排列组合的基本理论和公式

合集下载

小学数学排列组合的基本思想与计算

小学数学排列组合的基本思想与计算
解析及答案
答案:10
题目:从10个不同的数字中选出5个,组成一个无重复数字的五位数,有多少种可能?
解析:这是一个组合问题,从12个不同的数字中选出6个,有C(12,6)=924种可能。
解析:这是一个组合问题,从5个不同的数字中选出3个,有C(5,3)=10种可能。
答案:252
题目:从12个不同的数字中选出6个,组成一个无重复数字的六位数,有多少种可能?
排列数公式:n!/(n-r)!,其中n表示元素总数,r表示排列数
排列数公式的推导:从n个元素中选出r个元素进行排列,共有n!种方法,但需要除以(n-r)!以避免重复计算
排列数公式的推广:可以推广到多维排列,例如三维排列数公式为n!/(n-r1)!/(n-r2)!/(n-r3)!,其中r1、r2、r3分别表示三个维度的排列数
01
02
问题:从10个不同的数字中选出5个,组成一个无重复数字的五位数,有多少种可能?
问题:从12个不同的数字中选出7个,组成一个无重复数字的七位数,有多少种可能?
03
04
问题:从15个不同的数字中选出9个,组成一个无重复数字的九位数,有多少种可能?
提高练习题
排列组合的基本概念和公式
排列组合的应用题及解析
概率论:计算事件发生的概率,如抽奖、赌博等
密码学:加密和解密信息,如密码锁、加密通信等
逻辑推理:分析问题和解决问题,如推理小说、侦探故事等
排列组合在数学问题中的解题技巧
理解排列组合的基本概念:排列和组合的定义和区别
提高解题效率:通过练习和总结,提高解题速度和准确性
学会运用排列组合解决实际问题:如解应用题、解决实际问题等
添加标题
排列组合的分类讨论思想
分类讨论:将问题按照不同的情况进行分类,分别求解

排列组合基础知识

排列组合基础知识

排列组合基础知识排列组合基础知识一、两大原理1.加法原理(1)定义:做一件事,完成它有n 类方法,在第一类方法中有1m 中不同的方法,第二类方法中有2m 种不同的方法......第n 类方法中n m 种不同的方法,那么完成这件事共有n m m m N +++= (21)种不同的方法。

(2)本质:每一类方法均能独立完成该任务。

(3)特点:分成几类,就有几项相加。

2.乘法原理(1)定义做一件事,完成它需要n 个步骤,做第一个步骤有1m 中不同的方法,做第二个步骤有2m 种不同的方法......做第n 个步骤有n m 种不同的方法,那么完成这件事共有n m m m N ...21=种不同的方法。

(2)本质:缺少任何一步均无法完成任务,每一步是不可缺少的环节。

(3)特点:分成几步,就有几项相乘。

二、排列组合1.排列(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素,按照一定的顺序排成一列,叫做从n 个不同的元素中,选取m 个元素的一个排列,排列数记为m n P ,或记为m n A 。

(2)使用排列的三条件①n 个不同元素;②任取m 个;③讲究顺序。

(3)计算公式)!(!)1)....(2)(1(m n n m n n n n A m n -=+---= 尤其:!,,110n P n P P n n n n ===2.组合(1)定义:从n 个不同的元素中,任取m 个(n m ≤)元素并为一组,叫做从n 个不同的元素中,选取m 个元素的一个组合,组合数记为m n C 。

(2)使用三条件①n 个不同元素;②任取m 个;③并为一组,不讲顺序。

(3)计算公式12)...1()1)...(1()!(-+--=-==m m m n n n m n m n P P C m m m n mn尤其:m n n m n n n n n C C C n C C -====,1,,110例1.由0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数?A.226B.246C.264D.288解析:由于首位和末位有特殊要求,应优先安排,以免不合要求的元素占了这两个位置,末位有13C 种选择,然后排首位,有14C 种选择,左后排剩下的三个位置,有34A 种选择,由分步计数原理得:13C 14C 34A =288例2.旅行社有豪华游5种和普通游4种,某单位欲从中选择4种,其中至少有豪华游和普通游各一种的选择有()种。

