丹阳市实验学校九年级数学第一次检测试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丹阳市实验学校九年级数学第一次检测试卷及
答案
集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
丹阳市实验学校九年级数学阶段检测试(2011-10-5) 出卷人:王一峰 审核人:周青云
一、选择题(每题3分,共24分):
1
x 必须满足的条件是………………………( )
A .x ≥1
B .x >-1
C .x ≥-1
D .x >1
2、下列方程中,是一元二次方程的有………………………………………………( )
A .01
22=+x x B .c bx ax ++2 C .()()121=+-x x D .052322=--y xy x
3、方程4)2(2=+x 的解为…………………………………………………………( )
A .0或2
B .4或0
C .2或-2
D .0或-4 4、若a<1
( )
A .a -1
B .-a -1
C .1-a
D .a+1 5、若一组数据1、2、3、x 的极差是6,则x 的值为…………………………………( )
.8 C 或-3
6、小明的作业本上有以下四题①24416a a =;②25105a a a =⋅; ③a a
a a a
==1·12 ;④a a a =-23。其中做错误..的是…………( )
A .①
B .②
C .③
D .④
7、已知四边形ABCD 中,给出下列四个论断:(1)AB ∥CD ,(2)AB=CD ,(3)AD=BC ,(4)AD ∥BC.以其中两个论断作为条件,余下两个作为结论,可以构成一些命题.在这些命题中,正确命题的个数
有………………………………………………………(
)
A. 2个
B. 3个
C. 4个
D. 6个
8、如图,四边形ABCD 是矩形,AB :AD = 4:3,把矩形沿直线AC 折叠, 点B 落在点E 处,连接DE ,则DE :AC 的值是………………( ) A. 1:3 B. 3:8 C. 8:27 D. 7:25 二、填空(每题2分,共30分):
第8题
A B C E
D
9.直接写出答案:_______)9(2=-,_______232=⨯。 10.已知a 、b 满足____,023==-++a b a ,则 b = 。 11.配上适当的数,使下列等式成立: ()22___________3-=+-x x x . 12.若n 个数据x 1,x 2,x 3,…,x n 的方差为S 2,平均数为m ,则n 个新数据kx 1+a ,kx 2+a ,…,kx n +a 的方差是________,平均数为_______ 。
13.如图,在△ABC 中,点D 、E 、F 分别在BC 、AB 、AC 上,且DE ∥AC ,DF ∥
AB 。
(1)如果∠BAC=90°,那么四边形AEDF 是_____________形;
(2)如果AD 是△ABC
14.在实数范围内分解因式:x 2-7=15.当m 时,方程()12
2
--x m 16.已知1322++x x 的值是6,则代数式1642++x x 的值是 。 17.观察下面的式子:312311=+
,413412=+,5
1
4513=+,……请你将猜想到的规律用含正整数n (n ≥1)的代数式表示出来是______________________。
18.等腰三角形一个角为700
,则顶角的度数为 。
19.已知2 是关于x 的方程x 2-4x+c=0的一个根,则c 的值是 ____。 20.数据70、71、72、73的标准差为___________。
21.在梯形ABCD 中,AD8cm6cm
22.如图:直线y = - x + 4点P 是直线AB 上的一点,Q 是双曲线k
y x
=若O 、A 、P 、Q 合条件的点Q ,则点Q 的坐标 、三、解答题(共66分): 23、计算、解方程(18分)
(1)()
2352- (2)x x x x 5027
12112-+-
(3)22)25()25(--+ (4)x x 4)1(2=+
(5)、22)21()3(x x -=+ (6)、20152=+-x x
x
B C
24、(4分)己知:72-=x ,求代数式x 2-4x-5的值
25、(6分)某中学开展“八荣八耻”演讲比赛活动,甲、乙两班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示。
(1)根据下图,分别求出两班复赛的平均成绩和方差; (2)根据(1)的计算结果,分析哪个班级的复赛成绩较好
26.(8分)已知直角三角形的两条直角边长分别为24+=a ,24-=b ,求
斜边c 及斜边上的高h 。
27.(6分)如图,在△ABC 中,AB=AC ,点E ,F 分别在AC ,AB 上,EF ∥BC ,将
△AEF 向上翻折,得到△A ′EF ,再展开.(1)求证:四边形AEA ′F 是菱形;
(2)直接写出当等腰△ABC 满足什么条件时,四边形AEA ′F 将变成正方形 (3)当点A ′恰好落在BC 上时,直接写出EF 与BC 的数量关系.
28、(6分)如图,梯形ABCD 是世纪广场的示意图,上底AD=90m ,下底
BC=150m ,高100m ,虚线MN 是梯形ABCD 的中位线。要设计修建宽度相同的一条横向和两条纵向大理石通道,横向通道EGHF 位于MN 两旁,且EF 、GH 与MN 之间的距离相等,两条纵向通道均与BC 垂直,设通道宽度为x m.
(1)试用含x 的代数式表示横向通道EGHF 的面积S 1;
(2)用含x 的代数式表示三条通道的面积和S 2; (3)若三条通道的面积和恰是梯形ABCD 面积的4
1
时, 求通道宽度x ;
29.(9分)如图,在矩形ABCD 中,AB=6,AD=2,点P 在线段AB 上运动,设
AP=x ,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),再将纸片还原.
(1)当0 x 时,折痕EF 的长为 ;
当点E 与点A 重合时,折痕EF 的长为 ;
A
B
C E F
A ′