杭州市锦绣中学数学轴对称填空选择专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杭州市锦绣中学数学轴对称填空选择专题练习(解析版)
一、八年级数学全等三角形填空题(难)
1.如图,已知△ABC 和△ADE 均为等边三角形,点O 是AC 的中点,点D 在射线BO 上,连结OE ,EC ,则∠ACE =_____°;若AB =1,则OE 的最小值=_____.
【答案】30
14
【解析】
【分析】 根据等边三角形的性质可得OC =12AC ,∠ABD =30°,根据"SAS"可证△ABD ≌△ACE ,可得∠ACE =30°=∠ABD ,当OE ⊥EC 时,OE 的长度最小,根据直角三角形的性质可求OE 的最小值.
【详解】
解:∵△ABC 的等边三角形,点O 是AC 的中点,
∴OC =12
AC ,∠ABD =30° ∵△ABC 和△ADE 均为等边三角形,
∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°,
∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,
∴△ABD ≌△ACE (SAS )
∴∠ACE =30°=∠ABD
当OE ⊥EC 时,OE 的长度最小,
∵∠OEC =90°,∠ACE =30°
∴OE 最小值=
12
OC =14AB =14 故答案为:30,14
【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键.
2.如图,在等腰三角形ABC 中,90ABC ∠=,D 为AD 边上中点,多D 点作
DE DF ⊥,交AB 于E ,交BC 于F ,若3AE =,2CF =,则ABC ∆的面积为______.
【答案】
252
【解析】
【分析】 利用等腰直角三角形斜边中点D 证明AD=BD ,∠DBC=∠A=45︒,再利用DE DF ⊥证得∠ADE=∠BDF ,由此证明△ADE ≌△BDF ,得到BC 的长度,即可求出三角形的面积.
【详解】
∵90ABC ∠=︒,AB=BC,
∴∠A=45︒,
∵D 为AC 边上中点,
∴AD=CD=BD ,∠DBC=∠A=45︒,∠ADB=90︒,
∵DE DF ⊥,
∴∠EDB+∠BDF=∠EDB+∠ADE=90︒,
∴∠ADE=∠BDF, ∴△ADE ≌△BDF,
∴BF==AE=3,
∵CF=2,
∴AB=BC=BF+CF=5,
∴ABC ∆的面积为
212BC ⋅=252, 故答案为:
252. 【点睛】
此题考查等腰直角三角形的性质,三角形全等的判定及性质.
3.如图,10AB =,45A B ∠=∠=︒,32AC BD ==E ,F 为线段AB 上两点.现存在以下条件:①4CE DF ==;②AF BE =;③CEB DFA ∠=∠;
④5CE DF ==.请在以上条件中选择一个条件,使得ACE △一定..
和BDF 全等,则这个条件可以为________.(请写出所有正确的答案)
【答案】②③④【解析】
【分析】
根据三角形全等的判定定理逐个判断即可.
【详解】
①如图1,过点C作CM AB
⊥,过点D作DN AB

32,45
A B
AC BD∠=∠
==
=︒
3
CM AM DN BN
∴====
4
CE DF
==
由勾股定理得:2222
7,7
ME CE CM NF DF DN
=-==-=
37,37
AE AM ME BF BN NF
∴=-=-=+=+,即AE BF

此时,ACE
∆和BDF
∆不全等
②AF BE
=
AF EF BE EF
∴+=+,即AE BF
=
又452
,3
AC D
A B B
∠=∠=︒==
则由SAS定理可得,ACE BDF
∆≅∆

CEB DFA
CEB C A
DFA D B
∠=∠


∠=∠+∠

⎪∠=∠+∠

C A
D B
∴∠+∠=∠+∠
又A B
∠=∠
C D
∴∠=∠
32
AC BD
==
则由ASA定理可得,ACE BDF
∆≅∆
④由(1)知,当5
CE DF
==时,2222
4,4
ME CE CM NF DF DN
-=-=此时,
,
,
CE CA DF BD
ME AM NF BN
>>


>>

则点E在点M的右侧,点F在点N的左侧
又10
AM BN ME AM BN NF AB
++=++==
则点E与点N重合,点F与点M重合,如图2所示
因此必有347
AE BF
==+=
由SSS定理可得,ACE BDF
∆≅∆
故答案为:②③④.
【点睛】
本题考查了三角形全等的判定定理,熟记各判定定理是解题关键.
4.如图,△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥DA于Q,PQ=3,EP=1,则DA的长是________.
【答案】7
【解析】
试题解析:∵△ABC为等边三角形,
∴AB=CA,∠BAE=∠ACD=60°;
又∵AE=CD,
在△ABE和△CAD中,
AB CA
BAE ACD
AE CD


