.23.如图1,在一个平面直角三角形中的两直角边的平方之和一定等于斜边的平方。

2019年宿迁市初二数学下期末试卷(及答案)

2019年宿迁市初二数学下期末试卷(及答案)

2019年宿迁市初二数学下期末试卷(及答案)一、选择题1.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形2.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >3.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个. A .4B .3C .2D .14.如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD的面积是( )A .30B .36C .54D .725.小强所在学校离家距离为2千米,某天他放学后骑自行车回家,先骑了5分钟后,因故停留10分钟,再继续骑了5分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离s (千米)与所用时间t (分)之间的关系( )A .B .C .D .6.已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5B .2C .2.5D .-67.若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A .B .C .D .8.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数 B .平均数C .中位数D .方差9.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表: 尺码(厘米)2525.52626.527购买量(双)12322则这10双运动鞋尺码的众数和中位数分别为( ) A .25.5厘米,26厘米 B .26厘米,25.5厘米 C .25.5厘米,25.5厘米D .26厘米,26厘米10.如图,D 3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是( )A .B .C .D .11.下列各组数,可以作为直角三角形的三边长的是( ) A .2,3,4B .7,24,25C .8,12,20D .5,13,1512.一列火车由甲市驶往相距600km 的乙市,火车的速度是200km/时,火车离乙市的距离s(单位:km)随行驶时间t(单位:小时)变化的关系用图象表示正确的是( )A .B .C .D .二、填空题13.如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.14.如图,在▱ABCD 中,E 为CD 的中点,连接AE 并延长,交BC 的延长线于点G ,BF ⊥AE ,垂足为F ,若AD =AE =1,∠DAE =30°,则EF =_____.15.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_________°.16.如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE=AB ,则∠EBC 的度数为_______.17.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .18.某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表: t (小时) 0 1 2 3 y (升)100928476由表格中y 与t 的关系可知,当汽车行驶________小时,油箱的余油量为0.19.如图:长方形ABCD 中,AD=10,AB=4,点Q 是BC 的中点,点P 在AD 边上运动,当△BPQ 是等腰三角形时,AP 的长为___.20.已知3a b +=,2ab =a bb a的值为_________. 三、解答题21.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下: 甲 10 6 10 6 8 乙79789经过计算,甲进球的平均数为8,方差为3.2. (1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?22.如图,在Rt △ABC 中,∠A=90°,∠B=30°,D 、E 分别是AB 、BC 的中点,若DE=3,求B C 的长.23.如图,点B 、E 、C 、F 在一条直线上,AB =DF ,AC =DE ,BE =FC . (1)求证:△ABC ≌△DFE ;(2)连接AF 、BD ,求证:四边形ABDF 是平行四边形.24.若一次函数y kx b =+,当26x -≤≤时,函数值的范围为119y -≤≤,求此一次函数的解析式?25.如图,正方形ABCD 中,E 是BC 上的一点,连接AE ,过B 点作BH ⊥AE ,垂足为点H ,延长BH 交CD 于点F ,连接AF . (1)求证:AE=BF .(2)若正方形边长是5,BE=2,求AF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】依据作图即可得到AC =AN =4,BC =BM =3,AB =2+2+1=5,进而得到AC 2+BC 2=AB 2,即可得出△ABC 是直角三角形. 【详解】如图所示,AC =AN =4,BC =BM =3,AB =2+2+1=5, ∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°, 故选B .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.2.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.3.C解析:C 【解析】 【分析】 【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.4.D解析:D【解析】【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【详解】作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=12BC=12AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF=365 BD DEBE⋅=,∴S▱ABCD=BC•FD=10×365=72.故选D.【点睛】此题主要考查平行四边形的性质和勾股定理的逆定理,正确地作出辅助线,构造直角三角形是解题的关键.5.D解析:D【解析】【分析】根据描述,图像应分为三段,学校离家最远,故初始时刻s 最大,到家,s 为0,据此可判断. 【详解】因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离家的距离为0,由此可得只有选项DF 符合要求.故选D . 【点睛】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.6.A解析:A 【解析】 【分析】根据一次函数的系数k=-0.5<0,可得出y 随x 值的增大而减小,将x=1代入一次函数解析式中求出y 值即可. 【详解】在一次函数y=-0.5x+2中k=-0.5<0, ∴y 随x 值的增大而减小,∴当x=1时,y 取最大值,最大值为-0.5×1+2=1.5, 故选A . 【点睛】本题考查了一次函数的性质,牢记“k <0,y 随x 的增大而减小”是解题的关键.7.C解析:C 【解析】 【分析】根据正比例函数和一次函数的图像与性质逐项判断即可求解. 【详解】∵函数()0y kx k =≠的值随自变量的增大而增大, ∴k >0,∵一次函数2y x k =+, ∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限; 故答案为C. 【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.8.D解析:D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。

2019年苏教版八年级(下)期末考试数学试卷含答案详解

2019年苏教版八年级(下)期末考试数学试卷含答案详解

2018~2019学年度第二学期期末考试试卷初二数学本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分。

考试用时120分钟。

注意事项:1.答卷前考生务必将自己的学校、班级、姓名、考场号、考试号使用0 5毫米黑色签字笔书写在答题卷的相应位置上,并将考试号用2B 铅笔正确填涂.2.答选择题必须用2B 铅笔把答题卷上对应题目的答案标号涂黑;答非选择题必须用0.5mm 的黑色墨水签字笔写在答题卷指定的位置上,不在答题区域的答案一律无效,不得用其他笔答题。

3.考生答题必须在答题卷上,答在试卷上和草稿纸上一律无效.一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卷上将该项涂黑.) 1.若代数式13x +在实数范围内有意义,则实数x 的取值范围是 A. 3x =- B. 3x ≠- C. 3x <- D. 3x >- 2.下列各点中,在双曲线上12y x=的点是 A .(4,-3) B. (3,-4) C. (-4,3) D.(-3,-4) 3.化简2(5)-的结果是A .5 B. -5 C. ±5 D. 25 4.菱形对角线不.具有的性质是 A .对角线互相垂直 B. 对角线所在直线是对称轴 C .对角线相等 D. 对角线互相平分5.苏州市5月中旬每天平均空气质量指数(AQI)分别为:84,89,83,99,69,73,78,81,89,82,为了描述这十天空气质量的变化情况,最适合用的统计图是A .折线统计图B .频数分布直方图C .条形统计图D .扇形统计图 6.如图,//DE BC 在下列比例式中,不能..成立的是A .AD AE DB EC = B.DE AEBC EC = C.AB AC AD AE = D.DB ABEC AC=7.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是 A.15 B.25 C.35 D.458.如图, 在正方形ABCD 中,AC 为对角线,点E 在AB 边上,EF AC ⊥于点F ,连接EC ,3,AF EFC =∆的周长为12,则EC 的长为A.722B.32C.5D.6 9.如图,路灯灯柱OP 的长为8米,身高1.6米的小明从距离灯的底部(点O 20米的点A 处,沿AO 所在的直线行走14米到点B 处时,人影的长度 A .变长了1.5米 B .变短了2.5米 C .变长了3.5米 D. 变短了3.5米10.如图所示,在Rt AOB ∆中,90,23AOB OB OA ∠=︒=,点A 在反比例函数2y x =的图象上,若点B 在反比例函数k y x=的 图象上,则k 的值为A .3 B. -3C. 94-D. 92-二、填空题:(本大题共8小题,每小题3分,共24分) 11.计算:2633⋅= . 12.一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含有红球”是 (填“必然事件”、“随机事件”或 “不可能事件”).13.某建筑物的窗户为黄金矩形,已知它较长的一边长为l 米,则较短的一边长为 米.(结果保留根号或者3位小数)14.如图,在四边形ABCD 中,AC 平分BCD ∠,要A B CD A C ∆∆,还需添加一个条件,你添加的条件是 .(只需写一个条件,不添加辅助线和字母)15.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF DC =,若25ADF ∠=︒,则ECD ∠= °. 16.关于x 的方程122x ax x +=--有增根,则a 的值为 . 17.如图,在ABC ∆中,90,16C BC ∠=︒=cm ,AC =12cm ,点P 从点B 出发,沿BC 以2cm/s 的速度向点C 移动,点Q 从点C 出发,沿CA 以lcm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为t s ,当t = 时,//AB PQ .18.如图,直线2y x =与反比例函数ky x=的图象交于点(3,)A m ,点B 是线段OA 的中点,点(,4)E n 在反比例函数的图象上,点F 在x 轴上,若EAB EBF AOF ∠=∠=∠,则点F 的横坐标为 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.(本题满分6分)己知22()4(0()a b abA ab ab a b +-=≠-且)a b ≠. (1)化简A ;(2)若点(,)P a b 在反比例函数5y x=-的图象上,求A 的值20.(本题满分6分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,已知A 组的频数a 比B 组的频数b 小24,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题: (1)样本容量为: ,a 为 ; (2)n 为 °,E 组所占比例为 %; (3)补全频数分布直方图:(4)若成绩在80分以上记作优秀,全校共有2000名学生,估计成绩优秀学生有 名.21.(本题满分6分)请你阅读小红同学的解题过程,并回答所提出的问题. 计算:23311x x x-+-- (1)问:小红在第 步开始出错(写出序号即可); (2)请你给出正确解答过程.22.(本题满分8分)如图所示,在4×4的正方形万格中,ABC ∆和DEF ∆的顶点都在边长为1的小正方形的顶点上.(1)填空:ABC ∠= °,BC = ; (2)判断ABC ∆与DEF ∆是否相似?并证明你的结论.23.(本题满分8分)已知17178a a b -+-=+.(1)求a 的值; (2)求22a b -的平方根.24.(本题满分8分)己知, 121,y y y y =+与x 成正比例,2y 与x 成反比例,并且当1x =-时,1y =-,当2x =时,5y =.(1)求y 关于x 的函数关系式; (2)当0y =时,求x 的值.25.(本题满分8分)如图,在ABC ∆中, 90,BAC AD ∠=︒是斜边上的中线,E 是AD 的中点,过点A 作//AF BC 交BE 的的延长线于F ,连接CF .2-1-c-n-j-y (1)求证:BD AF =;(2)判断四边形ADCF 的形状,并证明你的结论.26.(本题满分8分)如图,反比例函数4y x=的图象与一次函数3y kx =-的图象在第一象限内相交于点A ,且点A 的横坐标为 4. (1)求点A 的坐标及一次函数解析式;(2)若直线2x =与反比例函数和一次函数的图象分别 交于点B 、C ,求ABC ∆的面积.27.(本题满分8分)如图,在平行四边形ABCD 中,F 是AD 的中点,延长BC 到点E ,使12CE BC =,连接,DE CF .(1)求证: DE CF =;(2)若4,6,60AB AD B ==∠=︒,求DE 的长.28.(本题满分10分)如图,在平面直角坐标系中,一次函数6y kx =+的图象分别与x 轴,y 轴交于点,A B ,点A 的坐标为(-8,0).(1)点B 的坐标为 ;(2)在第二象限内是否存在点P ,使得以P 、O 、A 为顶 点的三角彤与OAB ∆相似?若存在,请求出所有符台 条件的点P 的坐标:若不存在,请说明理由.- 11 -。

