闪耀光栅和反射式阶梯光栅
闪耀光栅闪耀光栅
2、极小 可以证明:在两个相邻主极大之间有N-1个 暗纹。 3、次极大 相邻两极小之间有一个次极大,相邻两主极 大间有N - 2个次极大;因亮度很小,一般可不 计。
在N很大时,光栅衍射的暗纹和次极大联成 一片,几乎无法分辨,形成一个暗区,把主极 大衬托的既细又明亮。
Littman结构半导体激光器的功率损耗:
光束的入射角过大会导致光栅衍射效率的下降,而且,Littman结构加 大了腔内损耗。故在相同的工作条件下,Littman结构输出功率要比Littrow 结构小很多。
Littrow和Littman两种结构半导体激光器的参数对比:
光栅反馈外腔激光器整体结构
(a)外腔半导体激光器的增益与损耗曲线 (b)没有加入外腔反馈时, 本征腔模谱 (c)外腔与内腔构成的复合腔的模谱 (d)加入外腔反馈时,外腔与内腔构成的 复合腔的模谱
根据光栅反馈的不同构型又可分为Littrow和Littman两种方式:
Littman方式中,经光栅衍射 在Littrow方式中,经 光栅衍射后产生的一级衍 射光直接沿入射光路反馈 回激光器,零级光作为输 出光。 后产生的一级衍射光先投射到一 个反射镜上,由反射镜原路反射 回光栅,产生第二次衍射使一级 衍射光反馈回激光器。
(k 0,1,2.....)
k 不同,按波长分开形成 入射光为白光时, 不同, 光谱.
I
sin
0
一级光谱
三级光谱 二级光谱
光栅单色器的工作原理
单缝
输出平行光
0级光无色散,探测不同波长的强度,主要利用一级光
6 条纹的重叠 在衍射光谱中,级数较高的谱线会发生重叠。
当波长1的第k1级谱线与波长2的第k2级谱线 重叠时,它们有相同的衍射角
光栅的结构及工作原理
光栅的结构及工作原理光栅是一种常用的光学元件,广泛应用于光谱仪、激光器、衍射仪等领域。
它通过光的衍射和干涉现象,实现对光的分光、分束、波长选择和光学信息处理等功能。
本文将详细介绍光栅的结构和工作原理。
一、光栅的结构光栅一般由一块平行的透明介质基片上刻有一系列平行的、等间距的刻槽组成。
这些刻槽可以是等宽的,也可以是不等宽的。
光栅的刻槽可以分为反射式和透射式两种。
1. 反射式光栅:反射式光栅的刻槽是在金属或介质膜上形成的,光线从光栅的一侧入射,经过刻槽的衍射和反射后,再次出射。
2. 透射式光栅:透射式光栅的刻槽是在透明介质上形成的,光线从光栅的一侧入射,经过刻槽的衍射和透射后,再次出射。
光栅的刻槽可以是等宽的,也可以是不等宽的。
刻槽的间距决定了光栅的周期,而刻槽的宽度和深度则会影响光栅的衍射效果和光栅的效率。
二、光栅的工作原理光栅的工作原理基于光的衍射和干涉现象。
当平行入射的光线照射到光栅上时,光栅上的刻槽会对光线进行衍射,形成多个衍射波。
衍射波的方向和强度由光栅的刻槽间距和宽度决定。
当刻槽的间距和光的波长相当时,衍射波将沿特定的方向进行干涉,形成明暗相间的衍射图样。
具体来说,光栅的衍射效应可以用衍射公式来描述:mλ = d(sinθi ± sinθd)其中,m为衍射级次,λ为入射光的波长,d为光栅的周期,θi为入射角,θd为衍射角。
根据衍射公式,我们可以得出以下几个重要结论:1. 入射角和衍射角之间的关系:入射角和衍射角之间满足sinθi ± sinθd = mλ/d。
当入射角和波长确定时,衍射角取决于衍射级次和光栅的周期。
2. 衍射级次和衍射角之间的关系:不同的衍射级次对应着不同的衍射角。
一般来说,一阶衍射是最强的,其它级次的衍射逐渐减弱。
3. 衍射光的强度分布:衍射光的强度分布呈现出明暗相间的图样,其中暗纹对应的是衍射级次为奇数的衍射波,而亮纹对应的是衍射级次为偶数的衍射波。
光栅的分类问题回答
光栅的分类光栅是一种广泛应用于光学、电子学和通信等领域的光学元件,它可以将入射光按照一定的规律分散成不同的波长成分,从而实现光谱分析、色彩分离、图像处理等功能。
根据其结构和工作原理的不同,可以将光栅分为以下几类。
1. 折射式光栅折射式光栅是将入射光线通过折射产生衍射效应的一种光栅。
它通常由一个三角形棱镜和一个刻有平行线条纹的反射膜组成。