∠∠






∴△ABE≌△CAD;
∴BE=AD,∠CAD=∠ABE;
∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;
∵BQ⊥AD,
∴∠AQB=90°,则∠PBQ=90°-60°=30°;
∵PQ=3,
∴在Rt△BPQ中,BP=2PQ=6;
又∵PE=1,
∴AD=BE=BP+PE=7.
故答案为7.
5.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②AF
∥EB;③∠FAN=∠EAM;④△ACN≌△ABM其中正确的有.
【答案】①③④
【解析】
【分析】
由∠E=∠F=90°,∠B=∠C,AE=AF,利用“AAS”得到△ABE与△ACF全等,根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等,AE与AF相等,AB与AC相等,然后在等式∠EAB=∠FAC两边都减去∠MAN,得到∠EAM与∠FAN相等,然后再由
∠E=∠F=90°,AE=AF,∠EAM=∠FAN,利用“ASA”得到△AEM与△AFN全等,利用全等三角形的对应边相等,对应角相等得到选项①和③正确;然后再∠C=∠B,AC=AB,
∠CAN=∠BAM,利用“ASA”得到△ACN与△ABM全等,故选项④正确;若选项②正确,得到∠F与∠BDN相等,且都为90°,而∠BDN不一定为90°,故②错误.
【详解】
解:在△ABE和△ACF中,
∠E=∠F=90°,AE=AF,∠B=∠C,
∴△ABE≌△ACF,
∴∠EAB=∠FAC,AE=AF,AB=AC,
∴∠EAB-∠MAN=∠FAC-∠NAM,即∠EAM=∠FAN,
在△AEM和△AFN中,
∠E=∠F=90°,AE=AF,∠EAM=∠FAN,
∴△AEM≌△AFN,
∴EM=FN,∠FAN=∠EAM,故选项①和③正确;
在△ACN和△ABM中,
∠C=∠B,AC=AB,∠CAN=∠BAM(公共角),
∴△ACN≌△ABM,故选项④正确;
若AF∥EB,∠F=∠BDN=90°,而∠BDN不一定为90°,故②错误,
则正确的选项有:①③④.
故答案为①③④
6.已知在△ABC中,AD是BC边上的中线,若AB=10,AC=4,则AD的取值范围是_____.【答案】3<AD<7
【解析】
【分析】
连接AD并延长到点E,使DE=DA,连接BE,利用SAS证得△BDE≌△CDA,进而得到BE=CA=4,利用三角形两边之和大于第三边,两边之差小于第三边,即可求得AE的取值范围,进而求出AD的取值范围.
【详解】
如图,连接AD并延长到点E,使DE=DA,连接BE,
∵在△ABC中,AD是BC边上的中线
∴BD=CD
在△BDE和△CDA中
BD CD
BDE CDA
DE DA
=


∠=∠

⎪=

∴△BDE≌△CDA(SAS)
∴BE=CA=4
在△ABE中,AB+BE>AE,且AB﹣BE<AE
∵AB=10,AC=4,
∴6<AE<14
∴3<AD<7
故答案为3<AD<7
【点睛】
本题考点涉及三角形全等的判定及性质、三角形的三边关系等知识点,熟练掌握相关性质定理是解题关键.
7.如图,Rt△ABC中,∠C=90°.E为AB中点,D为AC上一点,BF∥AC交DE的延长线于点F.AC=6,BC=5.则四边形FBCD周长的最小值是______.
【答案】16
【解析】 四边形FBCD 周长=BC+AC+DF ;当DF BC ⊥ 时,四边形FBCD 周长最小为5+6+5=16
8.已知∠ABC=60°,点D 是其角平分线上一点,BD=CD=6,DE//AB 交BC 于点E.若在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请写出相应的BF 的长:BF =_________
【答案】23或43.
【解析】
【分析】
过点D 作DF 1∥BE ,求出四边形BEDF 1是菱形,根据菱形的对边相等可得BE=DF 1,然后根据等底等高的三角形的面积相等可知点F 1为所求的点,过点D 作DF 2⊥BD ,求出∠F 1DF 2=60°,从而得到△DF 1F 2是等边三角形,然后求出DF 1=DF 2,再求出∠CDF 1=∠CDF 2,利用“边角边”证明△CDF 1和△CDF 2全等,根据全等三角形的面积相等可得点F 2也是所求的点,然后在等腰△BDE 中求出BE 的长,即可得解.
【详解】
如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形,
所以BE=DF 1,且BE 、DF 1上的高相等,
此时S △DCF1=S △BDE ;
过点D 作DF 2⊥BD ,
∵∠ABC=60°,F 1D ∥BE ,
∴∠F 2F 1D=∠ABC=60°,
∵BF 1=DF 1,∠F 1BD=
12
∠ABC=30°,∠F 2DB=90°, ∴∠F 1DF 2=∠ABC=60°,
∴△DF 1F 2是等边三角形, ∴DF 1=DF 2