2018-2019学年八年级下期末数学试卷含答案解析

2018-2019学年八年级下期末数学试卷含答案解析

2018-2019学年八年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,34.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.36.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠57.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.810.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=4811.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.1812.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.当x时,有意义.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=cm.16.直线y=﹣3x+5向下平移6个单位得到直线.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.20.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式的概念即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=4,故B不是最简二次根式;(C)原式=,故C不是最简二次根式;故选(D)2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分【考点】LB:矩形的性质;L5:平行四边形的性质.【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,3【考点】KS:勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故符合题意;C、52+62≠72,不能构成直角三角形,故不符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选B.4.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定【考点】W7:方差;W1:算术平均数.【分析】方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,据此判断即可.【解答】解:∵1.5<2,∴S小明2<S小李2,∴成绩最稳定的是小明.故选:A.5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.3【考点】LE:正方形的性质.【分析】根据正方形的面积=对角线的乘积的一半.【解答】解:因为正方形的对角线互相垂直且相等,所以正方形的面积=对角线的乘积的一半=×6×6=18,故选C.6.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠5【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣5≠0,解得x≥1且x≠5,故选:D.7.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F5:一次函数的性质.【分析】利用一次函数的性质求解.【解答】解:∵k=3>0,b=5>0,∴一次函数y=3x+5的图象经过第一、二、三象限.故选D.8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC【考点】L6:平行四边形的判定.【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.8【考点】LB:矩形的性质.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选B.10.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=48【考点】L8:菱形的性质.【分析】画出几何图形,利用菱形的面积等于对角线乘积的一半即可得到此菱形的面积,根据菱形的性质得AC⊥BD,AO=OC=4,OB=OD=3,然后根据勾股定理计算AB即可.【解答】解:如图,菱形ABCD的对角线AC=8,BD=6,菱形的面积=•AC•BD=×8×6=24,∵四边形ABCD为菱形,∴AC⊥BD,AO=OC=4,OB=OD=3,在Rt△AOB中,AB===5,即菱形的边长为5.∴a=5,S=24,故选A.11.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.18【考点】KP:直角三角形斜边上的中线;KH:等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.12.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.【考点】E6:函数的图象.【分析】在江边休息10分钟后,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在江边休息,离家距离没有变化,是一条平行于x轴的线段.故选B.二、填空题(共6小题,每小题3分,满分18分)13.当x≥2时,有意义.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得3x﹣6≥0,再解不等式即可.【解答】解:由题意得:3x﹣6≥0,解得:x≥2,故答案为:≥2.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是2.【考点】W7:方差;W1:算术平均数.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=2cm.【考点】L5:平行四边形的性质.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=4cm,∵BC=AD=6cm,∴EC=BC﹣BE=2cm,故答案为:2.16.直线y=﹣3x+5向下平移6个单位得到直线y=﹣3x﹣1.【考点】F9:一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,y=﹣3x+5向下平移6个单位,所得直线解析式是:y=﹣3x+5﹣6,即y=﹣3x﹣1.故答案为:y=﹣3x﹣1.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为5.【考点】KQ:勾股定理;KP:直角三角形斜边上的中线.【分析】根据勾股定理求得斜边的长,从而不难求得斜边上和中线的长.【解答】解:∵直角三角形两条直角边分别是6、8,∴斜边长为10,∴斜边上的中线长为5.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是m <8.【考点】F5:一次函数的性质.【分析】先根据一次函数的增减性判断出(m﹣8)的符号,再求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣8)x+5中,若y的值随x值的增大而减小,∴m﹣8<0,∴m<8.故答案为:m<8.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017=3﹣2﹣×1﹣1=﹣﹣1=﹣120.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE ≌△CDF即可推出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?【考点】VC:条形统计图;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)用2册的人数除以其所占百分比可得;(2)总人数减去其余各项目人数可得答案;(3)根据中位数和众数定义求解可得.【解答】解:(1)15÷30%=50,答:该班有学生50人;(2)捐4册的人数为50﹣(10+15+7+5)=13,补全图形如下:(3)八(1)班全体同学所捐图书的中位数=3(本),众数为2本.22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.【考点】L8:菱形的性质;JA:平行线的性质.【分析】(1)猜想:四边形CEDO是矩形;(2)根据平行四边形的判定推出四边形是平行四边形,根据菱形性质求出∠DOC=90°,根据矩形的判定推出即可;【解答】(1)解:猜想:四边形CEDO是矩形.(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?【考点】FH:一次函数的应用.【分析】把x=60,y=5代入里待定系数法求解即可得到解析式,再把x=84代入求解即可;令y=0,即可求得旅客最多可免费携带30千克行李.【解答】解:(1)将x=60,y=5代入了y=kx﹣5中,解得,∴一次函数的表达式为,将x=84代入中,解得y=9,∴京京该交行李费9元;(2)令y=0,即,解得,解得x=30,∴旅客最多可免费携带30千克行李.答:京京该交行李费9元,旅客最多可免费携带30千克行李.24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.【考点】FH:一次函数的应用.【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解.=60(千米/时).【解答】解:(1)根据图象信息:货车的速度V货=∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5).。

2019学年江苏省八年级下学期期末考试数学试卷【含答案及解析】

2019学年江苏省八年级下学期期末考试数学试卷【含答案及解析】

2019学年江苏省八年级下学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 要使二次根式有意义,字母x应满足的条件为()A.x>2 B.x<2 C.x≥2 D.x>-22. 把分式中的分子、分母的、同时扩大2倍,那么分式的值()A.扩大2倍 B.缩小2倍 C.改变为原来的 D.不变3. 两个相似等腰直角三角形的面积比是4:1,则它们的周长比是()A.4:1 B.2:1 C.8:1 D.16:14. 在Rt△ABC中,∠C=90o,∠A=∠B,则sinA的值是()A. B. C. D.15. 函数y=x和在同一直角坐标系中的图象大致是()6. 、已知点A(,y1)、B(5,y2)、C (3,y3)都在反比例函数的图象上,则()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y37. 已知:如图,小明在打网球时,要使球恰好能打过而且落在离网5米的位置上(网球运行轨迹为直线),则球拍击球的高度h应为()A.0.9m B.1.8m C.2.7m D.6m8. 兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.5米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为()A.9.5米 B.10.75米 C.11.8米 D.9.8米二、填空题9. .当时,分式的值为0.10. 在比例尺为1∶4000000的中国地图上,量得扬州市与2008年奥运会举办地北京市相距27厘米,那么扬州市与北京市两地实际相距千米.11. “两直线平行,同位角相等”的逆命题是.12. 在一次数学兴趣小组的活动中,大家想编这样一道题:写出一个反比例函数,在x<0时,y随x的增大而减小.请你写出一个符合这些条件的函数解析式:.13. 如图:使△AOB∽△COD,则还需添加一个条件是:.(写一个即可)14. 一张圆桌旁有四个座位,A先坐在如图所示的位置上,B、C、D三人随机坐到其他三个座位上,则A与B不相邻而座的概率为.15. 已知反比例函数的图象通过点(,),则当时,.16. 若方程有增根,则.17. 如图,,,点在上,且=3,点在上运动,连接,若△AMN与△ABC相似,则=.18. 已知不等式2x-a<0的正整数解只有2个,则a的取值范围是.19. 如图,直线y=k和双曲线y=相交于点P,过点P作 PA0垂直于x轴,垂足为A0,x 轴上的点A0,A1,A2,……An的横坐标是连续整数,过点A1,A2,……An:分别作x轴的垂线,与双曲线y=(k>0)及直线y=k分别交于点B1,B2,……Bn和点C1,C2,……Cn则的值为.三、解答题20. (本题满分10分)解方程:21. (本题满分10分)解不等式组:22. (本题满分12分)如图,∠ABC=∠CDB=90°,AC=a,BC=b.(1)当BD与a、b之间满足怎样的关系时,△ABC∽△CDB?(2)过A作BD的垂线,与DB的延长线交于点E,若△ABC∽△CDB.求证四边形AEDC为矩形(自己完成图形).23. (本题满分12分)小美有红色、白色、蓝色上衣各一件,黄色、黑色长裤各一条.(1)请用画树状图或列表的方法分析小美上衣和长裤有多少种不同的搭配情况;(2)其中小美穿蓝色上衣的概率是多少?24. (本题满分12分)如图,已知A(-4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求此反比例函数的解析式及n的值;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.25. (本题满分12分)如图,已知的中垂线交于点,交于点,有下面3个结论:①是等腰三角形;②∽;③点D是线段AC的黄金分割点.请你从以上结论中只选一个加以证明(友情提醒:证明①得8分,证明②得10分,证明③得12分).26. (本题满分12)我们课本中有这样一段叙述:“要比较与的大小,可先求出与的差,再看这个差是正数、负数还是零.”由此可见,要判断两个代数式值的大小,只要考虑它们的差就可以了.试问:甲、乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不相同),甲每次购买粮食100千克,乙每次购粮用去100元.(1)假设分别表示两次购粮的单价(单位:元/千克),试用含的代数式表示:甲两次购买粮食共需付款元,乙两次购买千克粮食;若甲两次购粮的平均单价为每千克Q1元,乙两次购粮的平均单价为每千克Q2元,则Q1 = 元,Q2= 元.(2)规定:谁两次购粮的平均单价低,谁的购粮方式就更合算.请你判断甲、乙两人的购粮方式哪一个更合算些,并说明理由.27. (本题10分)我校八年级举行英语风采演讲比赛,派两位老师去超市购买笔记本作为奖品.据了解,该超市的甲、乙两种笔记本的价格分别是10元和6元,他们准备购买这两种笔记本共30本.(1)若这两位老师计划用220元购买奖品,则能买这两种笔记本各多少本?(2)若他们根据演讲比赛的设奖情况,决定所购买的甲种笔记本的数量不多于乙种笔记本数量的,但又多于乙种笔记本数量的,若设他们买甲种笔记本x本,买这两种笔记本共花费y元.①求出y(元)关于x(本)的函数关系式;②问购买这两种笔记本各多少时,花费最少,此时的花费是多少元?28. 如图,在平面直角坐标系xOy中,矩形OEFG的顶点E坐标为(4,0),顶点G坐标为(0,2).将矩形OEFG绕点O逆时针旋转,使点F落在y轴的点N处,得到矩形OMNP,OM与GF交于点A.(1)判断△OGA和△NPO是否相似,并说明理由;(2)求过点A的反比例函数解析式;(3)若(2)中求出的反比例函数的图象与EF交于B点,请探索:直线AB与OM是否垂直,并说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】。

2018-2019学年苏教版八年级(下)期末考试数学试卷含答案详解

2018-2019学年苏教版八年级(下)期末考试数学试卷含答案详解

2018-2019学年苏教版八年级(下)期末考试数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,只有一项是符合题目要求的)21.下列式子中,为最简二次根式的是( ) A .4 B .10 C .D .2.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( ) A .至少有2个球是黑球B .至少有1个球是白球C .至少有1个球是黑球D .至少有2个球是白球 3.与分式﹣的值相等的是( ) A .﹣B .﹣C .D .4.如图,在矩形ABCD 中,点E 在AD 上,且EC 平分∠BED ,AB =2,∠ABE =45°,则DE 的长为( )2第4题第5题第11题A .2-2 B .-1 C . -1D .2-5.反比例函数的图象如图所示,则这个反比例函数的解析式可能是( ) A . xy 2=B .x y 6=C .x y 7=D .xy 9= 6.若分式方程+1=有增根,则a 的值是( ) A .4B .0或4C .0D .0或﹣4二、填空题:(本大题共10小题,每小题3分,计30分) 7.使22-x 有意义的x 的取值范围是______.8.分式392--x x 的值为0,那么x 的值为______;9.某班级40名学生在期中学情分析考试中,分数段在90~100分的频率为0.2,则该班级在这个分数段内的学生有 人.10.若一元二次方程ax 2-(b -1)x ﹣2017=0有一根为x =﹣1,则a +b 的值为______;11.如图,在Rt △ABC 中,∠ACB =90°,点D 、E 、F 分别为AB 、AC 、BC 的中点.若CD =5,则EF 的长为______.12.如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,将△ABC 绕点C 逆时针旋转α(0°<α<90°),得到△MNC ,连接BM ,当 BM ⊥AC ,则旋转角α的度数为______.13.已知菱形的周长为40cm ,两条对角线之比3:4,则菱形面积为______________cm 2.14.一次函数y =-x +1与反比例函数xky =(k <0)中,x 与y 的部 分对应值如下表:x -3 -2 -1 1 2 3 y =-x +143 2 0 -1 -2xk y =32 12-2-132- 则不等式1-+x x>0的解集为____________________________. 15.已知关于x 的方程=3的解是正数,那么m 的取值范围为___________16.正方形ABCD 中,直线l 经过点A ,过点B 、D 分别作直线l 的垂线,垂足分别为E 、F ,若BE =7,DF =4,则DE 的长度为___________________________. 三、解答题:(本大题共10小题,计78分) 17.(3分×2=6分)化简与计算: (1)( x ≥0,y ≥0); (2)×+÷.18.(4分×2=8分) 解方程:(1) (x -2)(x -5)=-2 (2)xx x 101317=-++19.(6分)先化简,再求值:(a a 112--)÷1222+-+a a aa ,其中a 2+a -2=0.20.(8分) 某学校校园读书节期间,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息解答下列问题:(1) 本次抽样调查一共抽查了_______名同学;(2) 条形统计图中,m=_______,n=_______;(3) 扇形统计图中,艺术类读物所在扇形的圆心角是_______度;(4) 学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.(6分)已知关于x的方程x2﹣4mx+4m2﹣9=0.(1) 求证:此方程有两个不相等的实数根;(2) 设此方程的两个根分别为x1,x2,其中x1<x2.若2x1=x2+1,求m的值.ABCD E第22题图22.(6分)如图,在△ABC 中,AB =AC ,D 为边BC 上一点,将线段AB 平移至DE ,连接AE 、AD 、E C . (1) 求证:AD =EC ; (2) 当点D 是BC 的中点时, 求证:四边形ADCE 是矩形.23.(8分)一儿童服装商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”儿童节,商店决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?x24.(8分)如图,点B 在反比例函数y =4x(x >0)的图像上,点A 、C 分别在x 轴、y 轴正 半轴上,且四边形OABC 为正方形. (1) 求点B 的坐标; (2) 点P 是y =x4在第一象限的图像上点B 右侧一动点, 且S △POB =S △AOB ,求点P 的坐标.25.(10分)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.2·1·c·n·j·y(1) 如图1,求证:矩形DEFG是正方形;(2) 若AB=2,CE=2,求CG的长度;(3) 当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.26.(12分)如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,8),点P 在边BC 上以每秒1个单位长的速度由点C 向点B 运动,同时点Q 在边AB 上以每秒a 个单位长的速度由点A 向点B 运动,运动时间为t 秒(t >0).(1) 若反比例函数xm y 图像经过P 点、Q 点,求a 的值;(2) 若OQ 垂直平分AP ,求a 的值;(3) 当Q 点运动到AB 中点时,是否存在a 使△OPQ 为直角三角形?若存在,求出a 的值;若不存在,请说明理由;参考答案1.B 2.C 3.D 4.A 5.C 6.A 7.X ≥1 8.- 3 9.8 10.2018 11.5 12.6013.24 14.-1<x <0或x >2 15.m >-6且m ≠-4 16.5或137 17.(1)5xy x 3 (2)1118.(1)x 1=3, x 2=4 (2)x =25(不检验扣1分) 19.21aa -(3分) a =-2 (a =1舍去)(2分) 43-(1分)20.(1)200 (2)m =40, n =60 (3) 72 (4)900 (每题2分)21.(1)证明(略) (2分) (2)x 1=2m -3 x 2=2m +3 (判断1分共2分)m =5 (2分)w 22.(1)证明(略)(3分)(2)证明(略)(3分) 23.设每件童装应降价x 元,根据题意得(40-x )(20+2x )=1200 (4分) x 1=20 x 2=10 (2分)因为要尽快减少库存,则x =10舍去则x =20 (1分) 答:每件童装应降价20元.(1分)(其他方法参照执行)224. (1)B (2,2) (4分) (2) P (1+, 1-+) (4分)25.(1)证明(略) (3分) (2) CG =2 (3分) (3)120°或30°(4分)【 26.(1)a =54(2分) (2)a =65(4分)(3)①当t >0时∠POQ <∠AOB =90°,则∠POQ 不为直角; (1分) ②当∠OPQ =90°时, OP 2+PQ 2=OQ 2∴82+t 2+42+(10-t )2=42+102 t 2-10t +32=0此方程无实数解,则∠OPQ 不为直角 (2分) ③当∠OQP =90°时OP 2=PQ 2+OQ 2 ∴82+t 2=42+(10-t )2+42+102t =542(2分)∵at =4 ∴a =2110(1分)。