当入射角度发生变化时,反射膜上的平行线条纹会在棱镜内部产生不同的衍射角度,从而实现波长分散。
折射式光栅具有结构简单、透过率高、容易制造等优点,但其衍射效率较低。
2. 反射式光栅反射式光栅是利用反射产生衍射效应的一种光栅。
它通常由一个金属或介质表面刻有平行线条纹的反射膜组成。
当入射角度发生变化时,反射膜上的平行线条纹会在反射角度产生不同的衍射角度,从而实现波长分散。
反射式光栅具有衍射效率高、抗污染性好等优点,但其制造难度较大。
3. 全息式光栅全息式光栅是一种利用全息技术制成的光栅。
它通常由一块光敏材料和一个参考波组成。
当入射光线和参考波交叠时,它们会在光敏材料内形成干涉条纹,从而形成一个具有周期性折射率分布的全息图。
当入射光线再次通过该全息图时,会产生衍射效应,从而实现波长分散。
全息式光栅具有制造灵活、衍射效率高等优点,但其制造成本较高。
4. 晶体式光栅晶体式光栅是利用晶体结构产生衍射效应的一种光栅。
它通常由一块单晶或多晶材料组成。
当入射光线垂直于材料表面时,在晶体内部会发生布拉格衍射,从而实现波长分散。
晶体式光栅具有衍射效率高、稳定性好等优点,但其制造难度较大。
以上是光栅的主要分类。
在实际应用中,不同类型的光栅具有各自的优缺点,需要根据具体需求选择合适的类型。
随着科技的不断发展和进步,光栅技术也将不断创新和发展,为人类带来更多更广阔的应用前景。
闪耀光栅原理
闪耀光栅原理
闪耀光栅是一种利用光学原理来实现图像显示的技术。
它采用了一种特殊的光
学结构,能够产生出非常细小的像素,从而实现高分辨率的图像显示。
在闪耀光栅技术中,光栅是起到关键作用的部件,通过控制光栅的反射和透射,可以实现对图像的显示和调控。
下面,我们将详细介绍闪耀光栅的原理及其工作过程。
首先,闪耀光栅的原理是基于光的反射和折射。
当光线照射到光栅上时,栅格
的结构会使得光线发生反射和折射,从而产生出不同的亮度和颜色。
这种原理是基于光学的物理特性,通过控制光的反射和折射,可以实现对图像的显示和调控。
其次,闪耀光栅的工作过程是通过控制光栅的结构和材料来实现的。
光栅的结
构通常是由微小的凹凸结构组成,这些凹凸结构能够使得光线在表面发生反射和折射。
而光栅的材料也是非常重要的,不同的材料会对光的反射和折射产生不同的影响,从而实现不同的显示效果。
此外,闪耀光栅的原理还包括了对光的控制和调节。
通过控制光线的入射角度、波长和强度,可以实现对图像的亮度、颜色和清晰度的调节。
这种原理是基于光的特性,通过控制光线的参数,可以实现对图像的精细调控。
总结起来,闪耀光栅是一种基于光学原理的图像显示技术,它利用光的反射和
折射来实现对图像的显示和调控。
通过控制光栅的结构和材料,以及对光线的控制和调节,可以实现高分辨率、高亮度和高色彩饱和度的图像显示效果。
闪耀光栅技术在显示领域有着广泛的应用前景,未来将会成为图像显示技术的重要发展方向。
闪耀光栅
闪耀光栅
结果:用于分光的较高级次谱线只分配到很少能量原因:单缝衍射的零级主极大方向
= 缝间干涉的零级主极大方向
闪耀光栅:通过刻槽的形状实现
使二主极大方向分开——将大部分能量(衍射零级)集中到所需的(缝间干涉)光谱极次上
θB :闪耀角
普通光栅大部分能量集中于零级—无色散闪耀光栅
反射式闪耀光栅的工作原理
∗ 闪耀角θB : 使单个刻槽面衍射的中央主极大与槽面间干涉零级主极大分开。
∗ θB 很小,,导致衍射级内只有约一级干涉主极大,其它各级干涉主极大均为缺级
d a ≈(1)当垂直于光栅平面入射时,考虑θ方向的衍射光,相邻两槽面衍射光的光程差为:
ΔL = d sin θ槽面间干涉主极大位置由光栅方程决定:
d sin θ= k λθ = 0 对应于干涉零级主极大,各级干涉主极大位置与θB 无关
反射式闪耀光栅的工作原理
* 单槽面衍射光的中央主极大位置:
θ =2θB
闪耀波长决定于:k B
B k d λθ=)2sin(* 分光仪器普遍使用此种闪耀光栅
其中称为k 级闪耀波长
k B λ闪耀光栅
(2)当垂直于光栅刻槽面入射时,考虑θ方向的衍射光,相
邻两槽面衍射光的光程差为:
ΔL = d (sin θΒ+ sin θ)