排列组合公式和各类例题

排列组合公式和各类例题

组合恒等式排列组合常见公式基本计数原理⑴加法原理和分类计数法⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

⒊分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

⑵乘法原理和分步计数法⒈乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

⒉合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

3.与后来的离散型随机变量也有密切相关。

4例题【例1】从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有多少个?分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。

设a,b,c成等差,∴2b=a+c,可知b由a,c决定,又∵2b是偶数,∴a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,A(10,2)*2=90*2,因而本题为180。

【例2】某城市有4条东西街道和6条南北的街道,街道之间的间距相同,若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?分析:对实际背景的分析可以逐层深入:(一)从M到N必须向上走三步,向右走五步,共走八步;(二)每一步是向上还是向右,决定了不同的走法;(三)事实上,当把向上的步骤决定后,剩下的步骤只能向右;从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数。

排列组合公式总结大全(3篇)

排列组合公式总结大全(3篇)

第1篇在数学中,排列组合是研究有限集合中元素的不同排列和组合方式的一种数学分支。

它广泛应用于统计学、概率论、计算机科学、组合数学等领域。

以下是对排列组合中常用公式的总结,以供参考。

一、排列1. 排列的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。

2. 排列数公式:A(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

3. 排列的运算性质:(1)交换律:A(n, m) = A(n-m, n-m)(2)结合律:A(n, m) × A(m, k) = A(n, k)(3)逆运算:A(n, m) × A(m, n-m) = n!二、组合1. 组合的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,不考虑它们的顺序,这样的取法称为从n个不同元素中取出m个元素的一个组合。

2. 组合数公式:C(n, m) = n! / [m! × (n-m)!]3. 组合的运算性质:(1)交换律:C(n, m) = C(n-m, n-m)(2)结合律:C(n, m) × C(m, k) = C(n, k)(3)逆运算:C(n, m) × C(m, n-m) = C(n, n)三、排列与组合的关系1. 排列与组合的关系:A(n, m) = C(n, m) × m!2. 排列与组合的区别:(1)排列考虑元素的顺序,组合不考虑元素的顺序。