江苏省泗阳县2018-2019学年八年级上学期期末考试数学试题(解析版)

江苏省泗阳县2018-2019学年八年级上学期期末考试数学试题(解析版)

江苏省泗阳县2018-2019学年八年级上学期期末考试数学试题一、选择题(本大题共12小题,共36.0分)1.下列实数中,是无理数的是()B. −√64C. √33D. −5A. 227【答案】C是分数,属于有理数;【解析】解:A.227B.−√64=−8,是整数,属于有理数;3是无理数;C.√3D.−5是整数,属于有理数;故选:C.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.本题考查无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.2.下列图形中,不是轴对称图形的是()A. B. C. D.【答案】B【解析】解:A、是轴对称图形,不符合题意;B、不是轴对称图形,符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:B.根据轴对称图形的定义判断即可.本题考查轴对称图形、中心对称图形的定义,解题的关键是理解轴对称图形的性质,属于中考常考题型.3.下列各组数中,可以构成直角三角形的是()A. 2,3,5B. 3,4,5C. 5,6,7D. 6,7,8【答案】B【解析】解:∵32+42=25,52=25.∴32+42=52.可构成直角三角形的是3、4、5.故选:B.两边的平方和等于第三边平方的三角形是直角三角形,根据此可找到答案.本题考查勾股定理的逆定理,根据勾股定理的逆定理判断出直角三角形.4.已知a>0,b<0,那么点P(a,b)在第()象限.A. 一B. 二C. 三D. 四【答案】D【解析】解:∵a>0,b<0,∴点P(a,b)在第四象限.故选:D.根据各象限内点的坐标特征解答即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).5.下列说法正确的是()A. 立方根等于本身的数只有0和1B. 5的平方根是5C. 2<√5<3D. 数轴上不存在表示5的点【答案】C【解析】解:∵立方根等于本身的数有0、−1和1,所以A错误;∵5的平方根是±√5,所以B答案错误;∵数轴上的点与实数一一对应,所以D答案错误;而√5的大小应该在2与3之间,所以C答案正确.故选:C.根据平方根与立方根的定义可以排除A、B,答案D明显不正确,而对于√5的大小判断可知C答案正确.本题考查的是实数的相关运算及性质,注意把握有关平方根及立方根的定义即可解决这一类问题.6.如图所示是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(−2,−1),白棋③的坐标是(−1,−3),则黑棋②的坐标是()A. (0,−2)B. (1,−2)C. (2,−1)D. (1,2)【答案】A【解析】解:如图,黑棋②的坐标为(0,−2).故选:A.根据白棋①的坐标画出直角坐标系,然后根据y轴上点的坐标特征写出黑棋②的坐标.本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标.7.一次函数y=−x+1的图象不经过的象限是()A. 第一象限B. 第二象限C. 第三象限 D. 第四象限【答案】C【解析】解:∵一次函数y=−x+1中k=−1<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选:C.先根据一次函数y=−x+1中k=−1,b=1判断出函数图象经过的象限,进而可得出结论.本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.8.下列各式中,正确的是()A. √4=±2B. ±√9=3C. √(−3)2=−3D. √−273=−3【答案】D【解析】解:√4=2,故A错误;±√9=±3,故B错误;√(−3)2=|−3|=3,故C 错误;√−273=−3正确.故选:D.根据一个正数的算术平方根和平方根的性质可判断A、B;根据√a2=|a|可判断C;根据立方根的定义可判断D.本题主要考查的是立方根、平方根和算术平方根的性质,熟记性质是解题的关键.9.如图,已知∠ABD=∠BAC,添加下列条件不能判断△ABD≌△BAC的条件是()A. ∠D=∠CB. AD=BCC. ∠BAD=∠ABCD. BD=AC【答案】B【解析】解:由题意得,∠ABD=∠BAC,A、在△ABC与△BAD中,{∠C=∠D∠BAC=∠BAD AB=BA,∴△ABC≌△BAD(AAS),故A选项能判定全等;B、在△ABC与△BAD中,由BC=AD,AB=BA,∠BAC=∠ABD,可知△ABC与△BAD不全等,故B选项不能判定全等;C、在△ABC与△BAD中,{∠ABD=∠BAC AB=BA∠DAB=∠CBA,∴△ABC≌△BAD(ASA),故C选项能判定全等;D、在△ABC与△BAD中,{AC=BD∠BAC=∠ABD AB=BA,∴△ABC≌△BAD(SAS),故D选项能判定全等;故选:B.根据全等三角形的判定:SAS,AAS,ASA,可得答案.本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.将函数y=2x的图象向下平移3个单位,则得到的图象相应的函数表达式为()A. y=2x+3B. y=2x−3C. y=2x+6D. y=2x−6【答案】B【解析】解:将一次函数y=2x的图象向下平移3个单位长度,相应的函数是y=2x−3;故选:B.直接根据函数图象平移的法则进行解答即可.本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.11.如图,直线y=kx+b与直线y=mx相交于点A(−1,2),与x轴相交于点B(−3,0),则关于x的不等式组0<kx+b<mx的解集为()A. x>−3B. −3<x<−1C. −1<x<0D. −3<x<0【答案】B【解析】解:由图可得,kx+b>0的解集为:x>−3,kx+b<mx的解集为:x<−1;∴不等式组的解集为:−3<x<−1;故选:B.本题可结合图形与函数的关系,从图中直接得出.本题主要考查了一次函数、一元一次不等式和图象的关系,看懂题意、图形是解答的关键.12.如图,在△ABC中,∠BAC=120∘,AB=AC,点M、N在边BC上,且∠MAN=60∘,若BM=2,CN=3,则MN的长为()A. √7cmB. 2√3cmC. 2√2cmD. √5cm【答案】A【解析】解:如图,△ABM绕点A逆时针旋转120∘至△APC,连接PN,过点P作BC的垂线,垂足为D,∵∠BAC=120∘,AB=AC,∴∠B=∠ACB=30∘∵旋转∴△ABM≌△APC,∴∠B=∠ACP=30∘,PC=BM=2,∠BAM=∠CAP,∴∠NCP=60∘,∵∠MAN=60∘,∴∠BAM+∠NAC=∠NAC+∠CAP=60∘=∠MAN,又∵AM=AP,AN=AN,∴△MAN≌△PAN(SAS),∴MN=PN,∵PD⊥CN,∠NCP=60∘PC=1,PD=√3CD=√3∴CD=12∴DN=CN−CD=3−1=2,∴PN=√PD2+DN2=√7故选:A.利用旋转作△APC,连接PN,根据旋转得:△ABM≌△ACP,PC=BM=2,证明△MAN≌△PAN,则MN=PN,作高线PD,利用勾股定理计算PD和PN的长,可得结论.本题考查了旋转的性质,三角形的内角和定理,等腰三角形的性质,全等三角形的性质和判定的应用,解此题的关键是根据旋转作辅助线,注意:全等三角形的对应边相等,难度适中.二、填空题(本大题共8小题,共24.0分)13.函数y=kx的图象经过点(1,2),则k=______.【答案】2【解析】解:∵函数y=kx的图象经过点(1,2),∴点(1,2)满足y=kx,∴2=1×k,解得,k=2.故答案是:2.将点(1,2)代入已知函数解析式,列出关于k的方程,通过解方程来求k的值.本题考查了正比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,函数图象上点的坐标一定满足该函数的解析式.14.一个等腰三角形的两边长分别为5和2,则这个三角形的周长为______.【答案】12【解析】解:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故答案为12.题目给出等腰三角形有两条边长为5和2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.小薇的体重是45.85kg,用四舍五入法将45.85精确到0.1的近似值为______.【答案】45.9【解析】解:45.85精确到0.1的近似值为45.9.故答案为45.9.把百分位上的数字5进行四舍五入即可.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.16.如图,△ABC≌△ADE,若∠B=70∘,∠C=30∘,∠DAC=35∘,则∠EAC的度数为______.【答案】45∘【解析】解:∵∠B+∠C+∠BAC=180∘,∠B=70∘,∠C=30∘,∴∠BAC=80∘,∵△ABC≌△ADE,∴∠BAC=∠DAE=80∘,∵∠DAC=35∘,∴∠CAE=45∘,故答案为45∘.根据三角形内角和定理求出∠BAC,根据全等三角形的性质求出∠DAE即可解决问题.本题考查全等三角形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.已知点A(1,y1)、B(2,y2)都在直线y=−2x+3上,则y1与y2的大小关系是______.【答案】y1>y2【解析】解:∵点A(1,y1)、B(2,y2)都在直线y=−2x+3上,且y随x的增大而减小.∴y1>y2故答案为y1>y2根据一次函数的增减性可以直接可得.本题考查了一次函数图象上点的坐标特征,关键是灵活利用一次函数的增减性解决问题.18.如图,在数轴上,过数2表示的点B作数轴的垂线,以点B为圆心1为半径画弧,交其垂线于点A,再以原点O为圆心,OA长为半径画弧,交数轴于点C,则点C表示的数为______.【答案】√5【解析】解:∵OA=√22+12=√5,∴点C所表示的实数为√5,故答案为:√5.根据勾股定理计算即可.