高三数学等差数列测试题doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题

1.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列

{}n a ,已知11a =,2

2a

=,且满足()211+-=+-n

n n a a (n *∈N ),则该医院30天入

院治疗流感的共有( )人

A .225

B .255

C .365

D .465

2.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .

825

两 B .

845

两 C .

865

两 D .

885

两 3.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了

3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米

4.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -

B .

3

22

n - C .

3122

n - D .

31

22

n + 5.已知数列{}n a 的前n 项和2

21n S n n =+-,则13525a a a a +++

+=( )

A .350

B .351

C .674

D .675

6.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个

B .3个

C .2个

D .1个

7.已知数列{}n a 的前n 项和为n S ,11

2

a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫

⎬⎩⎭

的前n 项和为n T ,则下列说法中错误的是( ) A .21

4

a =-

B .

648

211S S S =+ C .数列{}12n n n S S S +++-的最大项为

712

D .1121

n n n n n

T T T n n +-=

++ 8.已知等差数列{}n a 的前n 项和n S 满足:21<,则n 的最大值为( ) A .2m

B .21m +

C .22m +

D .23m +

9.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200

B .100

C .90

D .80

10.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15

B .20

C .25

D .30

11.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫

+-= ⎪⎪⎝⎭⎝⎭

,数列{}n b 满足

1111n n n

b a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1

B .2

C .3

D .4

12.已知等差数列{}n a 的前n 项和为n S ,且2

n S n =.定义数列{}n b 如下:

()*1m m b m m

+∈N 是使不等式()

*

n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b +++

+=( )

A .25

B .50

C .75

D .100

13.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103 B .107 C .109 D .105 14.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( ) A .24

B .23

C .17

D .16

15.若数列{}n a 满足121

()2

n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020

D .2021

16.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18

B .19

C .20

D .21

17.已知数列{x n }满足x 1=1,x 2=23

,且

11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(

23

)n -1

B .(

23

)n C .

21

n + D .

1

2

n + 18.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .

32

B .

92

C .2

D .9

19.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333

122n n n a a a ++=+,则10a 等于

相关文档
最新文档