* 单槽面衍射光的中央主极大位置:入射光的反方向闪耀波长决定于:θ = θΒ
k B B k d L λθ==Δsin 2其中称为k 级闪耀波长
k B λd
θB
θB 槽间干涉0级主极大方向
-θB
单槽衍射中央主极大方向
θ = -θΒ对应于干涉零级主极大。
闪耀光栅和反射式阶梯光栅
3.4.2 各种衍射光栅及应用
1. 透射光栅与反射光栅
2. 闪耀光栅
3. 光栅光谱仪
4. 波导光栅
5. 光纤光栅的应用
6. 全息光栅
2. 闪耀光栅
由光栅分光原理可知: 各波长零级衍射主极大重合,无色散。不能用于分光; 高级次衍射主极大的光能量较少。使光能量不能集中到分光
的那一级光谱。
Δ 衍射 a(sin sin ) Δ 干涉 d (sin sin )
除了P0点之外(主焦点),还有一系列光强较小的亮点 (次 焦点),相应的焦距为:
2 1 N fm m N
m 1,3,5
如图:F1 为上述P0点,波带是以F1 为中心划分的,相 邻波带到达F1 的光程差为/2。对于F3点,相邻波带到达 F3 的光程差为3/2。偶数波带已遮挡,相邻透光波带的光 程差为3,即为一焦点。
受到通信理论的启发,将物体衍射的波前与一个 离轴的参考波进行叠加,消除了共轴孪生波;使大 部分入射光不能透过的物体以及明暗连续变化的物 体都能够实现波前重现。 光学部件的缺陷会对全息的效果造成影响。
激光器的出现为全息的发展提供了机遇。使得记 录漫反射、三维的物体成为可能。 物体大小不再有限制; 漫反射物体全息(部件的影响不再明显,能够 将多个全息图叠加在底板上);
(1)按照空间维度划分
a. 平面上的一维光栅 b. 平面上的二维光栅
c. 空间三维立体光栅
(2)按照对入射光的反射和透射作用划分
a. 反射光栅——平面反射光栅,凹面反射光栅,闪耀 光栅和反射式阶梯光栅; b. 透射光栅——平面透射光栅和透射式阶梯光栅。
(3)按照衍射屏屏函数的类型划分
a. 振幅光栅 b. 相位光栅
闪耀光栅-四川大学
§5.10 闪耀光栅
闪耀光栅:相位型反射光栅,可使能量集中到有用的某一级上去,而不是无用的零级。
一.方法:通过控制刻槽的形状使光栅本身在各个衍射单元处给入射光波引进附加的相位,就能把衍射的中央主极大转移到其它的干涉主极大上去。
图5.10-l 闪耀光栅 图5.10-2 闪耀光栅光程差的计算
膜
二.衍射光强分布
每一刻槽相当于一单缝
根据惠更斯一菲涅耳原理,用复振幅积分法可求得其夫琅和费衍射光强分布公式为:
β
βαα22220
sin sin sin N I I = 表明:相位型反射光栅的光强分布比例于单槽衍射因子和槽间干涉因子之乘积。
讨论:
(1) 当),3,1,0("±±==K K πβ时,产生主极大
λϕϕK d =−)'sin (sin ——平面反射光栅的光栅方程
(2) 当时,0=K 'ϕϕ=,多槽干涉的零级光谱出现在对光栅平面满足反射定律的方向; (3) 当0=α时,',单槽衍射的中央主极大出现在对槽面满足反射定律的方向,它不与槽间干涉的零级主极大重合,从而实现了两个零级主极大的分离。
i i =
三.闪耀方向:单槽衍射主极大方向
λθK i d =sin cos 2
式中之K 称作闪耀级次。
讨论两种特殊情况:
(1) 若平行光束沿槽面法线n 方向人射0=i ,
λθK d =sin 2
即衍射的主极大转移到λ的K 级谱线上。
(2) 若使平行光沿光栅平面的法线N 方向入射
λθK d =2sin
由于单槽衍射的中央主极大区域有一定的宽度,故反射定向光栅可以在一定波段内把光能集中到某一级光谱上去。
闪耀光栅
闪耀光栅闪耀光栅blazed grating当光栅刻划成锯齿形的线槽断面时,光栅的光能量便集中在预定的方向上,即某一光谱级上。
从这个方向探测时,光谱的强度最大,这种现象称为闪耀(blaze),这种光栅称为闪耀光栅。
在这样刻成的闪耀光栅中,起衍射作用的槽面是个光滑的平面,它与光栅的表面一夹角,称为闪耀角(blaze angle)。
最大光强度所对应的波长,称为闪耀波长(bl aze wavelength)。
通过闪耀角的设计,可以使光栅适用于某一特定波段的某一级光谱。