本题考查的是勾股定理的应用、数轴与实数的关系,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.19.直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积是______cm2.【答案】30【解析】解:∵直角三角形斜边上的中线是6cm,∴斜边是12cm,∴S△=12×5×12=30cm2∴它的面积是30cm2.故填:30cm2.由于直角三角形斜边上的中线是6cm,因而斜边是12cm,而高线已知,因而可以根据面积公式求出三角形的面积.本题主要考查了直角三角形的性质:斜边上的中线等于斜边的一半.20.如图,在平面直角坐标系中,点P(−1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是______.【答案】0<a<2【解析】解:当P在直线y=2x+2上时,a=2×(−1)+2=−2+2=0,当P在直线y=2x+4上时,a=2×(−1)+4=−2+4=2,则0<a<2.故答案为:0<a<2计算出当P在直线y=2x+2上时a的值,再计算出当P在直线y=2x+4上时a的值,即可得答案.此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.三、计算题(本大题共3小题,共32.0分)21.已知一次函数y=ax−3.当x=1时,y=7.(1)求y与x之间的函数表达式;(2)当y=−8时,求x的值.【答案】解:(1)把x=1,y=7代入得:7=a−3,解得:a=10,则y=10x−3;(2)把y=−8代入得:−8=10x−3,解得:x=−0.5.【解析】(1)把x与y的值代入一次函数解析式求出a的值,即可确定出解析式;(2)把y的值代入解析式计算即可求出x的值.此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.22.从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?【答案】解:设旗杆高度为AC=h米,则绳子长为AB=h+2米,BC=8米,根据勾股定理有:h2+82=(h+2)2,解得h=15米.【解析】仔细分析该题,可画出草图,关键是旗杆高度、绳子长及绳子下端距离旗杆底部8米这三线段长可构成一直角三角形,解此直角三角形即可.本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.23.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?请证明你的结论.【答案】解:(1)∵E、F分别是AB、AC的中点,∴AE=12AB=5,AF=12AC=4,∵AD是高,E、F分别是AB、AC的中点,∴DE=12AB=5,DF=12AC=4,∴四边形AEDF的周长=AE+ED+DF+FA=18;(2)EF垂直平分AD.证明:∵AD是ABC的高,∴∠ADB=∠ADC=90∘,∵E是AB的中点,∴DE=AE,同理:DF=AF,∴E、F在线段AD的垂直平分线上,∴EF垂直平分AD.【解析】(1)根据线段中点的性质、直角三角形的性质计算;(2)根据线段垂直平分线的判定定理得到E、F在线段AD的垂直平分线上,得到答案.本题考查的是三角形中位线定理、线段垂直平分线的判定,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.四、解答题(本大题共5小题,共58.0分)24.计算或解方程:3+20(2)3x2=27(1)√4−√−8【答案】解:(1)原式=2+2+1=5;(2)3x2=27则x2=9,解得:x=±3.【解析】(1)直接利用零指数幂的性质以及立方根的性质分别化简得出答案;(2)直接利用平方根的性质得出答案.此题主要考查了实数运算,正确化简各数是解题关键.25.已知,△ABC中,∠ACB=90∘,AC>BC.(1)在AC上找一点D,使得DA=DB:(尺规作图,保留痕迹)(2)在(1)的条件下,若点D恰在∠ABC的平分线上,试求∠A的度数.【答案】解:(1)如图所示,点D即为所求.(2)由(1)知DA=DB,∴∠A=∠ABD,又∵BD平分∠ABC,∴∠ABD=∠CBD,∵∠A+∠ABD+∠CBD=90∘,∴∠A=30∘.【解析】(1)先线段中垂线的性质和尺规作图求解可得;(2)由DA=DB知∠A=∠ABD,结合角平分线知∠ABD=∠CBD,根据∠A+∠ABD+∠CBD=90∘可得答案.本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质和尺规作图.26.某电信公司推出甲、乙两种收费方式供手机用户选择:甲种方式:每月收月租费5元,每分钟通话费为0.2元;乙种方式:不收月租费,每分钟通话费为0.3元;(1)请分别写出甲乙两种收费方式每月付费y1、y2(元)与通话时间x(分钟)之间函数表达式;(2)如何根据通话时间的多少选择付费方式,请给出你的方案.【答案】解:(1)由题意可得,甲种方式的费用为y1=5+0.2t,乙种方式的费用为y2=0.3t,(2)当y1=y2时,即5+0.2t=0.3t,解得,t=50,∴当t<50分钟时,乙种收费方式省钱,当t=50分钟时,两种收费方式一样,当t>50分钟时,甲种收费方式省钱.【解析】(1)根据题意可以直接写出甲乙两种收费与t的关系,从而可以解答本题;(2)令两种收费一样多,求出相应的时间t,然后根据题意即可根据通话时间确定省钱的付费方式.本题考查一次函数的应用,解答此类问题的关键是明确题意,写出相应的函数关系式,求出两种花费一样多的时间.27.已知,在△ABC中,点D在BC上,点E在BC的延长线上,且BD=BA,CE=CA.(1)如图1,若∠BAC=90∘,∠B=45∘,试求∠DAE的度数;(2)若∠BAC=90∘,∠B=60∘,则∠DAE的度数为______(直接写出结果);(3)如图2,若∠BAC>90∘,其余条件不变,探究∠DAE与∠BAC之间有怎样的数量关系?【答案】45∘【解析】解:(1)∵∠BAC=90∘,∠B=45∘,∴∠ACB=45∘,∵CE=AC,∴∠CAE=∠E,∵∠ACB=∠CAE+∠E=45∘,∴∠E=22.5∘,∵AB=DB,∴∠ADB=12(180∘−45∘)=67.5∘,∴∠DAE=∠ADB−∠E=45∘;(2)∵∠BAC=90∘,∠B=60∘,∴∠ACB=30∘,∵CE=AC,∴∠CAE=∠E,∵∠ACB=∠CAE+∠E=30∘,∴∠E=15∘,∵AB=DB,∴∠ADB=12(180∘−60∘)=60∘,∴∠DAE=∠ADB−∠E=45∘;故答案为:45∘;(3)设∠BAC=α,∠B=β∘,∴∠ACB=180∘−α−β,∵CE=AC,∴∠CAE=∠E,∵∠ACB=∠CAE+∠E=180∘−α−β,∴∠E=90∘−12α−12β,∵AB=DB,∴∠ADB=12(180∘−β)=90∘−12β,∴∠DAE=∠ADB−∠E=90∘−12β−(90∘−12α−12β)=12α;∴∠BAC=2∠DAE.根据三角形的内角和得到∠ACB的度数,根据等腰三角形的性质得到∠CAE=∠E,根据三角形的外角的性质得到∠E,根据等腰三角形的性质和三角形的内角和得到∠ADB,根据三角形的外角的性质即可得到结论.本题考查了等腰三角形的性质,三角形外角的性质,正确的识别图形是解题的关键.28.(1)操作思考:如图1,在平面直角坐标系中,等腰Rt△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则①OA的长为______;②点B 的坐标为______.(直接写结果)(2)感悟应用:如图2,在平面直角坐标系中,将等腰Rt△ACB如图放置,直角顶点C(−1,0),点A(0,4),试求直线AB的函数表达式.(3)拓展研究:如图3,在直角坐标系中,点B(4,3),过点B作BA⊥y轴,垂足为点A,作BC⊥x轴,垂足为点C,P是线段BC上的一个动点,点Q是直线y=2x−6上一动点.问是否存在以点P为直角顶点的等腰Rt△APQ,若存在,请求出此时P的坐标,若不存在,请说明理由.【答案】√5(−2,1)【解析】解:(1)如图1,作BE⊥x轴,AF⊥x轴.∵A(1,2),∴OF=1,AF=2,OA=√12+22=√5∵∠AOB=90∘,AO=OB∴△BEO≌△OFA,∴BE=OF=1,OE=AF=2,∴B(−2,1).故答案为√5,(−2,1);(2)如图2,过点B作BH⊥x轴.∵∠ACB=90∘,AC=CB∴△BHO≌△COA,∴HC=OA=4,BH=CO=1,OH=HC+CO=4+1=5∴B(−5,1).设直线AB的表达式为y=kx+b将A(0,4)和B(−5,1)代入,得{−5k+b=1b=4,解得{k=35b=4,∴直线AB的函数表达式y=35x+4.(3)如图3,设Q(t,35t+4),分两种情况:①当点Q在x轴下方时,Q1M//x轴,与BP的延长线交于点Q1.∵∠AP1Q1=90∘,∴∠AP 1B +∠Q 1P 1M =90∘,∵∠AP 1B +∠BAP 1=90∘∴∠BAP 1=Q 1P 1M在△AP 1B 与△P 1Q 1M 中{∠Q 1MP =∠P 1BA ∠BAP 1=Q 1P 1M AP =PM∴△AP 1B≌△P 1Q 1M.∴BP 1=Q 1M ,P 1M =AB =4∵B(4,3),Q(t,35t +4),∴MQ 1=4−tBP 1=BM −P 1M =[3−(2t −6)]−4=−2t +5∴4−t =−2t +5,解得t =1∴BP 1=−2t +5=3此时点P 与点C 重合,∴P 1(4,0);②当点Q 在x 轴上方时,Q 2N//x 轴,与PB 的延长线交于点Q 2.同理可证△ABP 2≌△P 2NQ 2.同理求得P 2(4,43).综上,P 的坐标为:P 1(4,0),P 2(4,43).(1)由A(1,2)可得,OF =1,AF =2,OA =√5,易证△BEO≌△OFA ,BE =OF =1,OE =AF =2,因此B(−2,1);(2)同(1)可证△BHO≌△COA ,HC =OA =4,BH =CO =1,OH =HC +CO =4+1=5,求得B(−5,1).最后代入求出一次函数解析式即可;(3)分两种情况讨论①当点Q 在x 轴下方时,②当点Q 在x 轴上方时.根据等腰Rt △APQ 构建一线三直角,从而求解.本题考查了一次函数与三角形的全等,熟练掌握一次函数的性质与三角形全等判定是解题的关键.。