(2)排列的运算性质与组合的运算性质不同。

四、排列组合的应用1. 排列组合在概率论中的应用:计算随机事件发生的概率。

2. 排列组合在计算机科学中的应用:设计算法、密码学、数据结构等。

3. 排列组合在统计学中的应用:抽样调查、数据分析等。

数学排列组合知识点精要讲解

数学排列组合知识点精要讲解

数学排列组合知识点精要讲解在我们的数学世界中,排列组合是一个既有趣又实用的知识领域。

它就像是一把神奇的钥匙,能够帮助我们解决各种各样看似复杂的计数问题。

首先,让我们来理解一下什么是排列。

排列指的是从给定的元素中,按照一定的顺序选取若干个元素进行排列。

比如说,从 5 个不同的数字中选取 3 个进行排列,那么第一个位置有 5 种选择,第二个位置剩下 4 种选择,第三个位置则剩下 3 种选择。

所以总的排列数就是5×4×3 = 60 种。

排列的计算公式为:A(n, m) = n! /(n m)!这里的“!”表示阶乘,比如 5! = 5×4×3×2×1 。

接下来,再说说组合。

组合与排列不同,它不考虑选取元素的顺序。

还是上面那个例子,如果是从 5 个不同的数字中选取 3 个进行组合,那么组合的数量就会比排列少。

因为在组合中,只要元素相同,不管顺序如何,都算作同一种情况。

组合的计算公式是:C(n, m) = n! / m!(n m)!为了更好地理解排列组合,我们来看几个实际的例子。

假设要从 10 个人中选出 3 个人参加比赛,这就是一个组合问题。

因为选出的 3 个人去参加比赛,他们的顺序不影响结果。

但如果是要从 10 个人中选出3 个人分别参加不同的比赛项目,这就是一个排列问题,因为不同的比赛项目,人员的顺序是有影响的。

在解决排列组合问题时,有一些常见的方法和技巧。

比如插空法,如果有一些元素要求不能相邻,那么我们就先排好其他元素,然后在这些元素形成的空隙中插入不能相邻的元素。

还有捆绑法,当有一些元素必须相邻时,我们可以把它们看作一个整体,先和其他元素一起排列,然后再考虑内部的排列。

另外,在一些复杂的问题中,可能需要分类讨论。

把问题分成不同的情况,分别计算每种情况的排列组合数,最后再把结果相加。

排列组合在实际生活中的应用也非常广泛。

比如在彩票抽奖中,计算中奖的可能性就用到了排列组合的知识。

排列组合计算公式举例说明

排列组合计算公式举例说明

排列组合计算公式举例说明排列组合是数学中常用的计数方法,用于计算一些集合中的元素的不同组合和排列的总数。

排列是从集合中选择一定数量的元素进行组合,并按照一定的顺序进行排列。

组合是从集合中选择一定数量的元素进行组合,不考虑元素的顺序。

下面将分别说明排列和组合的计算公式,并给出具体的例子。

一、排列:排列的计算公式是P(n,r)=n!/(n-r)!,其中P表示排列,n表示集合中的元素总数,r表示选择的元素数量,!表示阶乘。

例1:有5只猫排成一排,问有多少种不同的排列方式。

解:根据排列的计算公式,可以得到P(5,5)=5!/(5-5)!=5!/0!=5!=5×4×3×2×1=120,所以有120种不同的排列方式。

例2:有10本书,从中选出3本书排成一排,问有多少种不同的排列方式。

解:根据排列的计算公式,可以得到P(10,3)=10!/(10-3)!=10!/7!=10×9×8=720,所以有720种不同的排列方式。

二、组合:组合的计算公式是C(n,r)=n!/(r!×(n-r)!),其中C表示组合,n表示集合中的元素总数,r表示选择的元素数量,!表示阶乘。

例1:有6只猫,从中选择3只猫,问有多少种不同的组合方式。

解:根据组合的计算公式,可以得到C(6,3)=6!/(3!×(6-3)!)=6!/(3!×3!)=6×5×4/(3×2×1)=20,所以有20种不同的组合方式。

例2:有8个人,从中选出4个人组成一个委员会,问有多少种不同的组合方式。

解:根据组合的计算公式,可以得到C(8,4)=8!/(4!×(8-4)!)=8!/(4!×4!)=8×7/(2×1)=28,所以有28种不同的组合方式。

排列组合在实际生活中有很多应用,例如:1.彩票中奖号码的排列组合:在选择彩票号码时,我们有时会从1到49中选择6个数字组成一组号码,这就是一种排列组合的问题。

高中数学排列组合知识点总结

高中数学排列组合知识点总结

高中数学排列组合知识点总结排列组合是高中数学中的一个重要概念,涉及到数学中的选择、排列和组合等问题。

在解决实际问题中,排列组合常常能够提供有效的理论框架和计算方法。

本文将对高中数学中的排列组合知识点进行总结,帮助读者更好地理解和应用这一内容。

一、基本概念在开始讨论排列组合知识点之前,先来明确一些基本概念。

1.排列(Permutation)指的是从给定的一组元素中选出若干个元素按照一定的顺序进行排列。

2.组合(Combination)指的是从给定的一组元素中选出若干个元素进行组合,不考虑其顺序。

二、排列计算1.排列定义:从n个不同元素中取出m(m≤n)个元素进行排列,称为从n个不同元素中取出m个元素的排列。

记作A(n,m)或P(n,m)。

2.排列计算公式:A(n,m) = n! / (n-m)!其中,n!表示n的阶乘,表示从1到n的所有正整数相乘。

三、组合计算1.组合定义:从n个不同元素中取出m(m≤n)个元素进行组合,称为从n个不同元素中取出m个元素的组合。

记作C(n,m)。

2.组合计算公式:C(n,m) = n! / (m! * (n-m)!)四、问题求解1.排列问题求解步骤:a.明确问题的条件和要求;b.根据问题的条件和要求确定排列的范围和规模;c.根据排列计算公式进行计算;d.根据问题的要求进行答案的整理和归纳。

