随机时间序列模型

合集下载

ARMA模型介绍

ARMA模型介绍
两者结合的模型(ARMA)
习惯上用AR(p)、MA(q)或ARMA(p,q)来 表示对应的滞后时期。
AR(p)模型
AR(p)模型是回归模型的一种形式,其一般形 式为:
Yt 1Yt1 2Yt2 ... pYt p ut
另一种表达方式是用差分形式: Yt Yt1 1Yt1 ... p1Yt p1 ut
调整可决系数、AIC和SC准则都是模型 选择的重要标准。
AIC准则和SC准则
赤池信息准则:AIC=-2L/n+2k/n,其中L 是对数似然值,n是观测值数目,k是被 估计的参数个数。AIC准则要求其取值 越小越好。
施瓦茨准则:SC=-2L/n-klnn/n,使用时 也要求SC值越小越好。
ARIMA模型
maq的偏自相关系数随着滞后期的增加呈现指数衰减趋向于零这称为偏自相关系arprp序列的自相关函数是非截尾序列称为拖尾序列
时间序列模型-ARMA模型
ARMA模型是一类常用的随机时间序列 分析模型,由博克斯(Box)和詹金斯(Jenkins) 创立,也称B-J方法。
AR(p)的自相关函数(AC)和偏相关函 数(PAC)
根据自相关函数的特征,可见AR(p) 序列的自相关函数是非截尾序列,称为 拖尾序列。因此,自相关函数拖尾是AR ( p )序列的一个特征。
根据偏自相关函数的特征,当k>p时, PACkk =0,也就是在p以后截尾。
模型的识别
AR(p)模型的识别。若序列的偏自相关函数在p以 后截尾,而且自相关系数是拖尾的,则此序列是自 回归AR(p)序列。
MA(q)模型的识别。若序列的自相关函数在q以后 截尾,而且偏自相关系数是拖尾的,则此序列是移 动平均MA(q)序列。
ARMA(p,q)模型的识别。若序列的自相关函数和 偏自相关系数都是拖尾的,则此序列是自回归移动 平均ARMA(p,q)序列。至于模型中p和q的识别, 则要从低阶开始逐步试探,直到定出合适的模型为 止。

ARMA模型

ARMA模型
随机项 ut 是相互独立的白噪声序列,且服从均值为0、
方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0

随机时间序列分析

随机时间序列分析

当滞后期大于q时,Xt的自协方差系数为0。 因此:有限阶移动平均模型总是平稳的。
3、ARMA(p,q)模型的平稳性
由于ARMA (p,q)模型是AR(p)模型与MA(q)模型的组合: Xt=1Xt-1+ 2Xt-2 + … + pXt-p + t - 1t-1 - 2t-2 - - qt-q 而MA(q)模型总是平稳的,因此ARMA (p,q)模型的平 稳性取决于AR(p)部分的平稳性。 当AR(p)部分平稳时,则该ARMA(p,q)模型是平稳的, 否则,不是平稳的。
1、时间序列模型的基本概念
随机时间序列模型(time series modeling)是指仅用它的 过去值及随机扰动项所建立起来的模型,其一般形式为 Xt=F(Xt-1, Xt-2, …, t) 建立具体的时间序列模型,需解决如下三个问题: (1)模型的具体形式 (2)时序变量的滞后期 (3)随机扰动项的结构 例如,取线性方程、一期滞后以及白噪声随机扰动项( t =t),模型将是一个1阶自回归过程AR(1): Xt=Xt-1+ t 这里, t特指一白噪声。
考虑p阶自回归模型AR(p) Xt=1Xt-1+ 2Xt-2 + … + pXt-p +t • 引入滞后算子(lag operator )L: LXt=Xt-1, L2Xt=Xt-2, …, LpXt=Xt-p
(*)
(*)式变换为 (1-1L- 2L2-…-pLp)Xt=t 记(L)= (1-1L- 2L2-…-pLp),则称多项式方程
2、时间序列分析模型的适用性
• • 经典回归模型的问题: 迄今为止,对一个时间序列 Xt 的变动进行解释或预测, 是通过某个单方程回归模型或联立方程回归模型进行的, 由于它们以因果关系为基础,且具有一定的模型结构,因 此也常称为结构式模型(structural model)。 • 然而,如果Xt波动的主要原因可能是我们无法解释的因 素,如气候、消费者偏好的变化等,则利用结构式模型来 解释Xt的变动就比较困难或不可能,因为要取得相应的量 化数据,并建立令人满意的回归模型是很困难的。 • 有时,即使能估计出一个较为满意的因果关系回归方程, 但由于对某些解释变量未来值的预测本身就非常困难,甚 至比预测被解释变量的未来值更困难,这时因果关系的回 归模型及其预测技术就不适用了。