闪耀光栅的优点透射光栅有很大的缺点,主要是衍射图样中没有色散的零级主最大总是占总光能的很大一部分,其余光能分散在各级光谱中,而实际使用光栅时往往只利用它的某一级。
这对光栅的应用是很不利的。
闪耀光栅则实现了单缝衍射中央最大值的位置从没有色散的零级光谱转移到其他有色散的光谱级上。
CD光盘可以看作粗制的闪耀光栅。
第一章光学分析法引论-1.3 光谱法仪器背景知识三、光谱仪器组成:光源,单色器,样品容器,检测器(光电转换器、电子读出、数据处理及记录)。
• 光源对光源的要求:强度大(分析灵敏度高)、稳定(分析重现性好)。
*Laser=light amplification by stimulated emission of radiation2. 分光系统( monochromator, wavelength selector )定义:将由不同波长的“复合光”分开为一系列“单一”波长的“单色光”的器件。
理想的100% 的单色光是不可能达到的,实际上只能获得的是具有一定“纯度”的单色光,即该“单色光具有一定的宽度(有效带宽)。
有效带宽越小,分析的灵敏度越高、选择性越好、分析物浓度与光学响应信号的线性相关性也越好。
构成:狭缝、准直镜、棱镜或光栅、会聚透镜。
1 )棱镜( Prism ):棱镜的色散作用是基于构成棱镜的光学材料对不同波长的光具有不同的折射率。
阶梯光栅及体光栅的应用
3.阶梯光栅(echelon grating):G. R. Harrison 于1949 年研制出一种新的衍射光栅--阶梯光栅(echelle) , 并对这种光栅的刻划技术做了开拓性的工作[1]。
阶梯光栅在光谱学的许多领域都是非常有用的, 特别是它集中了宽波段、高色散、高分辨率等特点, 引起了天文学家的极大兴趣, 率先得到天文应用[2]。
3.1阶梯光栅的结构及工作原理阶梯光栅是由许多平面平行厚玻璃板(厚度达1—2cm)组成的一段阶梯,组成阶梯的玻璃板厚度严格相等,折射率相同,并且每块玻璃板凸出的高度相等(0.1cm)。
由光栅的角色散公式可知, 如果用低级次光谱( 第1或第2 级) , 只有细刻线光栅才能获得高角色散; 如果用高级次光谱( 几十或上百级) , 则粗光栅同样可以获得高角色散。
为利用高级次光谱和大入射角而特殊设计的一种光栅——阶梯光栅。
阶梯光栅有反射式及透射式两种(如图1所示)。
a)透射型阶梯光栅b)反射型阶梯光栅图1 阶梯光栅的基本结构以透射型阶梯光栅为例,在衍射角θ不大的情况下,光栅方程为:(n-1)t+θd=mλ,式中,n是玻璃折射率,t是玻璃板厚度,d为阶梯高度。
3.2 阶梯光栅的特点:( 1) 每级都可以获得高的角色散;(2) 许多级次重叠在一起, 用横向色散元件将级次分离后得到二维光谱, 因此一次曝光可得很宽波长范围的光谱;( 3) 单个级次的色散角小, 一般只有几度,自由光谱范围内的波长都将出现在该级闪耀峰值附近, 因此一个阶梯光栅对所有波长都是有效闪耀,阶梯光栅成为高效率闪耀光栅。
3.3阶梯光栅的应用:阶梯光栅用于高干涉级次, 有许多级次重叠在一起, 需用一个与阶梯光栅色散方向垂直的辅助色散元件将重叠的级次分开。
作为横向色散元件, 平面反射光栅和棱镜在阶梯光栅光谱仪中都有所应用, 相比之下平面反射光栅的优点在于可获得大的阶梯光栅级次分离,但缺点是低光效率和色散对波长的严重不均匀性, 二级光谱必须消除, 通常需要两块横向光栅分别工作在不同波段获得合适的横向色散。
光栅教程
图 2. 反射式光栅
赛 闪耀(刻线)光栅
肥 闪耀光栅也称为小阶梯光栅(echelette grating),是一
合种特殊形式的反射式或透射式衍射光栅,设计用于在特定
衍射阶次产生最大光栅效率。这意味着大部分光功率将会
在设计衍射阶次下,同时将其它阶次的功率最小化(尤其是
第零阶)。由于这种设计,闪耀光栅 工作于某一特定波长
合解决,它是一种特殊类型的刻线衍射光栅,具有极高的闪 耀角和相对较低的凹痕密度。高闪耀角非常适合于在更高
阶衍射模中聚集能量。第二个问题可通过另一光学元件解
决:光栅、色散棱镜或其它色散光学元件,在阶梯光栅后