2.组合问题求解步骤:a.明确问题的条件和要求;b.根据问题的条件和要求确定组合的范围和规模;c.根据组合计算公式进行计算;d.根据问题的要求进行答案的整理和归纳。

五、常见问题类型1.选择问题:从给定的选项中选择若干个进行排列或组合。

2.分组问题:将一组元素进行分组排列或组合。

3.座位问题:将若干个人或物品按不同的排列规则安排座位。

4.商业问题:涉及到商品的排列和组合。

5.应用问题:将排列组合运用到实际生活和科学研究中。

六、应用示例1.案例一:某队伍有7名运动员,其中需要选出3名队员参加比赛,有多少种不同的选择方式?解答:根据组合计算公式C(7,3),可以得到答案为35种。

高一排列组合知识点总结

高一排列组合知识点总结

高一排列组合知识点总结排列组合是数学中的一个重要概念,也是高中数学的一项重要内容。

在高一学年的数学教学中,排列组合是一个必须掌握的知识点。

下面将对高一排列组合的相关知识点进行总结。

一、排列的概念及性质1. 排列的定义:从n个不同元素中取出m(1≤m≤n)个元素,按照一定的顺序排列起来,称为从n个元素中取出m个元素的排列。

2. 排列的计算公式:当元素可以重复取出时,排列数为 n^m;当元素不重复取出时,排列数为 A(n,m)=n!/(n-m)!。

二、组合的概念及性质1. 组合的定义:从n个不同元素中取出m(1≤m≤n)个元素,不考虑元素的顺序,称为从n个元素中取出m个元素的组合。

2. 组合的计算公式: C(n,m)=n!/((n-m)!m!)。

三、排列组合的应用1. 排列组合在概率论中的应用:通过排列组合的算法,可以计算出事件发生的可能性,从而进行概率计算。

2. 排列组合在选择问题中的应用:从一组元素中选取若干个元素,根据排列组合的原理,可以计算出选择的可能性。

3. 排列组合在密码学中的应用:通过排列组合的算法,可以生成不同排列组合的密码,提高密码的安全性。

四、排列组合的解题技巧1. 排列组合的分析:首先明确题目中的条件,确定问题所涉及的元素数量和选取的数量。

2. 使用排列组合公式:根据题目的条件和问题的要求,使用相应的排列组合公式进行计算。

3. 注意特殊情况:在解决排列组合问题时,要特别关注元素是否可以重复取出、是否考虑元素的顺序等特殊情况。

4. 灵活运用公式:对于一些复杂的问题,可通过将问题进行转化,利用排列组合的公式来求解。

五、典型例题分析1. 从10个人中选出3个人组成委员会,求不同的组合数。

解答:根据组合的计算公式C(n,m),将n=10,m=3带入公式,得到结果C(10,3)=10!/((10-3)!3!)=120。

2. 一个三位数,各位上的数字都不相同,共有多少种排列方式?解答:根据排列的计算公式A(n,m),将n=9(0不能作首位),m=3带入公式,得到结果A(9,3)=9!/(9-3)!=504。

高中数学知识点总结及公式大全排列组合与概率的组合与排列问题

高中数学知识点总结及公式大全排列组合与概率的组合与排列问题

高中数学知识点总结及公式大全排列组合与概率的组合与排列问题高中数学知识点总结及公式大全:排列组合与概率一、排列与组合基础知识在学习排列组合与概率之前,我们首先需要了解一些基础的排列与组合知识。

1. 排列排列是从一组元素中选取出若干元素按照一定的顺序排列的方式。

这些元素可以是数字、字母、物品等。

如果从 n 个元素中选取 m 个进行排列,则表示为 P(n, m) 或 nPm,排列的公式为:P(n, m) = n! / (n - m)!2. 组合组合是从一组元素中选取出若干元素而不考虑顺序的方式。