基于随机过程的时间序列预测模型研究

基于随机过程的时间序列预测模型研究

基于随机过程的时间序列预测模型研究随着人们对数据的重视和数据科学技术的普及,时间序列预测成为一个相对热门的研究领域。

时间序列预测模型是基于随机过程的,它可以对未来的数据进行预测,这在很多领域都有广泛的应用,如金融、交通、医疗等领域。

在本文中,我们将探讨基于随机过程的时间序列预测模型的研究。

一、基于随机过程的时间序列预测模型的基础时间序列预测模型的基础是计量经济学和统计学,其核心是随机过程理论。

随机过程是一个随时间变化的随机变量序列,它可以表示实际情况下的不确定性和变化性。

在时间序列预测模型中,我们需要对随机过程进行建模和估计,以预测未来时间点的值。

时间序列预测模型主要有两种方法:经验法和结构法。

经验法是指根据历史数据的经验规律来预测未来的数据,如移动平均法、指数平滑法等。

结构法是指建立数学模型来描述数据的变化规律,并预测未来数据,如ARIMA模型、VAR模型等。

其中,ARIMA模型是经典的时间序列预测模型,它可以对平稳的时间序列进行建模和预测。

二、ARIMA模型的建模和预测ARIMA模型是一种线性模型,它由自回归(AR)和移动平均(MA)两个部分组成。

在AR部分,模型利用过去的值进行预测,而在MA部分,模型利用过去的误差进行预测。

ARIMA模型还有一个差分操作,它可以将非平稳的时间序列变成平稳的时间序列,从而可以进行建模和预测。

ARIMA模型建模的步骤包括确定模型阶数、估计模型参数和检验模型的拟合优度。

确定模型阶数是指确定AR部分和MA部分的阶数,可以使用ACF和PACF图来辅助确定。

估计模型参数是指利用最大似然估计或最小二乘估计等方法来估计模型参数。

检验模型的拟合优度是指利用残差序列来检验模型的合理性和拟合优度,可以使用Ljung-Box检验等方法来检验。

预测是ARIMA模型的重要应用之一,它可以对未来时间点的数据进行预测。

ARIMA模型的预测可以从三个方面着手:一是对模型的适应性进行检验,二是对未来时间点进行点预测,三是对未来一段时间内的变化进行区间预测。

时间序列模型概述

时间序列模型概述

时间序列模型概述时间序列模型是一种用于预测时间序列数据的统计模型。

时间序列数据是一系列按照时间顺序排列的数据点。

例如,股票价格、气温、销售额都是时间序列数据。

时间序列模型能够分析数据中的趋势、周期性和季节性,提供对未来的预测。

时间序列模型的建立是基于以下几个假设:1. 时序依赖:时间序列数据中的每个数据点都依赖于之前的数据点。

这意味着前一时刻的数据对当前时刻的数据有影响。

2. 稳定性:时间序列数据的统计特性在时间上保持不变。

这意味着数据的平均值和方差不会随时间而变化。

3. 随机性:时间序列数据中的噪声是随机的,即不受任何规律的干扰。

为了建立时间序列模型,我们需要对数据进行预处理和分析。

首先,我们需要对数据进行平稳性检验,确保数据的均值和方差在时间上保持不变。

如果数据不稳定,我们可以采用一些技术,如差分操作,将其转化为稳定的形式。

接下来,我们需要对时间序列数据进行分解,找出其中的趋势、周期性和季节性。

常用的分解方法有加法分解和乘法分解。

加法分解将时间序列数据分解为趋势、季节性和误差项的和,乘法分解将时间序列数据分解为趋势、季节性和误差项的乘积。

在分解的基础上,我们可以选择适合的时间序列模型进行建模和预测。

常见的时间序列模型有:1. 自回归移动平均模型(ARMA):基于时间序列数据的自回归和移动平均过程。

ARMA模型适用于没有趋势和季节性的时间序列数据。

2. 自回归积分移动平均模型(ARIMA):在ARMA模型的基础上,增加了对时间序列数据的差分操作。

ARIMA模型适用于具有趋势但没有季节性的时间序列数据。