∵BD=CD ,∠ABC=60°,点D 是角平分线上一点,
∴∠DBC=∠DCB=12
×60°=30°, ∴∠CDF 1=180°-∠BCD=180°-30°=150°,
∠CDF 2=360°-150°-60°=150°,
∴∠CDF 1=∠CDF 2,
∵在△CDF 1和△CDF 2中,
1212DF DF CDF CDF CD CD ⎧⎪∠∠⎨⎪⎩
=== , ∴△CDF 1≌△CDF 2(SAS ),
∴点F 2也是所求的点,
∵∠ABC=60°,点D 是角平分线上一点,DE ∥AB ,
∴∠DBC=∠BDE=∠ABD=
12×60°=30°, 又∵BD=6,
∴BE=12×6÷cos30°=3÷32
=23, ∴BF 1=BF 2=BF 1+F 1F 2=23+23=43,
故BF 的长为23或43.
故答案为:23或43.
【点睛】
本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F 有两个.
9.如图,Rt △ABC 中,AB=AC ,∠BAC=90°,BE ⊥CE ,垂足是E ,BE 交AC 于点D ,F 是BE 上一点,AF ⊥AE ,且C 是线段AF 的垂直平分线上的点,AF=22,则DF=________.
【答案】3.
【解析】
由题意可证的△ABF≌△ACE,可得△AEF为等腰直角三角形,取AF的中点O,连接CO交
BE与点G,连接AG,可得△AGF, △AGE,△CEG均为等腰直角三角形,可得AG平行等于CE,可得四边形AGCE为平行四边形,可得FD的长.
【详解】
解:如图
Rt△ABC中,AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,
又∠BAC=90°,BE⊥CE,∠DAE为∠BAC与EAF的公共角
∴∠BAF=∠CAE,
∠ABC=∠ACB=45°, BE⊥CE
∴∠ABF+∠CBE=45°,∠CBE+∠ACB+∠ACE=90°,即: ∠CBE+∠ACE=45°,
∴∠ABF=∠ACE,
在△ABF与△ACE中,有
AB AC
BAF CAE
ABF ACE
=