最新江苏省2018-2019年八年级下期末数学试卷

最新江苏省2018-2019年八年级下期末数学试卷

八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列二次根式中,属于最简二次根式的是()A. √5B. √12C. √0.2D. √27【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、√12=12√2,不是最简二次根式,故本选项不符合题意;C、√0.2=√14=15√5,不是最简二次根式,故本选项不符合题意;D、√27=3√3,不是最简二次根式,故本选项不符合题意;故选:A.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.2.下列各组线段a、b、c中,能组成直角三角形的是()A. a=4,b=5,c=6B. a=1,b=√3,c=2C. a=1,b=1,c=3D. a=5,b=12,c=12【答案】B【解析】解:A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+√32=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选:B.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列各式中,y不是x的函数的是()A. y=|x|B. y=xC. y=−x+1D. y=±x【答案】D【解析】解:A、y=|x|对于x的每一个取值,y都有唯一确定的值,故A错误;B、y=x对于x的每一个取值,y都有唯一确定的值,故B错误;C、y=−x+1对于x的每一个取值,y都有唯一确定的值,故C错误;D、y=±x对于x的每一个取值,y都有两个值,故D正确;故选:D.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.用配方法解方程x2−4x−2=0变形后为()A. (x−2)2=6B. (x−4)2=6C. (x−2)2=2D. (x+2)2=6【答案】A【解析】解:把方程x2−4x−2=0的常数项移到等号的右边,得到x2−4x=2方程两边同时加上一次项系数一半的平方,得到x2−4x+4=2+4配方得(x−2)2=6.故选:A.在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数−4的一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一次函数y=x+2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限,∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.根据k,b的符号确定一次函数y=x+2的图象经过的象限.本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1.6.一元二次方程x2−8x+20=0的根的情况是()A. 没有实数根B. 有两个相等的实数根C. 只有一个实数根D. 有两个不相等的实数根【答案】A【解析】解:∵△=(−8)2−4×20×1=−16<0,∴方程没有实数根.故选:A.先计算出△,然后根据判别式的意义求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,下列说法正确的是()A. y1>y2B. y1<y2C. y1=y2D. 不能确定【答案】A【解析】解:∵一次函数y=kx中,k<0,∴函数图象经过二、四象限,且y随x的增大而减小,∵x1<x2,∴y1>y2.故选:A.先根据题意判断出一次函数的增减性,再根据x1<x2即可得出结论.本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.菱形的两条对角线长分别为6和8,则菱形的面积是()A. 10B. 20C. 24D. 48【答案】C【解析】解:∵菱形的两条对角线的长分别是6和8, ∴这个菱形的面积是:12×6×8=24.故选:C .由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案. 此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.9. 已知一次函数y =kx +b 的图象如图所示,当x <2时,y 的取值范围是( )A. y <−4B. −4<y <0C. y <2D. y <0 【答案】D【解析】解:将(2,0)、(0,−4)代入y =kx +b 中, 得:{−4=b 0=2k+b,解得:{b =−4k=2,∴一次函数解析式为y =2x −4. ∵k =2>0,∴该函数y 值随x 值增加而增加, ∴y <2×2−4=0. 故选:D .由函数图象找出点的坐标,利用待定系数法即可求出函数解析式,再根据函数的性质找出函数的单调性,代入x <2即可得出结论.本题考查了待定系数法求出函数解析式以及一次函数的性质,解题的关键是找出该一次函数的单调性.本题属于基础题,难度不大,解决该题型题目时,根据函数图象找出点的坐标,利用待定系数法求出函数解析式是关键.10. 如图,点O 是矩形ABCD 的对角线AC 的中点,M 是CD 边的中点.若AB =8,OM =3,则线段OB 的长为( ) A. 5 B. 6 C. 8 D. 10 【答案】A 【解析】解:∵四边形ABCD 是矩形, ∴∠D =90∘,∵O 是矩形ABCD 的对角线AC 的中点,OM//AB , ∴OM 是△ADC 的中位线, ∵OM =3, ∴AD =6,∵CD =AB =8,∴AC =√AD 2+CD 2=10, ∴BO =12AC =5.故选:A .已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.11. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价( ) A. 5元 B. 10元 C. 20元 D. 10元或20元 【答案】C【解析】解:设每件衬衫应降价x 元,则每天可销售(20+2x)件, 根据题意得:(40−x)(20+2x)=1200, 解得:x 1=10,x 2=20. ∵扩大销售,减少库存, ∴x =20. 故选:C .设每件衬衫应降价x 元,则每天可销售(20+2x)件,根据每件的利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y =x +3与x 轴、y 轴分别交于点E ,F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的值可能是( ) A. 3 B. 4 C. 5 D. 6 【答案】C【解析】解:∵菱形ABCD 的顶点A(2,0),点B(1,0), ∴点D 的坐标为(4,1), 当y =1时,x +3=1, 解得x =−2,∴点D 向左移动2+4=6时,点D 在EF 上, ∵点D 落在△EOF 的内部时(不包括三角形的边), ∴4<m <6,∴m 的值可能是5. 故选:C .根据菱形的对角线互相垂直平分表示出点D 的坐标,再根据直线解析式求出点D 移动到MN 上时的x 的值,从而得到m 的取值范围,再根据各选项数据选择即可.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m 的取值范围是解题的关键.二、填空题(本大题共6小题,共18.0分)13. 若√x −2在实数范围内有意义,则x 的取值范围为______. 【答案】x ≥2【解析】解:由题意得:x −2≥0, 解得:x ≥2, 故答案为:x ≥2.根据二次根式有意义的条件可得x−2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.将直线y=−2x+4向下平移5个单位长度,平移后直线的解析式为______.【答案】y=−2x−1【解析】解:直线y=−2x+4向下平移5个单位长度后:y=−2x+4−5,即y=−2x−1.故答案为:y=−2x−1.直接根据“上加下减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.15.已知关于x的方程x2−kx−6=0的一个根为x=3,则实数k的值为______.【答案】1【解析】解:∵x=3是方程的根,由一元二次方程的根的定义,可得32−3k−6=0,解此方程得到k=1.本题根据一元二次方程的根的定义、一元二次方程的定义求解.本题逆用一元二次方程解的定义易得出k的值.16.如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是______元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式______.【答案】8;y=2x+2【解析】解:(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;故答案为:8;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴{8k+b=183k+b=8,解得{b=2k=2;所以所求函数关系式为:y=2x+2(x>3).故答案为:y=2x+2.(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.17.如图,在△BC中,AC=BC,点D、E分别是边AB、AC的中点.延长DE到点F,使DE=EF,得四边形ADCF.若使四边形ADCF是正方形,则应在△ABC中再添加一个条件为______.【答案】∠ACB=90∘【解析】解:∠ACB=90∘时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE =12BC ,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D、E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90∘,∴∠AED=90∘,∴矩形ADCF是正方形.故答案为:∠ACB=90∘.先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90∘得出答案即可.本题考查了矩形的判定、等腰三角形的性质、平行四边形的判定、三角形中位线定理、正方形的判定;熟记对角线相等的平行四边形是矩形是解决问题的关键.18.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为______(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45∘,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.【答案】90【解析】解:(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90∘故答案为90;(Ⅱ)构造正方形BCDE,∠AEC即为所求;(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可;本题考查作图−应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题,属于中考常考题型.三、计算题(本大题共2小题,共12.0分)19.计算下列各题:(Ⅰ)√12+3√2×√6;(Ⅱ)(√5+√2)(√5−√2)−(√3+√2)2.【答案】解:(Ⅰ)原式=2√3+3√3=5√3;(Ⅱ)原式=(√5)2−(√2)2−(5+2√6)=5−2−5−2√6=−2−2√6.【解析】(Ⅰ)先化简二次根式、计算乘法,再合并同类二次根式即可得;(Ⅱ)先利用平方差公式和完全平方公式计算,再去括号、合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.20.某校运动会需购买A、B两种奖品共100件,其中A种奖品的单价为10元,B种奖品的单价为15元,且购买的A种奖品的数量不大于B种奖品的3倍设购买A种奖品x件.(Ⅰ)根据题意,填写下表:购买A种奖品的数量/件 3070 x购买A种奖品的费用/元 300______ ______购买B种奖品的费用/元______ 450______(Ⅱ)设购买奖品所需的总费用为y元,试求出总费用y与购买A种奖品的数量x的函数解析式;(Ⅲ)试求A、B两种奖品各购买多少件时所需的总费用最少?此时的最少费用为多少元?【答案】700;10x;1050;1500−15x【解析】解:(Ⅰ)由题意可得,当购买A种奖品30件时,购买A种奖品的费用是30×10=300(元),购买B种奖品的费用是15×(100−30)=1050(元),当购买A种奖品70件时,购买A种奖品的费用是70×10=700(元),购买B种奖品的费用是15×(100−70)=450(元),当购买A种奖品x件时,购买A种奖品的费用是30x(元),购买B种奖品的费用是15×(100−x)=(1500−15x)(元),故答案为:700、10x、1050、1500−15x;(Ⅱ)由题意可得,y=10x+15(100−x)=−5x+1500,即总费用y与购买A种奖品的数量x的函数解析式是y=−5x+1500;(Ⅲ)∵购买的A种奖品的数量不大于B种奖品的3倍,∴x≤3(100−x),解得,x≤75,∵y=−5x+1500,∴当x=75时,y取得最小值,此时y=−5×75+1500=1125,100−x=25,答:购买的A种奖品75件,B种奖品25件时,所需的总费用最少,最少费用是1125元.(Ⅰ)根据题意和表格中的数据可以将表格中缺失的数据补充完整;(Ⅱ)根据题意可以写出y与x的函数关系式;(Ⅲ)根据题意可以列出相应的不等式,求出x的取值范围,再根据一次函数的性质即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.四、解答题(本大题共5小题,共40.0分)21.解下列方程:(Ⅰ)x2+3=2√3x(Ⅱ)x(x−2)+x−2=0.【答案】解:(I)移项得:x2−2√3x+3=0,配方得:(x−√3)2=0,开方得:x−√3=0,即x1=x2=√3;(II)x(x−2)+x−2=0,(x−2)(x+1)=0,x−2=0,x+1=0,x1=2,x2=−1.【解析】(I)移项,配方,开方,即可求出答案;(II)先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元一次方程,能选择适当的方法解一元二次方程是解此题的关键.22.如图,在Rt△ABC中,∠ACB=90∘,BC=3,AC=4,在边BC上有一点M,将△ABM沿直线AM折叠,点B恰好落在AC延长线上的点D处.(Ⅰ)AB的长=______;(Ⅱ)CD的长=______;(Ⅲ)求CM的长.【答案】5;1【解析】解:(Ⅰ)∵∠ACB=90∘,BC=3,AC=4∴AB=5(Ⅱ)∵折叠∴AB=AD=5且AC=4∴CD=1(Ⅲ)连接DM∵折叠∴BM=DM在Rt△CDM中,DM2=CD2+CM2∴(3−CM)2=1+CM2∴CM =4 3(Ⅰ)由勾股定理可得AB的长.(Ⅱ)由折叠可得AD=AB,即可求CD的长.(Ⅲ)在直角三角形CDM中,根据勾股定理可得方程,可求出CM的长.本题考查了折叠问题,勾股定理的运用,关键是灵活运用折叠的性质解决问题.23.在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90∘,且四边形AECF是边长为6的菱形,求BE的长.【答案】解:(I)证明:∵四边形ABCD是平行四边形,∴AD//BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90∘,∴∠2+∠3=90∘∠1+∠B=90∘,∴∠3=∠B,∴AE=BE,∵AE=6,∴BE=6.【解析】(I)根据平行四边形的性质得出AD//BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=6,AE=EC,求出AE=BE即可.本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,在Rt△ABC中,∠ABC=90∘,∠C=30∘,AC=12cm,点E从点A出发沿AB以每秒lcm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(I)试用含t的式子表示AE、AD、DF的长;(Ⅱ)如图①,连接EF,求证四边形AEFD是平行四边形;(Ⅲ)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.【答案】解:(I)由题意得,AE=t,CD=2t,则AD=AC−CD=12−2t,∵DF⊥BC,∠C=30∘,∴DF=12CD=t;(Ⅱ)∵∠ABC=90∘,DF⊥BC,∴AB//DF,∵AE=t,DF=t,∴AE=DF,∴四边形AEFD是平行四边形;(Ⅲ)当t=3时,四边形EBFD是矩形,理由如下:∵∠ABC=90∘,∠C=30∘,∴BC=12AC=6cm,∵BE//DF,∴BE=DF时,四边形EBFD是平行四边形,即6−t=t,解得,t=3,∵∠ABC=90∘,∴四边形EBFD是矩形,∴t=3时,四边形EBFD是矩形.【解析】(I)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(Ⅱ)根据对边平行且相等的四边形是平行四边形证明;(Ⅲ)根据矩形的定义列出方程,解方程即可.本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.25.在平面直角坐标系中,直线l1:y=−12x+4分别与x轴、y轴交于点A、点B,且与直线l2:y=x于点C.(Ⅰ)如图①,求出B、C两点的坐标;(Ⅱ)若D是线段OC上的点,且△BOD的面积为4,求直线BD的函数解析式.(Ⅲ)如图②,在(Ⅱ)的条件下,设P是射线BD上的点,在平面内是否存在点Q,使以O、B、P、Q 为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【答案】解:(Ⅰ)对于直线:y =−12x +4,令x =0,得到y =4, ∴B(0,4),由{y =x y =−12x +4,解得{x =83y =83,∴C(83,83).(Ⅱ)∵点D 在直线y =x 上,设D(m,m), ∵△BOD 的面积为4, ∴12×4×m =4,解得m =2, ∴D(2,2).设直线BD 的解析式为y =kx +b ,则有{2k +b =2b=4, 解得{b =4k=−1,∴直线BD 的解析式为y =−x +4.(Ⅲ)如图②中,①当OB 为菱形的边时,OB =PB =4,可得P(2√2,4−2√2),Q(2√2,−2√2). ②当P′B 为菱形的对角线时,四边形OBQ′P′是正方形,此时Q(4,4).③当OB 为菱形的边时,点P″与D 重合,P 、Q 关于y 轴对称,Q″(−2,2), 综上所述,满足条件的Q 的坐标为(2√2,−2√2)或(−2,2)或(4,4).【解析】(Ⅰ)利用待定系数法求出点B 坐标,利用方程组求出点C 坐标即可;(Ⅱ)设D(m,m),构建方程求出m 即可解决问题,再利用待定系数法求出直线的解析式; (Ⅲ)分三种情形分别求解即可解决问题;本题主要考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,解二元一次方程组,菱形的性质,三角形的面积等知识点,解此题的关键是熟练地运用知识进行计算.此题是一个综合性很强的题目.。

2018-2019学年苏科版八年级数学第二学期期末检测试卷(附答案)

2018-2019学年苏科版八年级数学第二学期期末检测试卷(附答案)