与排列不同,组合只关心元素的选择而不涉及元素的顺序。

如果从 n 个元素中选取 m 个进行组合,则表示为 C(n, m) 或 nCm,组合的公式为:C(n, m) = n! / [m! * (n - m)!]二、排列组合的应用排列组合的应用广泛,不仅限于数学领域,在实际生活中也能见到许多与排列组合相关的问题。

下面列举几个常见的应用场景:1. 抽奖问题在抽奖活动中,我们常会遇到从一堆奖品中抽取若干个奖品的问题,这就涉及到组合的应用。

2. 选课问题学校的选课系统通常会要求学生从众多课程中选择若干门进行学习,这就是一个排列问题。

3. 组队问题在进行体育竞赛或其他集体活动时,我们需要将一群人分成几个小组,这就是一个组合问题。

三、排列组合的公式总结在实际应用中,我们常常需要用到排列组合的公式来解决问题。

下面是一些常见的排列组合公式:1. 排列公式:- 样本不放回排列:P(n, m) = n * (n - 1) * (n - 2) * ... * (n - m + 1)- 样本放回排列:P(n, m) = n^m2. 组合公式:- C(n, m) = C(n, n - m)- C(n, m) = P(n, m) / m!- C(n, m) * C(m, k) = C(n, k) * C(n - k, m - k)四、概率与排列组合的关系排列组合与概率有着密切的关系,概率问题常常需要借助排列组合的概念来求解。

排列组合常用公式

排列组合常用公式

排列组合常用公式排列和组合是数学中常用的两个概念,用于计算对象的不同排序和选择方式。

在组合数学和概率论中,排列和组合公式是非常重要的工具。

本文将介绍常用的排列和组合公式,帮助我们更好地理解和应用这些概念。

排列公式排列是指从给定元素中选择一组有序的元素的方式。

在排列中,元素的顺序是重要的。

以下是常用的排列公式:1.全排列公式:当从n个不同元素中选择r个进行排列时,全排列的总数可以表示为P(n, r)。

全排列的计算方式为:P(n, r) = n! / (n - r)!其中,n! 表示n的阶乘,即n! = n * (n-1) * (n-2) * … * 2 * 1。

2.循环排列公式:当从n个不同元素中选择r个进行循环排列时,循环排列的总数可以表示为P(n, r) / r。

循环排列的计算方式与全排列类似,只是需要除以r,因为循环排列相同的元素被认为是相同的。

循环排列数 = P(n, r) / r组合公式组合是指从给定元素中选择一组无序的元素的方式。

在组合中,元素的顺序是不重要的。

以下是常用的组合公式:1.组合公式:当从n个不同元素中选择r个进行组合时,组合的总数可以表示为C(n, r)。

组合的计算方式为:C(n, r) = n! / (r! * (n - r)!)其中,n! 表示n的阶乘,r! 表示r的阶乘,(n-r)! 表示(n-r)的阶乘。

2.二项式定理:二项式定理是组合公式的一个重要推论。

当计算表达式(x + y)^n 的展开式时,其中x和y为变量,n为非负整数,展开式中每一项的系数可以表示为C(n, k)。

展开式的计算方式为:(x + y)^n = C(n, 0) * x^n * y^0 + C(n, 1) * x^(n-1) * y^1 + ... + C(n, n) * x^0 * y^n其中,C(n, k) 表示从n个元素中选择k个进行组合的总数。