3. 季节性自回归积分移动平均模型(SARIMA):在ARIMA 模型的基础上,增加了对时间序列数据的季节性差分操作。

SARIMA模型适用于具有趋势和季节性的时间序列数据。

4. 季节性分解模型(STL):将时间序列数据进行分解,然后对趋势、季节性和残差进行建模。

STL模型适用于具有明显季节性的时间序列数据。

随机型时间序列

随机型时间序列

2.5
2007
1.5
2
2008
1
1.5
2009
2
1
2010
1.5
2
2011
2.5
1.5
2.5
11
1.5
( yt y)(yt1 y)
t1
1
12
2
( yt y)2
t 1
2.5
10
2
( yt y)(yt2 y)
t1
2
12
1.5
( yt y)2
t 1
1
11
2
表中列出了2006年1 1
二、纯随机性检验 纯随机序列的定义 纯随机性的性质 纯随机性检验
4
一、平稳性检验
平稳时间序列的定义
严平稳
严平稳是一种条件比较苛刻的平稳性定义,它认为 只有当序列所有的统计性质都不会随着时间的推移 而发生变化时,该序列才能被认为平稳。
宽平稳
宽平稳是使用序列的特征统计量来定义的一种平稳 性。它认为序列的统计性质主要由它的低阶矩决定, 所以只要保证序列低阶矩平稳(二阶),就能保证 序列的主要性质近似稳定。
许多经济现象的变化并不是时间的确定函数,而是具有 随机性的,因此也就需要建立随机时间序列模型来预测。
随机时间序列
随机时间序列是指一串随机变量 Yt ,t T,T 1,2,3
所构成的序列。对每一个固定的时刻t,yt 是一个随机变量, 而对于一次特定的试验结果, y是t 一个确定的样本函数,
称为随机时间序列的一个实现。如果 是Yt 随t变化的一族 随机变量,t取 ,上的一切值,则称 Y为t 随机过程。
2008 450.0 514.7 540.7 488.4 588.2 568.1 384.4 516.9 513.6 510.9 390.3 489.0

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析模型是一种通过对时间序列数据进行建模和分析的方法,旨在揭示数据中的趋势、季节性、周期和不规则波动等特征,并进行预测和决策。

时间序列分析模型在经济、金融、市场、气象、医学等领域都有广泛的应用。

本文将介绍几种常见的时间序列分析模型。

1. 移动平均模型(MA)移动平均模型是时间序列分析中最简单的模型之一。

它基于一个基本假设,即观察到的时间序列数据是对随机误差的线性组合。

该模型表示为:y_t = c + e_t + θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,θ₁,θ₂,…,θ_q 是移动平均项的参数,q 是移动平均项的阶数。

2. 自回归模型(AR)自回归模型是基于一个基本假设,即观察到的时间序列数据是过去若干时间点的线性组合。

自回归模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,p 是自回归项的阶数。

3. 自回归移动平均模型(ARMA)自回归移动平均模型将自回归模型和移动平均模型结合在一起,用于处理同时具有自相关和移动平均性质的时间序列数据。

自回归移动平均模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t +θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,θ₁,θ₂,…,θ_q 是移动平均项的参数,p 是自回归项的阶数,q 是移动平均项的阶数。

4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是自回归移动平均模型的扩展,用于处理具有季节性和趋势变化的时间序列数据。