2018-2019学年八年级(下)期末数学试卷、选择题(本大题共 6小题,每小题2分) 1.( 2分)利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简2. ( 2分)某市今年共有 6万名考生参加中考,为了了解这抽取了 1000名考生的数学成绩进行统计分析,以下说法: ① 这种调查采用了抽样调查的方式; ② 6万名考生是总体;③ 1000名考生的数学成绩是总体的一个样本;④ 样本容量是1000名. 其中正确的有( ) A . 0个 B . 1个C . 2个D . 3个3.( 2分)下列命题中正确的是()A .有一组邻边相等的四边形是菱形B .有一个角是直角的四边形是矩形C .对角线互相垂直的平行四边形是正方形D .对角线互相平分的四边形是平行四边形 4.( 2分)“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分 害甌行构图,使画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的单图形,其中是轴对称但不是中心对称的图形是(A6万名考生的数学成绩,从中 D .A .①位置(B.②5. (2分)如图,在菱形ABCD中,/ A= 60°, AD = 4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为()6. (2分)如图,点A, B是反比例函数y=「(x> 0)图象上的两点,过点A, B分别作XAC丄x轴于点C, BD丄x轴于点D,连接OA、BC,已知点C (2, 0), BD = 3, S^BCDA. 2B. 3C. 4D. 6二、填空题(本大题共10小题,每小题2分)7. ________________________________________ (2分)已知AB// CD,添加一个条件,使得四边形ABCD为平行四边形.28. (2分)在比例尺1: 500000的地图上,测得甲地在图上的面积约为10cm,则甲地实际面积为_______ 平方千米.9.(2分)空气质量指数,简称AQI,如果AQI在0〜50空气质量类别为优,在51〜100空气质量类别为良,在101〜150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示•已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为_________ % .天数10. (2分)在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例.当V=200 时,p= 50,则当p= 100 时,V = ____________ .11. (2分)如图,在Rt △ ABC中,/ ACB= 90°,点G是厶ABC的重心,GE丄AC于E ,若BC = 6cm,贝U GE = cm.i 2 212. (2分)已知:点P (m, n)在直线y=- x+2上,也在双曲线y=——上,贝U m +nx 的值为_______13. (2分)如图,在?ABCD中,E、F分别是AB、DC边上的点,AF与DE交于点P,BF与CE交于点Q,若S A APD = 20cm2, S^BQC= 30cm2,则图中阴影部分的面积为214. (2分)点(a- 1, y1)、(a+1, y?)在反比例函数y= 一(k v 0)的图象上,若>y2,则a的取值范围是__________ .15. (2分)如图,E、F分别是矩形ABCD的边BC、CD的中点,连接AC、AF、EF ,若AF丄EF , AC = 「,贝U AB的长为 _____ .16.(2 分)如图,Rt △ ABC 中,/ ACB = 90°, CA= CB = 2, CD 丄AB 于D,点P 是线段CD上的一个动点,以点P为直角顶点向下作等腰直角△ PBE,连接DE,则DE的最小值为_______17. ( 6分)如图,△ ABC的顶点坐标分别为A ( 1, 1), B (2, 3), C ( 3, 0).(1)画出△ ABC绕点0逆时针旋转90°后得到的厶DEF ;(2)以点0为位似中心,在第三象限内把△ ABC按相似比2:1放大(即所画厶PQR 与厶ABC的相似比为2:1).(3 )在(2 )的条件下,若M (a, ABC边上的任意一点,则△ PQR的边上与点M对应的点M '的坐标为___________ .18. ( 6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查•结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.破抽拦学生舞志辱活动情况祈超计囹被掠样学生事与志是看活戢情况扃形统计圉(1) 被随机抽取的学生共有多少名? (2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3) 该校共有学生2000人,估计其中参与了 4项或5项活动的学生共有多少人? 19. ( 6分)李先生参加了新月电脑公司推出的分期付款购买电脑活动,他购买的电脑价格 为1.2万元,交了首付4000元之后每期付款y 元,x 个月结清余款. (1) 写出y 与x 的函数关系式.(2) 李先生若用4个月结清余款,每月应付多少元?(3) 如打算每月付款不超过 500元,李先生至少几个月才能结清余款?20. ( 6分)在一次数学活动课上,小芳到操场上测量旗杆的高度,她的测量方法是:拿一根高3.5米的竹竿直立在离旗杆 27米的C 处(如图),然后沿 BC 方向走到D 处,这时 目测旗杆顶部 A 与竹竿顶部E 恰好在同一直线上,又测得 C 、D 两点的距离为3米,小 芳的目高为1.5米,利用她所测数据,求旗杆的高..4匚P lBc n21.( 8分)如图,矩形 ABCD 的两边AD 、AB 的长分别为3、8, E 是DC 的中点,反比 例函数y =工的图象经过点 E ,与AB 交于点F .Jrf* ? i 斗5 60864208642 rs hl —T-l.T -l顼项 项5(1) 若点B坐标为(-6, 0),求m的值及图象经过A、E两点的一次函数的表达式;(2) 若AF - AE = 2,求反比例函数的表达式.22.( 8分)如图,已知四边形ABCD是平行四边形,点E, F分别是AB, BC上的点,AE = CF,并且/ AED = Z CFD .求证:(“)△ AED CFD ;(2)四边形ABCD是菱形.23.( 8分)如图,一次函数y= kx+b与反比例函数y=—的图象交于A (2, 4), B (- 4,n)两点,交x轴于点C.(1 )求m、n的值;(2)请直接写出不等式kx+b v二的解集;x(3 )将x轴下方的图象沿x轴翻折,点B落在点B'处,连接AB'、B' C,求厶AB '24.( 10分)矩形AOBC中,0B = 8, OA = 4.分别以OB, OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系. F是BC边上一个动点(不与B, C重合),过点F 的反比例函数y= ' ( k> 0)的图象与边AC交于点E.* 1y ;JVCCJA.飞JqB XG BX團1图2(1)当点F 运动到边BC 的中点时,求点 E 的坐标; (2) 连接 EF 、AB ,求证:EF // AB ;(3) 如图2,将厶CEF 沿EF 折叠,点C 恰好落在边 0B 上的点G 处,求此时反比例函 数的解析式.25.( 10分)如图,正方形 ABCD 中,对角线 AC 、BD 交于点O , E 为0C 上动点(与点 0不重合),作 AF 丄BE ,垂足为 G ,交B0于H •连接 0G 、CG . (1) 求证:AH = BE ;(2) 试探究:/ AG0的度数是否为定值?请说明理由; (3) 若 0G 丄CG , BG = 3「,求△ 0GC 的面积.A D2018-2019学年八年级(下)期末数学试卷参考答案与试题解析、选择题(本大题共 6小题,每小题2分)1.( 2分)利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【解答】解:A 、图形不是中心对称轴图形,是轴对称图形,此选项正确;B 、 图形是中心对称轴图形,也是轴对称图形,此选项错误;C 、 图形是中心对称轴图形,不是轴对称图形,此选项错误;D 、图形是中心对称轴图形,也是轴对称图形,此选项错误;故选:A .【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称 轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2. ( 2分)某市今年共有 6万名考生参加中考,为了了解这 抽取了 1000名考生的数学成绩进行统计分析,以下说法: ① 这种调查采用了抽样调查的方式; ② 6万名考生是总体;③ 1000名考生的数学成绩是总体的一个样本; ④ 样本容量是 1000名.其中正确的有()6万名考生的数学成绩,从中B . 1个C . 2个D . 3个单图形,其中是轴对称但不是中心对称的图形是( )【分析】直接利用总体、个体、样本、样本容量的定义分析得出答案.【解答】解:某市今年共有6万名考生参加中考,为了了解这6万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,①这种调查采用了抽样调查的方式,正确;②6万名考生的数学成绩是总体,故原题错误;③1000名考生的数学成绩是总体的一个样本,正确;④样本容量是1000,故原题错误.故选:C.【点评】此题主要考查了总体、个体、样本、样本容量的定义,正确把握相关定义是解题关键.3. (2分)下列命题中正确的是()A .有一组邻边相等的四边形是菱形B. 有一个角是直角的四边形是矩形C .对角线互相垂直的平行四边形是正方形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定定理、矩形的判定定理、正方形和菱形的判定定理判断即可.【解答】解:A、有一组邻边相等的平行四边形是菱形,错误;B、有一个角是直角的平行四边形是矩形,错误;C、对角线互相垂直且相等的平行四边形是正方形,错误;D、对角线互相平分的四边形是平行四边形,正确;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4. (2分)“黄金分割”是一条举世公认的美学定律,例如在摄影中,人们常依据黄金分害甌行构图,使画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版,要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置(A.①B.②二'【解答】解:观察图象可知,AC~ 0.618AB, DE〜0.618CD ,A B•••按照黄金分割的原则,应该使小狗置于画面中的位置②,故选:B.【点评】本题考查黄金分割(0.618)的应用,解题的关键是记住黄金分割的比值是0.618 .5. (2分)如图,在菱形ABCD中,/ A= 60°, AD = 4,点P是AB边上的一个动点, 点E、F分别是DP、BP的中点,则线段EF的长为()A. 2B. 4C. 2D. 2【分析】如图连接BD .首先证明△ ADB是等边三角形,可得BD = 4,再根据三角形的中位线定理即可解决问题.【解答】解:如图连接BD .•••四边形ABCD是菱形,.• AD = AB= 4,•••/ A= 60°,• △ ABD是等边三角形,BD = AD= 4,•/ PE = ED , PF = FB,EF = BD = 2.2故选:A.【点评】本题考查菱形的性质、三角形的中位线定理、等边三角形的判定和性质等知识,ADB是等边三角形.解题的关键是学会添加常用辅助线,本题的突破点是证明厶6. ( 2分)如图,点A, B是反比例函数丫=皂(x> 0)图象上的两点,过点A, B分别作XAC丄x轴于点C, BD丄x轴于点D,连接OA、BC,已知点C (2, 0), BD = 3, S^BCDA. 2B. 3C. 4D. 6【分析】根据三角形的面积公式求出CD,推出点B坐标,求出k的值,根据反比例函数系数k的几何意义即可解决问题;【解答】解:在Rt△ BCD中,X CD X BD = 3,2X CD X 3= 3,:- ,••• CD = 2,•- C (2, 0),•OC = 2,•OD = 4,•- B (4, 3),•••点B是反比例函数y= ' (x> 0)图象上的点,x•k = 12,•/ AC丄x轴,•S^AOC= ~7= 6,故选:D.【点评】本题考查反比例函数系数k的几何意义,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.、填空题(本大题共10小题,每小题2分)7. (2分)已知AB// CD,添加一个条件AB= CD ,使得四边形ABCD为平行四边形.【分析】已知AB // CD,可根据有一组对边平行且相等的四边形是平行四边形来判定.【解答】解:可添加的条件是:AB= DC .理由如下:•••在四边形ABCD 中,AB / CD , AB= DC,•••四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形)故答案为:AB= CD (本题答案不唯一).【点评】此题主要考查学生对平行四边形的判定方法的理解能力,常用的平行四边形的判定方法有:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)—组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形. (5)对角线互相平分的四边形是平行四边形.注意本题答案不唯一,还可以添加一个条件AD // BC或/ A=Z C或/ B=Z D或/ A+Z B =180°或Z C+Z D = 180°.28. (2分)在比例尺1: 500000的地图上,测得甲地在图上的面积约为10cm,则甲地实际面积为250平方千米.【分析】面积比是比例尺的平方比,依题意可得出甲地实际的面积【解答】解:根据相似多边形的面积比是相似比的平方,得:11 12 2 2实际面积是10X 2.5X 10 = 2.5X 10 (cm )= 250 (km ),故填250.【点评】注意面积比是比例尺的平方比,这里特别注意单位的换算.9. (2分)空气质量指数,简称AQI,如果AQI在0〜50空气质量类别为优,在51〜100空气质量类别为良,在101〜150空气质量类别为轻度污染,按照某市最近一段时间的AQI画出的频数分布直方图如图所示.已知每天的AQI都是整数,那么空气质量类别为优和良的天数占总天数的百分比为80 % .天数【分析】用空气质量类别为优和良的天数之和除以被抽查的总天数即可得.【解答】解:空气质量类别为优和良的天数占总天数的百分比为 80% ,故答案为:80.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;禾U 用统计图 获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题. 10. (2分)在温度不变的条件下,一定质量的气体的压强 p 与它的体积V 成反比例•当V=200 时,p = 50,则当 p = 100 时,V = 100 .【分析】直接求出压强 p 与它的体积V 得关系式,进而得出 V 的值.【解答】解:T 一定质量的气体的压强 p 与它的体积 V 成反比例,当V = 200时,p = 50, •••设 P =:,则 m = 200 X 50= 10000,则 p =100时,V =:=100故答案为:100.