对波长/阶次进行排序。
地址:合肥市高新区科学大道 79 号
4
咨询电话:0551-65150912
光栅教程
合肥赛洛测控科技有限公司·光学元件事业部
衍射光栅教程
衍射光栅(透射式或反射式)可用嵌入光栅中的重复结构分离不同波长的光。这种结构会影响入
司 射波的振幅和/或相位,导致输出波中发生干涉。在透射式光栅中,这种重复结构可看作许多紧密
闪耀光栅ppt
闪耀光栅
blazed grating
闪耀光栅
普通光栅大部分能量集中于零级—无色散
原因 单缝衍射的零级主极大方向 = 缝间干涉的零级主极大方向
结果 分光作用的 光谱仪 能量利用小
目的 使二主极大方向分开——将大部分能量(衍射零 级)集中到所需的(缝间干涉)光谱极次上
闪耀光栅:通过刻槽的形状实现
光栅平面法向N,槽面法向n 相邻两槽对应点距离d
和 --对光栅平面法线
i 和 i--对槽平面法线
in
d
N
i
闪单元耀光栅夫ni琅iC禾n费D 衍射的光强分布— N—G位 相H型N反射光栅多 单
衍 射
B A
元
E
F
干
一个刻槽中,两端边缘光线间 相邻两槽对应点光线 涉
光程差
光程差
BD AC a(sin i sin i) FH EG d(sin sin )
位相差
位相差
ka(sin i sin i)
kd(sin sin )
据惠更斯-菲涅尔原理 夫琅禾费衍射的光强度分布
单I 槽 I衍0 射sin22
能实现衍射零级和干涉零级产生空间分
d
离的还有如阶梯型位相光栅。
t
被衍射抑制形成缺级。80%--90%光能集中到闪耀级次
2) 平行光沿光栅平面法线入射
对槽面法线
沿满足反射定律方向反射光线与入射方向有 夹2角
d sin 2
主极大位于 d sin 2 K
当d 和 给定时,闪耀级次和闪耀波长满足反比关系
由于谱线分布有一定宽度—反射定向光栅可以在一定波 段内把光能集中到某0
闪耀光栅
2) 平行光沿光栅平面法线入射
对槽面法线
沿满足反射定律方向反射光线与入射方向有 夹2角
d sin 2
主极大位于 d sin 2 K
当d 和 给定宽度—反射定向光栅可以在一定波 段内把光能集中到某一级次上去
光栅平面法向N,槽面法向n 相邻两槽对应点距离d
和 --对光栅平面法线
i 和 i--对槽平面法线
in
d
N
i
闪单元耀光栅夫ni琅iC禾n费D 衍射的光强分布— N—G位 相H型N反射光栅多 单
衍 射
B A
元
E
F
干
一个刻槽中,两端边缘光线间 相邻两槽对应点光线 涉
光程差
光程差
BD AC a(sin i sin i) FH EG d(sin sin )
CH 5-10
闪耀光栅
blazed grating
闪耀光栅
普通光栅大部分能量集中于零级—无色散
原因 单缝衍射的零级主极大方向 = 缝间干涉的零级主极大方向
结果 分光作用的 光谱仪 能量利用小
目的 使二主极大方向分开——将大部分能量(衍射零 级)集中到所需的(缝间干涉)光谱极次上
闪耀光栅:通过刻槽的形状实现
单色光的某级谱线位置由光栅常数 d
和相对光栅平面的入射角 决定
多单元干涉零级极大
K 0
出现在对光栅平面满足反 射定律的方向
单元衍射零级极大
0 i i 出现对槽面满足
反射定律方向
两种效应的零级极大分离开
结论:光栅衍射的强度分布受单槽衍射因子调制 单槽衍射主极大方向的衍射光最强—闪耀方向
位相差
位相差
[汇总]中阶梯光谱仪
中阶梯光谱仪一、中阶梯光谱仪基本概念和理论又称反射式阶梯光栅(reflection stepped grating)。
其性质介于小阶梯光栅和阶梯光栅之间。
它与一般的闪耀光栅不同,不以增加光栅刻线,而以增大闪耀角(高光谱级次和加大光栅刻划面积)来获得高分辨本领和高色散率。
中阶梯光栅光谱仪是一种全谱直读的新型高端光谱仪器,它以中阶梯光栅为主色散元件,经低色散元件进行交叉色散后,在焦面处形成二维谱图(即:中阶梯光栅光谱仪各级之间的重叠用交叉色散棱镜的办法来解决,即棱镜的色散方向与中阶梯光栅的色散方向互相垂直,这样在仪器的焦面上形成二维光谱图象)该二维谱图被探测、接收、数字化后,采用特定的谱图还原方法可以转换为高分辨率的一维光谱信息。