时间序列模型的介绍

时间序列模型的介绍

时间序列模型的介绍时间序列模型是一种用于分析和预测时间序列数据的统计模型。

时间序列数据是按时间顺序收集的观测数据,通常具有一定的趋势、季节性和随机性。

时间序列模型的目标是通过对过去的数据进行分析,揭示数据背后的规律性,从而对未来的数据进行预测。

时间序列模型可以分为线性模型和非线性模型。

线性模型假设时间序列数据是由线性组合的成分构成的,常见的线性模型有自回归移动平均模型(ARMA)、自回归模型(AR)和移动平均模型(MA)等。

非线性模型则放宽了对数据的线性假设,常见的非线性模型有非线性自回归模型(NAR)和非线性移动平均模型(NMA)等。

在时间序列模型中,常用的预测方法包括平滑法、回归法和分解法。

平滑法通过对时间序列数据进行平均、加权或移动平均等处理,来消除数据中的随机波动,得到趋势和季节性成分。

回归法则是通过建立时间序列数据与其他影响因素的关系模型,来预测未来的数据。

分解法则将时间序列数据分解为趋势、季节性和随机成分,分别进行建模和预测。

时间序列模型的应用非常广泛。

在经济领域,时间序列模型可以用于宏观经济指标的预测,如国内生产总值(GDP)、通货膨胀率和失业率等。

在金融领域,时间序列模型可以用于股票价格的预测和风险管理,如股票市场的指数预测和波动率的估计。

在气象领域,时间序列模型可以用于天气预报和气候变化研究,如温度、降雨量和风速等的预测。

在交通领域,时间序列模型可以用于交通流量的预测和拥堵状况的评估,如道路交通量和公共交通客流量等的预测。

然而,时间序列模型也存在一些限制和挑战。

首先,时间序列数据通常具有一定的噪声和不确定性,模型需要能够对这些随机波动进行合理的建模和处理。

其次,时间序列数据可能存在非线性关系和非平稳性,传统的线性模型可能无法很好地捕捉到数据的特征。

此外,时间序列数据的长度和频率也会对模型的预测能力产生影响,较短的数据序列和较低的采样频率可能导致预测结果的不准确性。

为了克服这些挑战,研究人员不断提出新的时间序列模型和方法。

随机型时间序列预测法概述

随机型时间序列预测法概述

随机型时间序列预测法概述随机型时间序列预测法的核心思想是通过对历史观测值的统计分析,来获得对未来观测值的概率分布预测。

常用的方法包括随机游走模型、ARIMA模型和蒙特卡洛模拟等。

随机游走模型是基于随机游走过程的思想,认为未来的观测值仅仅取决于当前的观测值,而不受其他因素的影响。

随机游走模型假设未来观测值是当前观测值的随机扰动,因此只需要根据历史观测值的方差来预测未来的观测值的方差。

ARIMA模型是一种基于自回归移动平均的方法,可以对时间序列数据进行拟合和预测。

ARIMA模型的核心思想是通过对时间序列数据进行平稳化处理,然后利用自回归和移动平均的效应来对未来观测值进行预测。

蒙特卡洛模拟是一种基于随机采样的方法,通过对历史观测值的概率分布进行抽样,得到多个可能的未来观测值序列。

然后,可以通过对这些样本序列的统计分析来获得对未来观测值的概率分布预测。

总之,随机型时间序列预测法通过对时间序列数据的随机性特征进行建模和分析,可以得到对未来观测值的概率分布预测。

这些方法可以帮助我们更好地理解和预测时间序列数据的随机性,提供数据分析和决策支持。

随机型时间序列预测法的应用领域非常广泛。

它可以用于金融市场预测、天气预报、股票市场分析、经济指标预测等许多领域。

在这些领域中,时间序列数据经常呈现出一定的随机性,传统的预测方法往往无法准确捕捉到这种随机性,因此随机型时间序列预测法成为了一种有效的预测方法。

随机游走模型是一种简单而又直观的随机型时间序列预测方法。

它假设未来的观测值仅仅取决于当前的观测值,并且通过随机扰动来进行模拟。

这种方法的一个重要特点是不考虑任何外部因素对未来观测值的影响,因此被广泛应用于金融市场预测中。

例如,在股票市场中,随机游走模型被用来预测股票价格的波动范围,从而帮助投资者制定买卖策略。

ARIMA模型是一种比较常用的随机型时间序列预测方法。

它基于自回归和移动平均的效应,旨在通过对时间序列数据进行平稳化处理,然后根据历史观测值的自相关性和移动平均性来预测未来观测值。

计量经济学讲义第八讲(共十讲)

计量经济学讲义第八讲(共十讲)

第八讲 平稳时间序列与单位根过程一、随机时间序列模型概述在严格意义上,随机过程{}t X 的平稳性是指这个过程的联合和条件概率分布随着时间t 的改变而保持不变。

在实践中,我们更关注弱意义上的平稳或者所谓的协方差平稳:2();();(,)t t t t j j E X Var X Cov X X μδδ+===显然20δδ=。