【点评】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.11. ( 2分)如图,在 Rt △ ABC 中,/ ACB = 90°,点G 是厶ABC 的重心,GE 丄AC 于E , 若 BC = 6cm,贝V GE =2 cm .【分析】如图,连接 DF .由题意可知 DF 是厶ABC 的中位线,利用平行线分线段成比 例定理即可解决问题;【解答】解:如图,连接 DF .100% =10+14+6••• AD = DB, CF = BF ,••• DF // AC, AC = 2DF , DFACAGAFFG_ 1AG 2'23,•/ EG // CF , CF _ FB _ 3cm,.理= 22 = 2• _「_ :,.• EG _ 2cm ,故答案为2.【点评】本题考查三角形的重心、三角形的中位线定理、平行线分线段成本定理定理等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.2 2 12.( 2分)已知:点P ( m , n)在直线y_- x+2上,也在双曲线y_-—上,贝U m +n 的值为6【分析】直接利用一次函数图象上点的坐标特征以及反比例函数图象上点的特征得出n+m以及mn的值,再利用完全平方公式将原式变形得出答案.【解答】解:•点P (m , n)在直线y_- x+2上,•n+m_ 2 ,•••点P (m , n )在双曲线y_- 上,x•mn_- 1 ,2 2 2m+n_( n+m) —2mn_ 4+2_6.故答案为:6.>y 2,贝y a 的取值范围是—1v a v 1【点评】此题主要考查了一次函数图象上点的坐标特征以及反比例函数图象上点的特征, 正确得出m ,n 之间关系是解题关键.13.( 2分)如图,在?ABCD 中,E 、F 分别是 AB 、DC 边上的点,AF 与DE 交于点P , BF 与CE 交于点Q ,若S MPD = 20cm 2, S ^BQC = 30cm 2,则图中阴影部分的面积为502cm .【分析】连接E 、F 两点,由三角形的面积公式我们可以推出S "FC= S ^BCQ , 比 EFD =S A ADF ,所以S ^EF G = S ^BCQ , S ^EFP = S ^ADP ,因此可以推出阴影部分的面积就是s ^APD +S【解答】解:连接 E 、F 两点, •••四边形ABCD 是平行四边形, ••• AB // CD ,•••△EFC 的FC 边上的高与△ BCF 的FC 边上的高相等,•- S ^EFC =SA BCF,•- S ^EFQ = S/CQ , 同理:SA EFD=SA ADF ,•- S ^EFP = S ^ADP ,••• S A APD = 20cm 2, S A BQC = 30cm 2,2•- S 四边形 EPFQ = 50cm , 【点评】本题主要考查了平行四边形的性质,题目综合性较强,主要考查了平行四边形的性质,解答此题关键是作出辅助线,找出同底等高的三角形. 14.( 2分)点(a - 1, y i )、( a+1, y 2)在反比例函数y =( k v 0 )的图象上,若 y i 故答案为:50.【分析】根据反比例函数的性质分两种情况进行讨论, ①当点(a - 1, y i)、(a+1, y?) 在图象的同一支上时,②当点(a- 1, y i)、(a+1, y2)在图象的两支上时.【解答】解:••• k v 0,•••在图象的每一支上,y随x的增大而增大,①当点(a- 1, y i)、(a+1, y?)在图象的同一支上,••• y1> y2,•a —1> a+1,解得:无解;②当点(a—1, y1)、(a+1, y2)在图象的两支上,••• y1> y2,•a —1v0, a+1 >0,解得:-1 v a v 1,故答案为:-1v a v 1.【点评】此题主要考查了反比例函数的性质,关键是掌握当k v 0时,在图象的每一支上,y随x的增大而增大.15.(2分)如图,E、F分别是矩形ABCD的边BC、CD的中点,连接AC、AF、EF , 若AF丄EF , AC = 「,贝U AB的长为2 .【分析】根据矩形的性质得到/ D = Z ECF = 90°,根据相似三角形的性质和勾股定理即可得到结论.【解答】解:•••四边形ABCD是矩形,:丄 D =Z ECF = 90°,• / DAF + / AFD = 90°,•/ AF 丄EF ,:丄 AFE = 90°,:丄 DAF =Z EFC ,•••△ADF s\ FCE ,•r :■,•/ E、F分别是矩形ABCD的边BC、CD的中点,•••设DF = CF = x, CE = y,则AD = 2y,•-… ,K y2 2••• x = 2y ,•/ AD2+CD2= AC2,• 4y2+4x2= 6,•- x = 1, y=宁,AB= CD = 2.故答案为:2.【点评】本题考查了矩形的性质,勾股定理,相似三角形的判定和性质,熟练掌握矩形的性质是解题的关键.16.(2 分)如图,Rt △ ABC 中,/ ACB = 90°, CA= CB = 2, CD 丄AB 于D,点P 是线段CD上的一个动点,以点P为直角顶点向下作等腰直角△ PBE,连接DE,则DE的最小值为1 .【分析】当DE丄AE时,DE的有最小值,根据等腰直角三角形的性质即可得到结论.• “ ■ …二 ,•••/ ABE = Z CBP ,• △ ABE s\ CBP ,•••/ BAE = Z BCP = 45 •••/ BAE = Z CBA ,• AE // BC ,• E 点的运动轨迹为射线 AE , ••• DE 最短时,DE 丄AE 时, 即当DE 丄AE 时,DE 的有最小值,•••在 Rt △ ABC 中,/ ACB = 90°, AC = BC = 2, ••• AD = AB =_,2 3•••/ DAE = 45°,•••△ ADE 是等腰直角三角形, • DE = 1,• DE 的最小值是1. 故答案为:1【点评】本题考查了等腰直角三角形的性质,熟练掌握等腰直角三角形的性质是解题的 关键. 三、解答题:17. ( 6分)如图,△ ABC 的顶点坐标分别为 A ( 1, 1), B (2, 3), C ( 3, 0).(1) 画出△ ABC 绕点0逆时针旋转90°后得到的厶DEF ; (2)以点0为位似中心,在第三象限内把△ ABC 按相似比2: 1放大(即所画厶PQR【解答】解:连接AE ,与厶ABC的相似比为2: 1)(3 )在(2 )的条件下,若M (a, ABC边上的任意一点,则△ PQR的边上与点M对应的点M '的坐标为(-2a,- 2b) .【分析】(1)先依据旋转变换得到△ ABC绕点0逆时针旋转90°后的对应点,进而得到的△ DEF ;(2)以点0为位似中心,在第三象限内把△ ABC按相似比2: 1放大即可得到△ PQR;(3)依据位似的性质,即可得到△ PQR的边上与点M对应的点M '的坐标.【解答】解:(1)如图所示,△ DEF即为所求;(2)如图所示,△ PQR即为所求;(3)由图可得,△ PQR的边上与点M对应的点M '的坐标为(-2a,- 2b), 故答案为:(-2a,- 2b).【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于 k 或-k .18. ( 6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动, 活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服 务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查•结果发现, 被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了 5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.械抽样学生参孟湮者活动情宛吊竣计圉被抽样学主参与志恿者活戢情;兄扇形统计圏(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数, 并补全折线统计图;(3)该校共有学生2000人,估计其中参与了 4项或5项活动的学生共有多少人?【分析】(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生 数; (2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,禾U 用活动数为 5项的学生数,即可补全折线统计图; (3)利用参与了 4项或5项活动的学生所占的百分比,即可得到全校参与了 4项或5 项活动的学生总数.【解答】解:(1)被随机抽取的学生共有 14- 28% = 50 (人); (2)活动数为3项的学生所对应的扇形圆心角= .X 360°= 72°,50活动数为5项的学生为:50 - 8- 14 - 10 - 12= 6, 如图所示:0864208642211111项3项28%1项4项5项(3)参与了 4项或5项活动的学生共有 *X 2000 = 720 (人).50【点评】本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统 计图得出解题所需的数据是解题的关键.19. ( 6分)李先生参加了新月电脑公司推出的分期付款购买电脑活动,他购买的电脑价格 为1.2万元,交了首付4000元之后每期付款y 元,x 个月结清余款. (1) 写出y 与x 的函数关系式.(2) 李先生若用4个月结清余款,每月应付多少元? (3)如打算每月付款不超过 500元,李先生至少几个月才能结清余款?【分析】(1)根据购买的电脑价格为1.2万元,交了首付4000元之后每期付款y 元,x个月结清余款,得出 xy+4000 = 12000,即可求出解析式. (2) 利用(1 )中解析式,由当 x =4时,即可求出函数值. (3) 根据y w 500,利用解析式即可求出自变量x 的取值范围.【解答】解:(1)v 购买的电脑价格为 1.2万元,交了首付4000元之后每期付款y 元,x 个月结清余款, xy+4000 = 12000,8000.y =—(2)当 x = 4 时,y =^—= 2000 (元), 答:每月应付 2000元./7)1 :4 5 60864.208642 211X11(3 )当y w 500 时,w 500,答:李先生至少16个月才能结清余款.【点评】此题主要考查了反比例函数的应用,解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,会用不等式解决实际问题.20. (6分)在一次数学活动课上,小芳到操场上测量旗杆的高度,她的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,利用她所测数据,求旗杆的高.B c n【分析】根据已知得出过F作FG丄AB于G,交CE于H,利用相似三角形的判定得出△ AGFEHF,再利用相似三角形的性质得出即可.【解答】解:设旗杆高AB= x.过F作FG丄AB于G,交CE于H (如图).所以△ AGF EHF .因为FD = 1.5, GF = 27+3 = 30, HF = 3,所以EH = 3.5 — 1.5 = 2, AG = X— 1.5.由厶AGF EHF ,所以x— 1.5 = 20,解得x= 21.5 (米)答:旗杆的高为21.5米..4根据已知得出△ AGFEHF是解【点评】此题主要考查了相似三角形的判定与性质, 题关键.21.(8分)如图,矩形ABCD的两边AD、AB的长分别为3、8, E是DC的中点,反比例函数y=兰的图象经过点E,与AB交于点F .(1)若点B坐标为(-6, 0),求m的值及图象经过A、E两点的一次函数的表达式;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F点坐标,根据待定系数法,可得m的值,可得答案.【解答】解:(1)点B坐标为(-6,0),AD = 3,AB= 8,E为CD的中点,•••点 A (- 6,8),E (- 3,4),函数图象经过E点,•m=- 3X 4=- 12,设AE的解析式为y= kx+b,根据待定系数法,可得答案;-6k+b=8—3k+b=4,解得 :,)b=04•一次函数的解析式为y=- .x;(2) AD= 3,DE = 4,•AE = J ' [. = 5,•/ AF - AE = 2,• AF = 7,BF = 1,设E点坐标为(a, 4),则F点坐标为(a- 3, 1),•/ E, F两点在函数y=「图象上,x4a= a - 3,解得a=- 1,•-E (- 1, 4),1)的关键是利用待定系数法,又利用了矩形的性m=- 1 X 4=- 4,质;解(2)的关键利用E,F两点在函数y=「图象上得出关于a的方程.x22. (8分)如图,已知四边形ABCD是平行四边形,点E, F分别是AB, BC上的点,AE = CF,并且/ AED = / CFD .求证:(“)△ AED ◎△ CFD ;(2)四边形ABCD是菱形.B【分析】(1)由全等三角形的判定定理ASA证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.【解答】(1)证明:•••四边形ABCD是平行四边形,A=Z C.在厶AED与厶CFD中,^ZA=ZC,AE=CFZAED-ZCFD•••△AED CFD (ASA);(2)由(1)知,△ AED ◎△ CFD,贝U AD = CD .又•••四边形ABCD是平行四边形,•••四边形ABCD是菱形.【点评】考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.23. ( 8分)如图,一次函数y= kx+b与反比例函数y=—的图象交于A (2, 4), B (- 4,n)两点,交x轴于点C.(1 )求m、n的值;(2)请直接写出不等式kx+bv M的解集;x(3 )将x轴下方的图象沿x轴翻折,点B落在点B'处,连接AB'、B' C,求厶AB '【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题,写出直线的图象在反比例函数的图象下方的自变量的取值范围即可;(3)首先证明/ ACB ' = 90°,求出CB ' , AC即可解决问题;【解答】解:(1)把点A (2, 4)代入y「,得到m= 8,O把B (- 4, n)代入y='得到n=- 2,xm= 8, n=- 2(2)观察图象可知:不等式kx+b v二的解集为:x v- 4或O v x v 2;(3)如图,设AB交y轴于D.把 A (2, 4), B (- 4,- 2)代入y= kx+b,得到; ,-4k+b=-2解得匕1I b=2•••直线AB的解析式为y= x+2,••• D (0, 2), C (- 2, 0),OC = OD= 2,:丄 DCO = 45°,••• B与B '关于x轴对称,••• BC= CB',/ DCB '= 90°,• BC= 2 二AC = 4 7,•••△ACB'的面积=「7X ~= 8.£【点评】本题考查一次函数与反比例函数的交点问题,待定系数法等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.( 10分)矩形AOBC中,OB = 8, OA = 4•分别以OB, OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系. F是BC边上一个动点(不与B, C重合),过点F的反比例函数y=^ ( k> 0)的图象与边AC交于点E.