二、中阶梯光谱仪国内外概况中阶梯光栅光谱仪在20 世纪70 年代开始受到广泛关注,但在经历了七十年代的短暂热潮之后,由于探测器技术不够成熟而没有能够很好的继续发展。
直到90 年代,随着探测器技术和激光技术的成熟,尤其是二维阵列探测器(如CCD 技术)及大功率短脉冲激光器的发展,推动了中阶梯光栅光谱仪技术的发展与应用,使中阶梯光栅光谱仪再次受到普遍的关注。
二维阵列探测器充分利用了现代半导体技术,具备大动态范围、高量子效率和高灵敏度等优点,而大功率短脉冲激光器则提供了新的实验方法。
随着高性能CCD 的出现与发展,中阶梯光栅光谱仪适用的光谱范围扩展到从软X 光直到近红外区。
与此同时,计算机科学的发展与图像处理技术的进步也使得中阶梯光栅光谱仪的性能和应用范围不断得到提升。
作为一种通用光谱仪器,中阶梯光栅光谱仪在20 世纪70 年代开始在天文领域率先得到应用。
到80 年代,随着光栅刻划技术的发展,世界上许多2~4m 级天文望远镜都配备了中阶梯光栅光谱仪;至20 世纪末,全世界已有10 架配备了高分辨率中阶梯光栅光谱仪的8~10m级光学/红外天文望远镜投入使用。
今天,欧美发达国家已经将中阶梯光栅光谱仪广泛应用于天文、地矿、化工、冶金、医药、环保、农业、食品卫生、生化、商检和国防等诸多领域。
光栅的结构及工作原理
光栅的结构及工作原理光栅是一种光学元件,广泛应用于光谱仪、激光器、光纤通信等领域。
它通过光的衍射效应,将入射光分解为不同波长的光束,实现光的分光和波长选择。
一、光栅的结构光栅通常由一块平行的透明介质材料制成,表面刻有一定间隔的平行凹槽或凸起。
光栅的结构可以分为以下几种类型:1. 传统光栅结构:传统光栅由一系列平行的凹槽组成,凹槽的间距称为光栅常数,通常用d表示。
光栅常数决定了光栅的分光性能,常见的光栅常数有600线/mm、1200线/mm等。
2. 脉冲光栅结构:脉冲光栅是一种特殊的光栅结构,它的凹槽间距不是均匀的,而是按照一定的规律变化。
脉冲光栅可以实现更高的光谱分辨率和更宽的工作波长范围。
3. 反射式光栅结构:反射式光栅的凹槽是刻在金属或介质的反射膜上,入射光经过反射后再次通过光栅,实现光的分光效果。
反射式光栅比传统光栅具有更高的反射率和更广的工作波长范围。
二、光栅的工作原理光栅的工作原理基于光的衍射现象。
当入射光照射到光栅上时,根据光的波动性,光波会在光栅的凹槽或凸起上发生衍射。
1. 衍射现象:光波在通过光栅时,会发生衍射现象。
入射光波与光栅结构相互作用后,会在不同方向上发生衍射,形成一系列衍射波。
2. 衍射角和衍射级数:光栅衍射的主要特征是衍射角和衍射级数。
衍射角是指入射光与衍射光之间的夹角,可以用来描述光栅的分光性能。
衍射级数是指不同波长的光在光栅上发生衍射后所对应的不同级数。
3. 光栅方程:光栅方程描述了入射光波长、衍射级数和衍射角之间的关系。
光栅方程可以用来计算入射光的波长,或者根据入射光的波长确定衍射角。
4. 分光效果:光栅的主要功能是实现光的分光效果。
通过调整光栅的结构参数,如光栅常数和入射角,可以选择特定波长的光进行衍射,实现光的分光和波长选择。
5. 光栅的应用:光栅广泛应用于光谱仪、激光器、光纤通信等领域。
在光谱仪中,光栅可以将入射光分解为不同波长的光束,用于光谱分析和波长测量。
3.光谱仪器的色散系统—光栅
条件(1):如图,使所要求的光栅衍射光方向与截 面A的镜面反射光(即零级主极大)方向重合。
即满足联立条件
(sin i sin ) m
d
'
各角度关系为:
i '
(角度正负号规定) 从光线到法线顺时针为正
r2
2x
r 2 c2 2ax 2by 2zc 2x
y
Sˆ与x, y, z轴的夹角分别为 , ,
cos, cos , cos 称为向量Ŝ的方向余弦, 记为(l,m,n)
设入射光束的方向余弦为l,m,n;衍射光束的方向余 弦为l’,m’,n’ 则 (l→x,m → y,n → z)
Ao my nz, Bo m' y n' z Ao Bo (m m') y (n n')z
2) 在同一级光谱中,波长越长,衍射角越大,因此 光栅谱线产生的谱线弯曲是弯向长波区域。
