材料成型一体化技术应用现状
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料成型一体化技术应用现状
摘要:高速发展的工业技术要求加工制造的产品精密化、轻量化、集成化。国际竞争更加激烈的市场要求产品性能高、成本低、周期短。日益恶化的环境要求材料加工原料与能源消耗低、污染少,为了生产高精度、高质量、高效率的产品,材料正由单一的传统型向复合型、多功能型发展,材料成形加工制造技术逐渐综合化、多样化、柔性化、多学科化。因此,面对市场经济,参与全球竞争,必须十分重视先进制造技术及成形加工技术的技术进步。
关键词:材料成型;高精度;低成本;多样化
The material forming the integration of technology
application situation
Abstract:Rapid development of industrial technology for processing and manufacturing products motors, lightweight, integration. The more fierce competition in the international market requirements products with high performance, low cost, short cycle. The deteriorating environmental requirements material processing raw materials with low energy consumption, less pollution, in order to produce high precision, high quality, high efficiency products, materials are from a single traditional to compound, mixed-use development, material forming manufacturing technology integration, diversity, flexibility,
multi-disciplinary, gradually. Therefore, in the face of the market economy, to participate in global competition, must attach great importance to advanced manufacturing technology and the technology of forming technology.
Key words:Material forming;High precision;Low cost;Diversification
作为现代科学和工业技术发展的基础,材料成型从20世纪80年代便被看作是推动经济进入21世纪的三大工业支柱之一。材料成型及控制工程作为其中的一项重要专业技术,在近年来有着突飞猛进的发展,从而有效地推动了材料成型的学科发展。
所谓材料成型,显而易见成型工艺便是此项科学技术的精髓。工业产品的好与坏不仅仅需要考虑材料自身是否具备优良的力学性能,更重要的是能否充分利用材料的特点采取最适合的加工成型方法。因此,工艺的发展从根本上决定了材料成型的质量。材料成型及控制工程通过分析材料的宏观形状、微观结构及力学性能等研究热加工过程中相关生产工艺,从而进行成型工艺主要分为铸造、焊接和锻压三个方向。
一、铸造工艺
铸造通俗地说是液态金属凝固的过程,这是一种使用范围极其广的成型工艺,不受铸件尺寸、形状及合金材料的限制。其技术关键就在于凝固组织的形成于控制、铸造缺陷的防止与控制及铸件尺寸精度与表面粗糙度的控制。
现阶段,随着铸造工艺在凝固理论、凝固技术及低压铸造、陶瓷铸造、连续铸造等技术已日渐成熟。
随着人们对铸造质量、铸造精度、铸造成本和铸造自动化等要求的提高,精密铸造技术、连续铸造技术、特种铸造技术、铸造自动化和铸造成型模拟技术等得到了迅速发展,铸造技术正朝着精密化、大型化、高质量、自动化和清洁化的方向发展,必将对传统工业的技术进步有着极大的推动作用,同时也为高新技术产业的发展奠定了基础。如图1-1为某小型涡喷发动机静子叶片,采用精密铸造。
二、焊接工艺
焊接作为现代工程技术的重要组成部分,是材料成型中必不可少的工艺手段,主要可分为熔焊、固相焊和钎焊。焊接工艺可谓是真正意义上的在生产实践中为满足工业需求而不断完善和发展起来的。
比如,汽车工业推动了电阻焊和二氧化碳气体保护焊的工艺发展,船舶制造业推动了埋弧焊的发展等。
随着焊接工艺的日益进步,它已不再是单一的金属材料连接技术,而延伸向陶瓷材料、生物组织、高分子材料等多个领域。
为适应高质、高效的生产趋势,近年来焊接机械化、自动化、智能化正以惊人的速度迅猛崛起,成为今后焊接工艺的重点发展趋势。
三、锻压工艺
锻压实质是材料的塑性成型过程,这与材料自身的塑性变形能力与外部应力等有着密切联系。它可以应用于大批量的生产,显然其发展趋势着重于高速自动化生产,以达到高效规模化生产。在信息化高速发展的现今,计算机辅助系统逐步彰显出其重要作用。利用计算机辅助设计与制造模具及实现生产的模拟化,极大地缩短了工业产品的设计、生产周期,从而减少了大量的人工投入,提高了产品的生产效率和质量。
四、材料成型加工技术的作用及地位
以铸造、锻造、焊接等工艺为代表的材料成形加工技术是制造业中的主要加工方法,材料成型加工技术与科学则是材料科学与工程的重要内容,它对国民经济的发展及国防力量的增强均有十分重要的作用。据统计,全世界75%的钢材经塑性加工成型,45%的金属结构用焊接成型。2001年,我国铸件产量已达1200万吨,位居世界第二。
材料成型加工技术是汽车、机械、能源、石化、造船等支柱产业及国防工业的关键基础加工技术。例如,长江三峡水轮机的叶轮高5.5米、直径10.6米、重520吨,只有采用铸、焊复合技术才能制造,目前尚依赖进口。例如,无论军用或民用飞机中的燃气轮机叶片国外都已采有新一代高温合金单晶体熔模铸造技术。又例如,目前汽车重量的65%以上仍由钢铁材料、铝合金及镁合金等通过铸造、锻压、焊接等加工方法而成型。我国在这些前沿核心或关键技术方面还有较大的差距。因此,面对市场经济及参与全球竞争,在振兴制造业的同时,必须加强材料成型