∠=∠

⎪∠=∠

,∴△ABF≌△ACE,
∴AE=AF, △AEF为等腰直角三角形, 取AF的中点O,连接CO交BE与点G,连接AG,
C是线段AF的垂直平分线上的点,易得△AGF, △AGE,△CEG均为等腰直角三角形,
AF=22∴AG=GE=CE=FG=2,
又AG⊥BE,CE⊥BE,可得AG∥CE,
∴四边形AGCE为平行四边形,
∴GD=DE=1,
∴DF=FG+GD=2+1=3.
【点睛】
本题主要考查三角形全等及性质,综合性强,需综合运用所学知识求解.
10.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC; ②∠BCE+∠BCD=180°;
③AF2=EC2﹣EF2; ④BA+BC=2BF.其中正确的是_____.
【答案】①②③④.
【分析】
根据已知条件易证△ABD ≌△EBC ,可判定①正确;根据等腰三角形的性质、对顶角相等、结合全等三角形的性质及平角的定义即可判定②正确;证明AD=AE=EC ,再利用勾股定理即可判定③正确;过E 作EG ⊥BC 于G 点,证明Rt △BEG ≌Rt △BEF 及
Rt △CEG ≌Rt △AFE ,根据全等三角形的性质可得AF=CG ,所以BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,即可判定④正确.
【详解】
①∵BD 为△ABC 的角平分线,
∴∠ABD=∠CBD ,
在△ABD 和△EBC 中,
BD BC ABD CBD BE BA =⎧⎪∠=∠⎨⎪=⎩
, ∴△ABD ≌△EBC (SAS ),
∴①正确;
②∵BD 为△ABC 的角平分线,BD=BC ,BE=BA ,
∴∠BCD=∠BDC=∠BAE=∠BEA ,
∵△ABD ≌△EBC ,
∴∠BCE=∠BDA ,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,
∴②正确;
③∵∠BCE=∠BDA ,∠BCE=∠BCD+∠DCE ,∠BDA=∠DAE+∠BEA ,∠BCD=∠BEA , ∴∠DCE=∠DAE ,
∴△ACE 为等腰三角形,
∴AE=EC ,
∵△ABD ≌△EBC ,
∴AD=EC ,
∴AD=AE=EC ,
∵EF ⊥AB ,
∴AF 2=EC 2﹣EF 2;
∴③正确;
④如图,过E 作EG ⊥BC 于G 点,
∵E 是BD 上的点,∴EF=EG ,
在Rt △BEG 和Rt △BEF 中,
BE BE EF EG
=⎧⎨=⎩ , ∴Rt △BEG ≌Rt △BEF (HL ),
∴BG=BF ,
在Rt △CEG 和Rt △AFE 中,
EF FG AE CE
=⎧⎨=⎩, ∴Rt △CEG ≌Rt △AFE (HL ),
∴AF=CG ,
∴BA+BC=BF+FA+BG ﹣CG=BF+BG=2BF ,
∴④正确.
故答案为:①②③④.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.
二、八年级数学全等三角形选择题(难)
11.下列两个三角形中,一定全等的是( )
A .两个等边三角形
B .有一个角是40︒,腰相等的两个等腰三角形
C .有一条边相等,有一个内角相等的两个等腰三角形
D .有一个角是100︒,底相等的两个等腰三角形
【答案】D
【解析】
【分析】
根据全等三角形的判定方法及等腰三角形的性质对各个选项进行分析,从而得到答案.
【详解】
解:A 、当两个等边三角形的对应边不相等时,这两个等边三角形也不会全等,故本选项错误;
B 、当该角不是对应角时,这两个等腰三角形也不会全等,故本选项错误;
C 、当两个等腰三角形的对应边与对应角不相等时,这两个等腰三角形也不会全等,故本选项错误;
D 、等腰三角形的100°角只能是顶角,则两个底角是40°
,它们对应相等,所以由全等三角形的判定定理ASA 或AAS 证得它们全等,故本选项正确;
故选D .
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的
参与,若有两边一角对应相等时,角必须是两边的夹角.
12.如图,已知等腰Rt △ABC 和等腰Rt △ADE ,AB=AC=4,∠BAC=∠EAD=90°,D 是射线BC 上任意一点,连接EC .下列结论:①△AEC △ADB ;② EC ⊥BC ; ③以A 、C 、D 、E 为顶点的四边形面积为8;④当BD=
时,四边形AECB 的周长为10524++;⑤ 当BD=32
B 时,ED=5AB ;其中正确的有( )
A .5个
B .4个
C .3 个
D .2个
【答案】B
【解析】解:
∵∠BAC =∠EAD =90°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△AEC ≌△ADB ,故①正确; ∵△AEC ≌△ADB ,∴∠ACE =∠ABD =45°,∵∠ACB =45°,∴J IAO ECB =90°,∴EC ⊥BC ,故②正确;
∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;
∵BD =2,∴EC =2,DC =BC -BD =422=32,∴DE 2=DC 2+EC 2,=(2222+=20,∴DE =25,∴AD =AE =
252=10.∴AECB 的周长=AB +DC +CE +AE =442210+45210+,故④正确;
当BD =32BC 时,CD =12BC ,∴DE 22
1322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭
10BC 5.故⑤错误. 故选B .
点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.
13.如右图,在△ABC 中,点Q ,P 分别是边AC ,BC 上的点,AQ=PQ ,PR ⊥AB 于R ,PS ⊥AC 于S ,且PR=PS ,下面四个结论:①AP 平分∠BAC ;②AS=AR ;③BP=QP ;④QP ∥AB .其中一定正确的是( )
A .①②③
B .①③④
C .①②④
D .②③④
【答案】C
【解析】 试题解析:∵PR ⊥AB 于点R ,PS ⊥AC 于点S ,且PR =PS ,
∴点P 在∠BAC 的平分线上,
即AP 平分∠BAC ,故①正确;
∴∠PAR =∠PAQ ,
∵AQ =PQ ,