谱线弯曲矢高:
x f2
m 2 f mh2
d cos0 2
8 f d cos0
( f1 f2 f )
(抛物线状)
顶点处曲率半径: f d cos0 m
凹面衍射光栅
凹面光栅:制造在凹面的球面或非球面的反射式光栅, 特点是将衍射光栅的色散作用和凹面反射镜的聚焦成 像作用结合。
3、光栅的叠级和自由光谱范围
由光栅方程,在给定光栅和入射角条件下,同一衍 射角方向可以有不同级次不同波长的光谱重叠。
d sin
1 1
2
1
2
3
1
3
级次m越大,光谱的 重叠现象越严重,没 有重叠的光谱波段范 围越小。
阶梯光栅及体光栅的应用
3.阶梯光栅(echelon grating):G. R. Harrison 于1949 年研制出一种新的衍射光栅--阶梯光栅(echelle) , 并对这种光栅的刻划技术做了开拓性的工作[1]。
阶梯光栅在光谱学的许多领域都是非常有用的, 特别是它集中了宽波段、高色散、高分辨率等特点, 引起了天文学家的极大兴趣, 率先得到天文应用[2]。
3.1阶梯光栅的结构及工作原理阶梯光栅是由许多平面平行厚玻璃板(厚度达1—2cm)组成的一段阶梯,组成阶梯的玻璃板厚度严格相等,折射率相同,并且每块玻璃板凸出的高度相等(0.1cm)。
由光栅的角色散公式可知, 如果用低级次光谱( 第1或第2 级) , 只有细刻线光栅才能获得高角色散; 如果用高级次光谱( 几十或上百级) , 则粗光栅同样可以获得高角色散。
为利用高级次光谱和大入射角而特殊设计的一种光栅——阶梯光栅。
阶梯光栅有反射式及透射式两种(如图1所示)。
a)透射型阶梯光栅b)反射型阶梯光栅图1 阶梯光栅的基本结构以透射型阶梯光栅为例,在衍射角θ不大的情况下,光栅方程为:(n-1)t+θd=mλ,式中,n是玻璃折射率,t是玻璃板厚度,d为阶梯高度。
3.2 阶梯光栅的特点:( 1) 每级都可以获得高的角色散;(2) 许多级次重叠在一起, 用横向色散元件将级次分离后得到二维光谱, 因此一次曝光可得很宽波长范围的光谱;( 3) 单个级次的色散角小, 一般只有几度,自由光谱范围内的波长都将出现在该级闪耀峰值附近, 因此一个阶梯光栅对所有波长都是有效闪耀,阶梯光栅成为高效率闪耀光栅。
3.3阶梯光栅的应用:阶梯光栅用于高干涉级次, 有许多级次重叠在一起, 需用一个与阶梯光栅色散方向垂直的辅助色散元件将重叠的级次分开。
作为横向色散元件, 平面反射光栅和棱镜在阶梯光栅光谱仪中都有所应用, 相比之下平面反射光栅的优点在于可获得大的阶梯光栅级次分离,但缺点是低光效率和色散对波长的严重不均匀性, 二级光谱必须消除, 通常需要两块横向光栅分别工作在不同波段获得合适的横向色散。
矿产
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4.1
3.4.2 3.4.3 各种衍射光栅及其应用
3.4.1 概述
衍射光栅应用非常广泛,通常都是基于夫朗和费多缝
衍射效应进行工作。 最早的光栅是夫朗和费在 1819 年制成的金属丝栅网, 现在的一般光栅是通过在平板玻璃或金属板上刻划出一道 道等宽、等间距的刻痕制成的。
1. 光栅的概念
c. 振幅—相位混合型光栅
(4)按照制备光栅的方法划分
a. 刻画光栅——刀刻光栅和光刻光栅
b. 腐蚀光栅 c. 复制光栅 d. 全息光栅
(5)按照光栅的面型划分
a. 平面光栅——平面反射光栅和平面透射光栅;
b. 凹面光栅——高反射率金属凹面光栅。
(6)正弦光栅
a. 正弦振幅光栅——屏函数的模按正弦函数形式变化; b. 正弦相位光栅——屏函数的辐角按正弦函数形式变化。
3.4.2 光栅方程
由多缝衍射理论,当光波垂直入射光栅时,衍射图样中
亮线位置由下式决定:
d sin = m
(m = 0, ±1, ±2, …)
—— 光栅方程当光波斜入射来自栅时,光栅方程的普遍表示式d (sin sin) = m
(m = 0, ±1, ±2, …)
为入射角——入射光与光栅平面法线的夹角; 为衍射角——第 m 级衍射光与光栅平面法线的夹角
辨的最小波长差,分辨本领定义为:
A Δ