在本讲义中,平稳皆指协方差平稳。

当上述条件中的任意一个被违背时,则称{}t X 是非平稳的。

(一)平稳随机过程的例子 1、白噪声过程{}t ε:20()0;();(,)0,t t t t j j E Var Cov εεδεε+≠===2、AR(1)过程:011,11t t t y a a y a ε<-=++,{}t ε是白噪声过程为了验证上述过程满足平稳性条件,我们首先通过迭代得到:1111010t t i it ii i t t y a a a y a ε---===++∑∑。

接下来注意到,111)0(t i i t t E y a a a y -==+∑,进一步假设数据生成过程发生了很久,即t 趋于无穷大,则01)1(t a E y aμ-==;其次也有110()()t it i i t Var y Var a ε--==∑,当t 趋于无穷大时,21221()11()i t Var a a Var y εδ-=-=;最后,当t 趋于无穷大时,有:1211111111222 (1241)11121......(...)[()()][()()]s s t t s t s t t s t s t s t t s s s s s a a a a a E y y E a a a a μμδδεεεεεεε+-----------++--+++++++++++=== 关于AR(p)过程的平稳性,见附录。

3、MA(P)过程:11...pt t t p t y a a εεε--=+++,{}t ε是白噪声过程显然,任意有限阶MA 过程都是平稳的。

c14-时间序列分析入门

c14-时间序列分析入门

② (一阶)自回归序列平稳的条件
•是否平稳 ?
•均值为零?
•方差为有限常数 ?
•自协方差与t无关

AR(1)平稳的条件
• 均值 •成 立
• 方差
•满足这两个 条件成立

AR(1)平稳的条件
• 自协方差
•结论:
•仅与k有关,与t无 关 时,一阶自回归序列渐进平稳

③ AR(p)的自相关函数
• 自协方差函数
• 模型识别 • 参数估计 • 阶数的确定 • 模型检验

•模型识别 •参数估计
•模型检验
•判断模型
•否
是否可取
•是
•确定模型 具体形式

(1) 模型识别
• 自相关函数截尾——MA(q) • 自相关函数拖尾 偏自相关函数截尾——AR(p) 偏自相关函数拖尾——ARMA(p,q)

(2) 模型参数估计
• AR(p)的最小二乘估计 • ARMA(p,q)的最小二乘估计

① AR(p)的最小二乘估计
•普通最小二乘法


① 移动平均模型的定义
• 在序列{xt}中, xt表示为若干个白噪声的 加权平均和 其中{εt}是白噪声序列,这样的模型称为 q阶移动平均模型,计为MA(q)

② MA(1) 的自相关函数

MA(q) 的自相关函数
•k=0
•k=1,2,···, q •k> q

举例
•ρk •1
•0.5
•0 •1 •2 •3

举例
•ρk •1
•0
•k

•yt
•的序列
•20

ARMA模型解析

ARMA模型解析
注3:【2】满足平稳条件时, AR过程等价于无穷阶的MA 过程,即
X t 1 v1B v2 B
2
j ut v j B ut j 0
1 时间序列分析模型【ARMA模型 】简介
3、自回归移动平均【ARMA】模型 【B-J方法建模】
自回归移动平均序列
ARMA序列,它的阶要由从低阶到高阶逐步增加,再通过检验来确定. 但实际数据处理中,得到的样本自协方差函数和样本偏自相关函数只是
k
而只能是在某步之后围绕零值上下波动,故对于 k 和 kk 的截尾性 只能借助于统计手段进行检验和判定。
和 kk 的估计,要使它们在某一步之后全部为0几乎是不可能的,
H0 : pk , pk 0, k 1,
2 统计量 N pM
H1 : 存在某个 k ,使 kk
k p 1
0 ,且
2
pkM p
( ) 表示自由度为 M 的 分布 的上侧 分位数点 2 2 M ( ),则认为 对于给定的显著性水平 0 ,若 2 2 p ,可认为 样本不是来自AR( )模型 ; M ( )
【2】
( B) X t ut
AR(
的根均在单位圆外,即
p )过程平稳的条件是滞后多项式 ( B)
( B) 0 的根大于1
1 时间序列分析模型【ARMA模型 】简介
2、移动平均【MA】模型
移动平均序列 X t : 如果时间序列 X t 是它的当期和前期的随机误差 项的线性函数,即可表示为
时间序列的季节性是指在某一固定的时间间隔上,序列 重复出现某种特性.比如地区降雨量、旅游收入和空调销售额 等时间序列都具有明显的季节变化. 一般地,月度资料的时间序列,其季节周期为12个月;