示例下面通过几个示例展示如何应用排列和组合公式:1.例1:有8个人排成一队,请问一共有多少种不同的队形可以排列?解:我们可以将问题转化为计算全排列的问题。

排列组合基础知识详解

排列组合基础知识详解

排列组合基础知识详解概述在数学中,排列和组合是两个基本的概念。

它们是解决计数问题的重要工具。

我们通过对元素的组织和选择来计算排列和组合的数量。

本文将详细讨论排列和组合的定义、计算公式以及应用场景。

排列排列是从给定元素集合中按照一定顺序选择若干元素的方式。

假设我们有n个元素,需要从中选择r个元素,并将它们按照一定顺序排列。

这样的排列数量可以表示为P(n, r)或nPr,计算公式为:P(n, r) = n! / (n - r)!其中,n!表示n的阶乘,即从1到n的所有正整数的乘积。

这个计算公式可以理解为:先从n个元素中选择一个放在第一位,再从剩下的n-1个元素中选择一个放在第二位,依次类推直到选择r个元素。

例如,假设我们有4个元素A、B、C和D,需要选择2个元素进行排列。

那么有以下6种排列方式:ABACADBABCBD公式计算为:P(4, 2) = 4! / 2! = 4 × 3 = 12。

组合组合是从给定元素集合中按照某种方式选择若干元素的方式。

与排列不同,组合的选择不考虑元素的顺序。

同样假设我们有n个元素,需要从中选择r个元素,组成一个无序的集合。

这样的组合数量可以表示为C(n, r)或nCr,计算公式为:C(n, r) = n! / (r! × (n - r)!)公式中的计算逻辑与排列类似,不同的是排列中还需要考虑元素的顺序,而组合中只需要选择元素本身,不需要考虑顺序。

回到之前的例子,我们有4个元素A、B、C和D,需要选择2个元素进行组合。

那么有以下6种组合方式:ABACADBCBDCD公式计算为:C(4, 2) = 4! / (2! × (4 - 2)!) = 4 × 3 / 2 = 6。

排列和组合的应用场景排列和组合广泛应用于各个领域,特别是概率统计、组合数学、计算机科学等。

在概率统计中,排列和组合用来计算可能性的数量。

例如,在赌场的扑克牌游戏中,我们可以通过排列和组合来计算获胜的可能性。

排列组合公式计算方法

排列组合公式计算方法

排列组合公式计算方法
排列组合公式是数学中用于计算排列和组合的公式。

1. 排列公式:
排列是从一组对象中选出一部分进行排列的方式。

排列的公式是P(n, r) = n! / (n - r)!,其中n是总的对象数量,r是选取的对
象数量,!表示阶乘。

2. 组合公式:
组合是从一组对象中选出一部分进行组合的方式。

组合的公式是C(n, r) = n! / (r! * (n - r)!),其中n是总的对象数量,r是选
取的对象数量,!表示阶乘。

例如:
1. 如果有4个球,要从中选出2个进行排列,可以使用排列公式P(4, 2) = 4! / (4 - 2)! = 4! / 2! = 12
2. 如果有4个球,要从中选出2个进行组合,可以使用组合公式C(4, 2) = 4! / (2! * (4 - 2)!) = 4! / (2! * 2!) = 6
使用这些公式可以计算排列和组合的数量,从而解决相关问题。