∴∠APQ =∠PAQ ,
∴∠APQ =∠PAR ,
QP AB ∴, 故④正确;
在△APR 与△APS 中,AP AP PR PS =⎧⎨=⎩
, (HL)APR APS ∴≌, ∴AR =AS ,故②正确;
△BPR 和△QSP 只能知道PR =PS ,∠BRP =∠QSP =90∘,其他条件不容易得到,所以,不一定全等.故③错误.
故选C.
14.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,AE 平分BAC ∠交BC 于点E ,BD AE ⊥于点D ,DF AC ⊥交AC 的延长线于点F ,连接CD ,给出四个结
论:①45ADC ∠=︒;②12
BD AE =;③AC CE AB +=;④2AB BC FC -=;其中正确的结论有 ( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】
试题解析:如图,
过E 作EQ ⊥AB 于Q ,
∵∠ACB=90°,AE 平分∠CAB ,
∴CE=EQ ,
∵∠ACB=90°,AC=BC ,
∴∠CBA=∠CAB=45°,
∵EQ ⊥AB ,
∴∠EQA=∠EQB=90°,
由勾股定理得:AC=AQ ,
∴∠QEB=45°=∠CBA ,
∴EQ=BQ ,
∴AB=AQ+BQ=AC+CE ,
∴③正确;
作∠ACN=∠BCD ,交AD 于N ,
∵∠CAD=
12
∠CAB=22.5°=∠BAD , ∴∠ABD=90°-22.5°=67.5°,
∴∠DBC=67.5°-45°=22.5°=∠CAD ,
∴∠DBC=∠CAD ,
在△ACN 和△BCD 中, DBC CAD AC BC
ACN DCB ∠∠⎧⎪⎨⎪∠∠⎩
===, ∴△ACN ≌△BCD ,
∴CN=CD ,AN=BD ,
∵∠ACN+∠NCE=90°,
∴∠NCB+∠BCD=90°,
∴∠CND=∠CDA=45°,
∴∠ACN=45°-22.5°=22.5°=∠CAN ,
∴AN=CN ,
∴∠NCE=∠AEC=67.5°,
∴CN=NE ,
∴CD=AN=EN=
12AE , ∵AN=BD ,
∴BD=12
AE , ∴①正确,②正确;
过D 作DH ⊥AB 于H ,
∵∠FCD=∠CAD+∠CDA=67.5°,
∠DBA=90°-∠DAB=67.5°,
∴∠FCD=∠DBA ,
∵AE 平分∠CAB ,DF ⊥AC ,DH ⊥AB ,
∴DF=DH ,
在△DCF 和△DBH 中
90F DHB FCD DBA DF DH ∠∠︒⎧⎪∠∠⎨⎪⎩
====, ∴△DCF ≌△DBH ,
∴BH=CF ,
由勾股定理得:AF=AH , ∴
2,2AC AB AC AH BH AC AM CM AC AF CF AF AF AF AM AF AF
+++++++====, ∴AC+AB=2AF ,
AC+AB=2AC+2CF ,
AB-AC=2CF ,
∵AC=CB ,
∴AB-CB=2CF , ∴④正确.
故选D
15.如图在ABC △中,P ,Q 分别是BC 、AC 上的点,作PR AB ⊥,PS AC ⊥,垂足分别是R ,S ,
AQ PQ =,PR PS =,下面三个结论:
①AS AR =;②PQ AB ∥;③BRP △≌CSP △.其中正确的是( ).
A .①②
B .②③
C .①③
D .①②③
【答案】A
【解析】
连接AP ,
由题意得,90ARP ASP ∠=∠=︒, 在Rt APR 和Rt APS 中,
AP AP PR PS =⎧⎨=⎩
, ∴△APR ≌()APS HL ,
∴AS AR =,故①正确.
BAP SAP ∠=∠,∴2SAB BAP SAP SAP ∠=∠+∠=∠,
在AQP △中,∴AQ PQ =,∴QAP APQ ∠=∠,
∴22CQP QAP APQ QAP SAP ∠=∠+∠=∠=∠,
∴PQ AB ∥,故②正确; 在Rt BRP 和Rt CSP 中,只有PR PS =,
不满足三角形全等的条件,故③错误.
故选A .
点睛:本题主要考查三角形全等的判定方法以及角平分线的判定和平行线的判定,准确作出辅助线是解决本题的关键.
16.如图,D 为BAC ∠的外角平分线上一点并且满足BD CD =,DBC DCB ∠=∠,过D 作DE AC ⊥于E ,DF AB ⊥交BA 的延长线于F ,则下列结论:
①CDE △≌BDF ;②CE AB AE =+;③BDC BAC ∠=∠;④DAF CBD ∠=∠. 其中正确的结论有( ).
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】 BD=CD,AD 是角平分线,所以FD=DE,∠DFB =∠DEC =90°,所以CDE ≌BDF ;①正确.由全等得BF=CE ,因为FA=AE,FB=AB+FA ,所以CE=AB+AE , ②正确.由全等知,
∠DCE=∠FBD,所以∠BAC=∠BDC. ③正确. ∴DBF DCE ∠=∠,
∴A 、B 、C 、D 四点共圆,
∴DAF CBD ∠=∠,④正确.
故选D.
17.如图,四边形ABCD 中,∠A 、∠B 、∠C 、∠D 的角平分线恰相交于一点P ,记△APD 、△APB 、△BPC 、△DPC 的面积分别为S 1、S 2、S 3、S 4,则有( )
A .1324S S S S +=+
B .1234S S S S +=+
C .1423S S S S +=+
D .13S S =
【答案】A
【解析】
【分析】
作辅助线,利用角平分线性质定理,明确8个三角形中面积两两相等即可解题.
【详解】
四边形ABCD,四个内角平分线交于一点P,即点p 到四边形各边距离相等,(角平分线性质定理),
如下图,可将四边形分成8个三角形,面积分别是a 、a 、b 、b 、c 、c 、d 、d,
则S 1=a+d, S 2=a+b, S 3=b+c, S 4=c+d,
∴S 1+S 3=a+b+c+d= S 2+S 4
故选A
【点睛】
本题考查了角平分线性质定理,作高线和理解角平分线性质定理是解题关键.
18.如图,与都是等边三角形,,下列结论中,正确的个数是( )①;②;③;④若,且,则.
A.1 B.2 C.3 D.4
【答案】C
【解析】
【分析】
利用全等三角形的判定和性质一一判断即可.
【详解】
解:∵与都是等边三角形
∴AD=AB,AC=AE,∠DAB=∠EAC=60°
∴∠DAB+∠BAC=∠EAC +∠BAC
即∠DAC=∠EAB