随机时间序列分析模型讲义

随机时间序列分析模型讲义

随机时间序列分析模型讲义【讲义】随机时间序列分析模型一、引言随机时间序列分析是一种经济学、统计学和数学领域的重要研究方法,用于描述和预测随机现象(例如经济指标、股票价格)随时间发展的变化规律。

本讲义将介绍常见的随机时间序列分析模型。

二、自回归模型(AR)1. 定义:自回归模型是一种常见的线性时序模型,它假设当前时刻的数值与过去若干时刻的数值相关。

AR(p)模型表示当前时刻的值与前p个时刻的值相关。

2. 公式:AR(p)模型的数学公式可表示为:y_t = c + φ_1 * y_(t-1) + φ_2 * y_(t-2) + ... + φ_p * y_(t-p) + ε_t其中,y_t代表当前时刻的数值,c为常数,φ_i为自回归系数,ε_t为误差项,服从均值为0,方差为σ^2的正态分布。

3. 参数估计:通过样本数据拟合AR(p)模型,可使用最小二乘法或极大似然法估计自回归系数。

三、移动平均模型(MA)1. 定义:移动平均模型是一种常见的线性时序模型,它假设当前时刻的数值与过去若干时刻的误差相关。

MA(q)模型表示当前时刻的值与过去q个时刻的误差相关。

2. 公式:MA(q)模型的数学公式可表示为:y_t = c + ε_t + θ_1 * ε_(t-1) + θ_2 * ε_(t-2) + ... + θ_q * ε_(t-q)其中,y_t代表当前时刻的数值,c为常数,θ_i为移动平均系数,ε_t为误差项。

3. 参数估计:通过样本数据拟合MA(q)模型,可使用最小二乘法或极大似然法估计移动平均系数。

四、自回归移动平均模型(ARMA)1. 定义:自回归移动平均模型是自回归模型与移动平均模型的结合,综合考虑了过去若干时刻的数值和误差对当前时刻数值的影响。

ARMA(p, q)模型表示当前时刻的值与过去p个时刻的值和过去q个时刻的误差相关。

2. 公式:ARMA(p, q)模型的数学公式可表示为:y_t = c + φ_1 * y_(t-1) + φ_2 * y_(t-2) + ... + φ_p * y_(t-p) + ε_t + θ_1 * ε_(t-1) + θ_2 * ε_(t-2) + ... + θ_q * ε_(t-q)3. 参数估计:通过样本数据拟合ARMA(p, q)模型,可使用最小二乘法或极大似然法估计自回归系数和移动平均系数。

随机时间序列分析模型

随机时间序列分析模型

随机时间序列分析模型随机时间序列分析模型是一种经济学和统计学领域常用的工具,用于研究一系列随机变量随时间的变化规律。

该模型基于假设,认为时间序列的观察值是随机过程的实现,且该过程具有一定的平稳性质。

下面我将介绍一种常用的随机时间序列分析模型- 自回归移动平均模型(ARMA模型)。

ARMA模型结合了自回归模型(AR)和移动平均模型(MA)的特点,用于描述时间序列数据之间的相关性。

在ARMA模型中,当前时刻的观察值被认为是过去时刻的观察值和随机误差项的线性组合。

其数学表示如下:\(X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \sum_{j=1}^{q}\theta_j \epsilon_{t-j} + \epsilon_t\)其中,\(X_t\)表示第t个时刻的观察值,\(c\)是常数,\(p\)和\(q\)分别表示自回归和移动平均过程的阶数,\(\phi_i\)和\(\theta_j\)是相应的回归系数,\(\epsilon_t\)表示误差项。