團1 图2(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF、AB,求证:EF // AB;(3)如图2,将厶CEF沿EF折叠,点C恰好落在边0B上的点G处,求此时反比例函数的解析式.【分析】(1)首先确定点B坐标,再根据中点的定义求出点E坐标即可;(2)连接AB,分别求出/ EFC,/ ABC的正切值即可解决问题;(3)先作出辅助线判断出Rt△ MED s Rt △ BDF,再确定出点E, F坐标进而EG = 8 -'■ , GF = 4-[,求出BD,最后用勾股定理建立方程求出k即可得出结论;【解答】解:(1)v四边形OACB是矩形,0B = 8, 0A = 4,二 C (8, 4),•/ AE = EC,•-E (4, 4),•••点E在y=—上,x二 E (4, 4).k = 8a,二 E (2a, 4),CF = 4-a, EC = 8 -2a,在Rt△ ECF 中,tan/ EFC = = 1 = 2,FC 4-a在Rt△ ACB 中,tan/ ABC = = 2,BC.tan / EFC = tan / ABC,•••/ EFC = / ABC,••• EF // AB.•/ EGF =/ C= 90°, EC = EG , CF = GF ,•/ MGE +/ FGB = 90°,过点E作EM丄OB,•/ MGE +/ MEG = 90°,•/ MEG =/ FGB ,•Rt△MEG s Rt △BGF ,OB上的G点处, •型=12•= ■',•••点 E (一二,4) , F (8,三),Lr Lr•EC = AC - AE = 8 - , CF = BC- BF = 44 8Lr Lr•EG = EC = 8- ' , GF = CF = 4-三•••EM = 4 ,GB••• GB = 2,在Rt△ GBF 中,GF2= GB2+BF2,• k = 12,•反比例函数表达式为y= .【点评】此题是反比例函数综合题,主要考查了根据条件求反比例函数解析式及其应用,利用图形性质表示出相关点的坐标,根据点与函数的关系找出关系式,涉及内容有锐角三角函数,三角形相似的性质和判定,勾股定理的应用,注意点(m, n)在函数y='的x 图象上,则mn= k的利用是解本题的关键.25.( 10分)如图,正方形ABCD中,对角线AC、BD交于点O, E为0C上动点(与点0不重合),作AF丄BE,垂足为G ,交B0于H •连接0G、CG .(1)求证:AH = BE ;(2)试探究:/ AGO的度数是否为定值?请说明理由;(3 )若0G丄CG , BG= 3 二求△ OGC的面积.A D【分析】(1)方法一:只要证明△ AOH ◎△ BOE即可.方法二;只要证明厶ABH ◎△BCE即可;(2)方法一:想办法证明△ OHG AHB,可得/ AGO = ZABO = 45 ° .方法二:如图,取AB中点M,连接MO, MG .利用圆周角定理,即可解决问题;(3)由厶ABGBFG ,推出乡=昊,可得AG?GF = BG 2= 18,由厶AGOCGF ,BG GF推出二可得GO?CG= AG?GF = 18.由此即可解决问题;L T F CG。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年江苏省宿迁市泗阳县八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个选项是正确的,请将正确选项的字母代号填涂在答题卡相应位置)1.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)某课外兴趣小组为了了解所在地区老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.调查了10名老年人的健康状况C.在医院调查了1000名老年人的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人健康状况3.(3分)下列事件中,属于必然事件的是()A.经过路口,恰好遇到红灯B.四个人分成三组,这三组中有一组必有2人C.打开电视,正在播放动画片D.抛一枚硬币,正面朝上4.(3分)下列式子为最简二次根式的是()A.B.C.D.5.(3分)反比例函数y=的图象的一支在第二象限,则k的取值范围是()A.k<1B.k>1C.k<0D.k>06.(3分)如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.缩小3倍C.缩小6倍D.不变7.(3分)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等8.(3分)下列计算正确的是()A.B.C.D.9.(3分)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO 的周长为()A.12B.14C.16D.1810.(3分)如图,函数y=ax﹣2与y=(a≠0),在同一坐标系中的大致图象是()A.B.C.D.11.(3分)在矩形ABCD中,AB=m,BC=4m,H是BC的中点,DE⊥AH,垂足为E,则用m的代数式表示DE的长为()A.B.C.D.12.(3分)若关于x的分式方程=﹣2的根是正数,则实数m的取值范围是()A.m>﹣4,且m≠0B.m<10,且m≠﹣2C.m<0,且m≠﹣4D.m<6,且m≠2二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)13.(3分)为了解宿迁市中小学生对春节联欢晚会语言类节目喜爱的程度,这项调查采用方式调査较好(填“普查”或“抽样调查”).14.(3分)要使式子有意义,则字母x的取值范围是.15.(3分)若分式的值为零,则a=.16.(3分)计算:()()=.17.(3分)方程=0的解为.18.(3分)如图,矩形ABCD中,AB=6,BC=8,E是BC上一点(不与B、C重合),点P在边CD上运动,M,N分别是AE、PE的中点,线段MN长度的最大值是.19.(3分)若m是的小数部分,则m2+2m的值是.20.(3分)如图,在平面直角坐标系中,矩形OABC的边OA=6,OC=2,一条动直线l 分别与BC、OA将于点E、F,且将矩形OABC分为面积相等的两部分,则点O到动直线l的距离的最大值为.三、解答题(共8小题,共90分.解答时应写出必要的步骤、过程或文字说明.)21.(10分)计算:(1);(2)22.(10分)计算:(1)(2)23.(10分)某公司调查某中学学生对其环保产品的了解情况,随机抽取该校部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.(1)本次问卷共随机调查了名学生,扇形统计图中m=.(2)请根据数据信息补全条形统计图;(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?24.(10分)如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F (1)求证:AE=CF;(2)求证:四边形AECF是平行四边形.25.(12分)甲、乙两个机器人检测零件,甲比乙每小时多检测10个,甲检测300个与乙检测200个所用的时间相等.甲、乙两个机器人每小时各检测零件多少个?26.(12分)已知反比例函数y=(k常数,k≠2).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若这个函数图象的每一支上,y都随x的增大而增大,求k的取值范围;(3)若k=8,试写出当﹣3≤y≤﹣2时x的取值范围.27.(12分)如图,正方形ABCD的对角线AC、BD交于点O,直角三角形EOF绕点O按逆时针旋转,∠EOF=90°.(1)若直角三角形绕点O逆时针转动过程中,分别交AD,CD两边于M,N两点.①求证:OM=ON;②连接CM、BN,那么CM,BN有什么样的关系?试说明理由.(2)若正方形的边长为2,则正方形ABCD与Rt△EOF两个图形重叠部分的面积为多少?(不需写过程直接写出结果)28.(14分)如图,在平面直角坐标系中,A、B两点分别是y轴和x轴正半轴上两个动点,以三点O、A、B为顶点的矩形OACB的面积为24,反比例函数y=(k为常数且0<k <24)的图象与OACB的两边AC、BC分别交于点E,F.(1)若k=12且点E的横坐标为3.①点C的坐标为,点F的坐标为(不需写过程,直接写出结果);②在x轴上是否存在点P,使△PEF的周长最小?若存在,请求出△PEF的周长最小值;若不存在,请说明理由.(2)连接EF、OE、OF,在点A、B的运动过程中,△OEF的面积会发生变化吗?若变化,请说明理由,若不变,请用含k的代数式表示出△OEF的面积.2018-2019学年江苏省宿迁市泗阳县八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个选项是正确的,请将正确选项的字母代号填涂在答题卡相应位置)1.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,是中心对称图形;D、是轴对称图形,不是中心对称图形;故选:C.2.【解答】解:A、调查不具代表性,故A错误;B、调查不具广泛性,故B错误;C、调查不具代表性,故C错误;D、调查具有广泛性、代表性,故D正确;故选:D.3.【解答】解:A、经过路口,恰好遇到红灯是随机事件;B、四个人分成三组,这三组中有一组必有2人是必然事件;C、打开电视,正在播放动画片是随机事件;D、抛一枚硬币,正面朝上是随机事件,故选:B.4.【解答】解:A、被开方数含分母,不是最简二次根式;B、被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、被开方数含能开得尽方的因数,不是最简二次根式;故选:C.5.【解答】解:∵反比例函数y=的图象的一支在第二象限,∴k﹣1<0,∴k<1,故选:A.6.【解答】解:原式==,故选:D.7.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选:B.8.【解答】解:A、﹣=2﹣=,本选项正确;B、+≠,本选项错误;C、3﹣=2≠3,本选项错误;D、3+2≠5,本选项错误.故选:A.9.【解答】解:∵四边形ABCD是矩形,∴OA=AC=4,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=OB=4,∴△ABO的周长=OA+OB+AB=12;故选:A.10.【解答】解:一次函数y=ax﹣2的图象与y轴交于点(0,﹣2),故A、C、D错误.故选:B.11.【解答】解:如图,∵H是BC的中点,BC=4m,∴BH=2m,∴AH==m,∵∠BAH+∠DAE=∠BAC=90°,∠BAH+∠AHB=180°﹣90°=90°,∴∠AHB=∠DAE,又∵∠B=∠AED=90°,∴△ABH∽△DEA,∴=,即=,解得DE=m;故选:B.12.【解答】解:去分母得:m=2x﹣2﹣4x+8,解得:x=,由分式方程的根是正数,得到>0,且≠2,解得:m<6且m≠2,故选:D.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)13.【解答】解:为了解宿迁市中小学生对春节联欢晚会语言类节目喜爱的程度,这项调查采用抽样调查方式调査较好,故答案为:抽样调查.14.【解答】解:x﹣2≥0∴x≥2故答案为:x≥215.【解答】解:分式的值为零,则a+1=0,解得:a=﹣1.故答案为:﹣1.16.【解答】解:原式=11﹣3=8、故答案为8.17.【解答】解:去分母得:1﹣x﹣x﹣1=0,解得:x=0,经检验x=0是分式方程的解,故答案为:x=018.【解答】解:∵M为AE中点,N为EP中点,∴MN为△AEP的中位线,∴MN=AP.若要MN最大,则使AP最大.∵P在CD上运动,当P运动至点C时P A最大,此时P A=CA是矩形ABCD的对角线,∴AC==10∴MN的最大值=AC=5故答案为:519.【解答】解:∵1<<2∴的整数部分是1∴的小数部分m=﹣1∴m2+2m=m(m+2)=(﹣1)(+1)=2﹣1=1故答案为:120.【解答】解:连接OB,交直线l交于点G,∵直线l将矩形OABC分为面积相等的两部分,∴G是OB的中点,过G作GH∥BC,交OC于H,∵BC=OA=6,∴GH=BC=3,OH=OC=1,若要点O到直线l的距离最大,则l⊥OG,Rt△OGH中,由勾股定理得:OG===,故答案为:.三、解答题(共8小题,共90分.解答时应写出必要的步骤、过程或文字说明.)21.【解答】(1)解:原式=,=1.(2)解:原式=,=,=.22.【解答】解:(1)=2﹣2×=;(2)=a2﹣.23.【解答】解:(1)本次问卷调查的学生总人数为20÷40%=50人,扇形统计图中C类型所占百分比m%=×100%=32%,即m=32,故答案为:50、32.(2)A类型人数为50×16%=8人,补全图形如下:(3)估计选择“非常了解”、“比较了解”人数共约为1000×(16%+40%)=560(人).24.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS),∴AE=CF;(2)证明:∵AE⊥BD,CF⊥BD,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.25.【解答】解:设甲每小时检测x个,则乙每小时检测(x﹣10)个,根据题意得,=.解得x=30.经检验x=30是原方程的解,所以x﹣10=20.答:甲每小时检测30个,则乙每小时检测20个,26.【解答】解:(1)把点A(1,2)代入反比例函数y=得:k﹣2=1×2,∴k=4因此k的值为:4;(2)反比例函数y=每一支上,y都随x的增大而增大,∴k﹣2<0,∴k<2;(3)当k=8时,反比例函数的关系式为y=,此时在每个象限内,y随x的增大而减小,当y=﹣3时,x=﹣2,当y=﹣2时,x=﹣3,∴x的取值范围为:﹣3≤x≤﹣2.27.【解答】证明:(1)①正方形ABCD的对角线AC,BD交于点O,∴OC=OD=BO=AO,∠ADO=∠ACD=45°,AC⊥BD.∵∠MOD+∠DON=90°,∠DON+∠CON=90°∴∠DOM=∠CON,且OC=OD,∠ADO=∠ACD∴△DOM≌△CON(ASA)∴OM=ON②CM⊥BN,CM=BN如图,连接CM、BN交于点H,∵∠DOM=∠CON∴∠MOC=∠BON,且MO=ON,BO=CO∴△MOC≌△NOB(SAS)∴CM=BN,∠OBN=∠OCM∵∠OCM+∠OGC=90°∴∠OBN+∠OGC=90°∴CM⊥BN(2)∵正方形的边长为2,∴S正方形ABCD=4,∴S△DOC=1∵△DOM≌△CON∴S△DOM=S△CON,∴正方形ABCD与Rt△EOF两个图形重叠部分的面积=S△MOD+S△DON=S△DON+S△CON=S△DOC=1.28.【解答】解:(1)①∵点E在反比例函数y=的图象上,且点E的横坐标为3,∴点E的坐标为(3,4).∵矩形OACB的面积为24,∴点C的坐标为(6,4).当x=6时,y==2,∴点F的坐标为(6,2).故答案为:(6,4);(6,2).②作点F关于x轴的对称点F′,连接EF′交x轴于点P,此时△PEF的周长最小,如图1所示.∵点F的坐标为(6,2),∴点F′的坐标为(6,﹣2),∴EF′==3,EF==,∴△PEF的周长最小值为PE+PF+EF=EF′+EF=3+.∴在x轴上存在点P,使△PEF的周长最小,△PEF的周长最小值为3+.(2)△OEF的面积不变.设点C的坐标为(m,n),则点E的坐标为(,n),点F的坐标为(m,),∴CE=m﹣==,CF=n﹣==,∴S△OEF=S矩形AOBC﹣S△OAE﹣S△OBF﹣S△CEF,=24﹣k﹣k﹣CE•CF,=24﹣k﹣,=12﹣.。

相关文档
最新文档