d d cos 用角距离表示: Δ Δ d m Nd cos mN
d m d d cos
② 线色散 dl /d——波长差0.1nm的两条谱线在透镜焦平面 上分开的距离
dl d m f f d d d cos
(2)分辨本领 根据锐利判据,当 + 的 m 级主极大恰好落在 的 m 级主极大旁的第一级极小值处时, 如果 为光栅能分
(1)按照空间维度划分
a. 平面上的一维光栅 b. 平面上的二维光栅
c. 空间三维立体光栅
(2)按照对入射光的反射和透射作用划分
a. 反射光栅——平面反射光栅,凹面反射光栅,闪耀 光栅和反射式阶梯光栅; b. 透射光栅——平面透射光栅和透射式阶梯光栅。
(3)按照衍射屏屏函数的类型划分
a. 振幅光栅 b. 相位光栅
3.4.2 各种衍射光栅及应用
1. 透射光栅与反射光栅
2. 闪耀光栅
3. 光栅光谱仪
4. 波导光栅
5. 光纤光栅的应用
6. 全息光栅
2. 闪耀光栅
由光栅分光原理可知: 各波长零级衍射主极大重合,无色散。不能用于分光; 高级次衍射主极大的光能量较少。使光能量不能集中到分光
的那一级光谱。
Δ 衍射 a(sin sin ) Δ 干涉 d (sin sin )
狭义定义:平行、等宽而又等间隔的多狭缝装置。
广义定义:凡是能够起到周期性分割波振面作用的一切光
学元器件。包括晶体光栅、超声光栅、晶体折射率光栅等。
周期性地分割波振面是指:① 周期性分割波振面上的
振幅;② 周期性分割波振面上的相位;③ 既周期性分割波
振面上的振幅,又周期性分割波振面上的相位。
2. 光栅的分类
0
B 方向是单槽面衍射主极大方向:
所以
0 0
2
可求得: 2 0 因此:
2d sin 0 cos m
当 m、、、d 已知,即可确定 0
这时B方向光很强,如同物体光滑表面反射的耀眼光一样。
当沿槽面法线方向入射时:= = =0 、此时:
2d sin 0 mM
主闪耀条件。M闪耀波长;m闪耀级次。 可见闪耀波长和级次由闪耀角0 决定。
m 1, 2d sin 0 b 一级闪耀波长
1
0
1
2
3
3. 光栅光谱仪
S
透射光栅光谱仪
里特罗自准直光谱仪
光谱仪多用反射式,特别是闪耀光栅。主要性能指标: (1)色散本领 ① 角色散 d /d——波长差0.1nm的两条谱线分开的角距离
1. 透射光栅的衍射
R1
R2
dsin d
R1
R2 dsin
d dsin
dsin (a)
(b)
d (sin sin ) m m 0, 1, 2,
d (sin sin ) m m 0, 1, 2,
2. 反射光栅的衍射
光栅方程所确定的是:隶属于各级衍射亮条纹、
并且属于不同干涉级的多光束干涉主极大的方位。
从干涉的角度考虑,光栅方程实质上是多光束 干涉主极大条件加上缺级条件。
4. 衍射光栅的分光原理
d sin = m (m = 0, ±1, ±2, …) 给定光栅常数 d ,当用复色光照射时,除零级衍射光 外,不同波长的同一级衍射光不重合,即“色散”,这就 是衍射光栅的分光原理。 对应于不同波长的各级亮线称为光栅谱线,不同波长 光谱线的分开程度随着衍射级次的增大而增大,对于同一 衍射级次而言,波长大者 大,波长小者 小。
光栅周期为d,槽面与光栅平面夹角为 0(闪耀角),对于 按 角入射的光束,单槽面衍射主极大在 B 方向;而干 射主极大条件:
d (sin sin ) 2d sin
2
cos
2
m
要使 m 级干射主极大条件在单槽面衍射主极大 B 方向, 根据角度关系:
0
R1 dsin d R2 d R1 R2
dsin
dsin
dsin
d (sin sin ) m m 0, 1, 2,
d (sin sin ) m m 0, 1, 2,
3. 光栅方程的本质含义 d sin = m (m = 0, ±1, ±2, …)
当 = ,单缝衍射主极大和干涉零级极大的方向一致。
解决办法:在玻璃上刻画出锯齿形沟槽,构成闪耀光栅
衍
衍射主极大方向
干 d
干涉主极大方向
d
透射型
反射型
光栅平面
0
B (最大强度衍射光方向)
d
0
n(刻槽面法线) A (入射光方向) N (光栅面法线)
dsin 反射式闪耀光栅的角度关系