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式

排列组合公式排列组合计算公式在我们的日常生活和学习中,经常会遇到需要计算可能性数量的情况,比如抽奖的中奖概率、体育比赛的对阵安排等等。

这时候,排列组合公式和计算公式就派上用场了。

首先,咱们来聊聊什么是排列。

排列指的是从给定的元素集合中,按照一定的顺序选取若干个元素进行排列。

比如说,从数字 1、2、3中选取两个数字进行排列,那么可能的情况有 12、21、13、31、23、32 这六种。

排列的计算公式是:A(n, m) = n! /(n m)!这里的“!”表示阶乘,比如 5! = 5 × 4 × 3 × 2 × 1 。

在这个公式中,n 表示总元素的数量,m 表示选取的元素数量。

举个例子,从 5 个不同的元素中选取 3 个进行排列,那么排列的数量就是 A(5, 3) = 5! /(5 3)!= 5 × 4 × 3 = 60 种。

接下来,咱们再说说组合。

组合则是从给定的元素集合中,选取若干个元素,不考虑它们的顺序。

比如说,从数字 1、2、3 中选取两个数字的组合,就只有 12、13、23 这三种情况。

组合的计算公式是:C(n, m) = n! / m! ×(n m)!同样,n 表示总元素的数量,m 表示选取的元素数量。

比如说,从 6 个不同的元素中选取 4 个元素的组合数量,就是 C(6, 4) = 6! /(4! ×(6 4)!)= 15 种。

为了更好地理解排列组合的概念和公式,咱们来做几道实际的题目。

假设一个班级有 10 名学生,要选出 3 名学生参加比赛。

如果是排列,那么这 3 名学生的出场顺序是有讲究的,可能的排列数就是 A(10, 3) = 10! /(10 3)!= 720 种。

但如果只是组合,也就是不考虑这 3 名学生的出场顺序,那么组合数就是 C(10, 3) = 10! / 3! ×(10 3)!= 120 种。

(信息学奥赛辅导)排列与组合基础知识

(信息学奥赛辅导)排列与组合基础知识

排列与组合基础知识有关排列与组合的基本理论和公式:加法原理:做一件事,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类中办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同方法。

那么完成这件事共有N =m 1+m 2+…+m n 种不同的方法,这一原理叫做加法原理。

乘法原理:做一件事,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事共有N =m 1×m 2×…×m n 种不同的方法,这一原理叫做乘法原理。

公式:阶乘公式!(1)(2)321n n n n =⋅-⋅-⋅⋅ ,规定0!=1;全排列公式!n n P n = 选排列公式!(1)(2)(1)()!m n n P n n n n m n m =---+=- 、m m m n n m P C P =圆排列:n 个不同元素不分首位围成一个圆圈达到圆排列,则排列数为:!(1)!n n n =- 组合数公式(1)(2)(1)!!!()!mm n n m m P n n n n m n C P m m n m ---+===- 、规定01n C =m n m n n C C -=、11m m m n n n C C C -+=+、0122n n n n n n C C C C ++++= )提示:(1)全排列问题和选排列问题,都可根据乘法原理推导出来。

(2)书写方式:r n P 记为P (n,r );rn C 记为C (n,r )。

加法原理例题:图1中从A 点走到B 点共有多少种方法?(答案:4+2+3=9)乘法原理例题:图2中从A 点走到B 点共有多少种方法?(答案:4×6=24)加法原理与乘法原理综合:图3、图4中从A 走到B 共有多少种方法?(答案:28、42) A B 图 1A B图 2A B 图 3 A B图 4注意:在信息学奥赛中,有许多只需计数而不需具体方案的问题,都可以通过思维转换或方法转换,最后变为两类问题:一类是转变为排列组合问题,另一类是转变为递推公式问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合的基本理论和公式排列与元素的顺序有关,组合与顺序无关.如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合.(一)两个基本原理是排列和组合的基础(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn 种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法.(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法.这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.(二)排列和排列数(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法.(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列当m=n时,为全排列Pnn=n(n-1)(n-2)…3·2·1=n!(三)组合和组合数(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m个元素的一个组合.从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.一、排列组合部分是中学数学中的难点之一原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。

二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同编辑本段[例题分析]排列组合思维方法选讲1.首先明确任务的意义例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。

分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。

设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定,又∵ 2b是偶数,∴ a,c同奇或同偶,即:分别从1,3,5, (19)2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,C(2,10)*2*P(2,2),因而本题为180。

例2. 某城市有4条东西街道和6条南北的街道,街道之间的间距相同,如图。

若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法?分析:对实际背景的分析可以逐层深入(一)从M到N必须向上走三步,向右走五步,共走八步。

(二)每一步是向上还是向右,决定了不同的走法。

(三)事实上,当把向上的步骤决定后,剩下的步骤只能向右。

从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数,∴本题答案为:=56。

2.分析是分类还是分步,是排列还是组合注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合例3.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。