ARMA模型的核心思想是利用过去观察值的线性组合来预测当前观察值,并通过误差项来考虑模型无法完全解释的随机波动。

通过估计回归系数和误差项的方差,可以得到ARMA模型的具体参数估计。

ARMA模型的一个重要应用是时间序列预测。

通过拟合ARMA模型并利用已有观察值,可以对未来的观察值进行推断和预测。

这对于很多实际问题,如经济数据预测、股市走势分析等,具有重要的意义。

需要注意的是,ARMA模型在应用中需要满足一些前提条件,如观察值之间的相关性、平稳性等。

此外,ARMA模型的参数估计和模型选择也需要一定的经验和技巧。

总结起来,ARMA模型是一种常用的随机时间序列分析模型,可以用于描述时间序列数据之间的相关性和预测未来观察值。

通过合适的参数估计和模型选择,ARMA模型可以在实践中具有一定的预测能力。

随机时间序列分析是经济学和统计学中的重要方法,用于研究一系列随机变量随时间的变化规律。

时间序列分析模型汇总

时间序列分析模型汇总

时间序列分析模型汇总时间序列分析是一种广泛应用于各个领域的统计分析方法,它用来研究一组随时间而变化的数据。

时间序列数据通常具有趋势、季节性和随机性等特征,时间序列分析的目的是通过建立适当的模型来描述和预测这些特征。

本文将汇总一些常用的时间序列分析模型,包括AR、MA、ARIMA、GARCH和VAR等。

1.AR模型(自回归模型):AR模型是根据过去的观测值来预测未来的观测值。

它假设未来的观测值与过去的一系列观测值有关,且与其他因素无关。

AR模型的一般形式为:Y_t=c+Σ(φ_i*Y_t-i)+ε_t,其中Y_t表示时间t的观测值,c 为常数,φ_i为系数,ε_t为误差项。

2.MA模型(移动平均模型):MA模型是根据过去的误差项来预测未来的观测值。

它假设未来的观测值与过去的一系列误差项有关,且与其他因素无关。

MA模型的一般形式为:Y_t=μ+ε_t+Σ(θ_i*ε_t-i),其中Y_t表示时间t的观测值,μ为平均值,θ_i为系数,ε_t为误差项。

3.ARIMA模型(自回归积分移动平均模型):ARIMA模型是AR和MA模型的组合,它结合了时间序列数据的趋势和随机性特征。

ARIMA模型的一般形式为:Y_t=c+Σ(φ_i*Y_t-i)+Σ(θ_i*ε_t-i)+ε_t,其中Y_t表示时间t的观测值,c为常数,φ_i和θ_i为系数,ε_t为误差项。

4.GARCH模型(广义自回归条件异方差模型):GARCH模型用于建模并预测时间序列数据的波动性。

它假设波动性是由过去观测值的平方误差和波动性的自相关引起的。

GARCH模型的一般形式为:σ_t^2=ω+Σ(α_i*ε^2_t-i)+Σ(β_i*σ^2_t-i),其中σ_t^2为时间t的波动性,ω为常数,α_i和β_i为系数,ε_t为误差项。

5.VAR模型(向量自回归模型):VAR模型用于建模并预测多个时间序列变量之间的相互关系。

它假设多个变量之间存在相互依赖的关系,即一个变量的变动会对其他变量产生影响。

时间序列计量经济学模型计量经济学

时间序列计量经济学模型计量经济学

2 平稳性的定义
• 假定某个时间序列是由某一随机过程stochastic
process生成的;即假定时间序列Xtt=1; 2; …的 每一个数值都是从一个概率分布中随机得到;
如果满足下列条件:
– 均值EXt=是与时间t 无关的常数;
– 方差VarXt=2是与时间t 无关的常数;
– 协方差CovXt;Xt+k=k 是只与时期间隔k有关;与时间 t 无关的常数;
• 由于t统计量的向下偏倚性;它呈现围绕小于零均 值的偏态分布
显著性水平
0.01 0.05 0.10
样本容量 25 50 100 500
-3.75 -3.58 -3.51 -3.44 -3.00 -2.93 -2.89 -2.87 -2.63 -2.60 -2.58 -2.57
∝ t分布临界值 (n=∝)
•从GDPP1 的参数值看; 其t统计量的 值大于临界 值;不能拒绝 存在单位根 的零假设 至 此;可断定 GDPP时间 序列是非平 稳的
ADF检验在Eviews中的实现—检验△GDPP
•从△GDPP1的参 数值看;其t统计量 的值大于临界值;
不能拒绝存在单位 根的零假设 同时; 由于时间项项T的t
统计量也小于 AFD分布表中的 临界值;因此不能
拒绝不存在趋势项 的零假设 需进一
步检验模型2 在 1%置信度下
从△GDPP1的参 数值看;其统计量 的值大于临界值; 不能拒绝存在单 位根的零假设 同
时;由于常数项的 t统计量也小于 AFD分布表中的 临界值;因此不能 拒绝不存在趋势 项的零假设 需进
• 一个简单的检验过程:
– 同时估计出上述三个模型的适当形式;然后通过 ADF临界值表检验零假设H0:=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档