分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。

第一类:A在第一垄,B有3种选择;第二类:A在第二垄,B有2种选择;第三类:A在第三垄,B有一种选择,同理A、B位置互换,共12种。

例4.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。

(A)240 (B)180 (C)120 (D)60分析:显然本题应分步解决。

(一)从6双中选出一双同色的手套,有6种方法;(二)从剩下的十只手套中任选一只,有10种方法。

(三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法;(四)由于选取与顺序无关,因(二)(三)中的选法重复一次,因而共240种。

例5.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。

分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有=90种。

例6.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。

现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法?分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。

以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。

第一类:这两个人都去当钳工,有10种;第二类:这两人有一个去当钳工,有100种;第三类:这两人都不去当钳工,有75种。

因而共有185种。

例7.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数?分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。

抽出的三数含0,含9,有32种方法;抽出的三数含0不含9,有24种方法;抽出的三数含9不含0,有72种方法;抽出的三数不含9也不含0,有24种方法。

因此共有32+24+72+24=152种方法。

例8.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是________种。

分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共有362880种停车方法。

3.特殊优先特殊元素,优先处理;特殊位置,优先考虑例9.六人站成一排,求(1)甲不在排头,乙不在排尾的排列数(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。

第一类:乙在排头,有p(5,5)种站法。

第二类:乙不在排头,当然他也不能在排尾,有4X4XP(4,4)种站法,共p(5,5)+4X4XP(4,4)种站法。

(2)第一类:甲在排尾,乙在排头,有P(4,4)种方法。

第二类:甲在排尾,乙不在排头,有3XP(4,4)种方法。

第三类:乙在排头,甲不在排头,有4XP(4,4)种方法。

第四类:甲不在排尾,乙不在排头,有P(3,3)XP(4,4)种方法。

共P(4,4)+3XP(4,4)+4XP(4,4)+P(3,3)XP(4,4)=312种。

例10.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。

若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能?分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。

第一步:第五次测试的有C(4.1)种可能;第二步:前四次有一件正品有C(6.1)中可能。

第三步:前四次有P(4.4)种可能。

∴共有种可能。

4.捆绑与插空例11. 8人排成一队(1)甲乙必须相邻 (2)甲乙不相邻(3)甲乙必须相邻且与丙不相邻 (4)甲乙必须相邻,丙丁必须相邻(5)甲乙不相邻,丙丁不相邻分析:(1)甲乙必须相邻,就是把甲乙捆绑(甲乙可交换) 和7人排列P(7.7)*2(2)甲乙不相邻,P(8.8)-P(7.7)*2。

(3)甲乙必须相邻且与丙不相邻,先求甲乙必须相邻且与丙相邻P(6.6)*2*2甲乙必须相邻且与丙不相邻 P(7.7)*2-P(6.6)*2*2(4)甲乙必须相邻,丙丁必须相邻 P(6.6)*2*2(5)甲乙不相邻,丙丁不相邻,P(8.8)-P(7.7)*2*2+P(6.6)*2*2例12. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?分析:∵连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。

另外没有命中的之间没有区别,不必计数。

即在四发空枪之间形成的5个空中选出2个的排列,即P(5.2)。

例13. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?分析:即关掉的灯不能相邻,也不能在两端。

又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。

∴共C(6.3)=20种方法。

5.间接计数法.(1)排除法例14. 三行三列共九个点,以这些点为顶点可组成多少个三角形?分析:有些问题正面求解有一定困难,可以采用间接法。

所求问题的方法数=任意三个点的组合数-共线三点的方法数,∴共种。

例15.正方体8个顶点中取出4个,可组成多少个四面体?分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数,∴共C(8.4)-12=70-12=58个。

例16. l,2,3,……,9中取出两个分别作为对数的底数和真数,可组成多少个不同数值的对数?分析:由于底数不能为1。

(1)当1选上时,1必为真数,∴有一种情况。

(2)当不选1时,从2--9中任取两个分别作为底数,真数,共,其中log2为底4=log3为底9,log4为底2=log9为底3, log2为底3=log4为底9, log3为底2=log9为底4.因而一共有53个。

相关文档
最新文档