∴,①正确;

∴∠ADO=∠ABO
∴∠BOD=∠DAB=60°,②正确
∵∠BDA=∠CEA=60°,∠ADC≠∠AEB
∴∠BDA-∠ADC≠∠CEA-∠AEB
∴,③错误

∴∠DAC+∠BCA=180°
∵∠DAB=60°,
∴∠BCA=180°-∠DAB-∠BAC=30°
∵∠ACE=60°
∴∠BCE=∠ACE+∠BCA=60°+30°=90°
∴④正确
故由①②④三个正确,
故选:C
【点睛】
本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
19.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则下列四个结论:①PA平分∠BAC;②AS=AR;③QP∥AR;
④△BRP≌△CSP,其中结论正确的的序号为()
A.①②③B.①②④C.②③④D.①②③④
【答案】A
【解析】
【分析】
根据角平分线性质即可推出②,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;没有条件证明
△BRP≌△QSP.
【详解】
试题分析:
解:∵PR⊥AB,PS⊥AC,PR=PS,
∴点P在∠A的平分线上,∠ARP=∠ASP=90°,
∴∠SAP=∠RAP,
在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,
∵AP=AP,PR=PS,
∴AR=AS,∴②正确;
∵AQ=QP,
∴∠QAP=∠QPA,
∵∠QAP=∠BAP,
∴∠QPA=∠BAP,
∴QP∥AR,∴③正确;
没有条件可证明
△BRP≌△QSP,∴④错误;
连接RS,
∵PR=PS,
∵PR⊥AB,PS⊥AC,
∴点P在∠BAC的角平分线上,
∴PA平分∠BAC,∴①正确.
故答案为①②③.
故选A.
点睛:本题考查了等边三角形的性质和判定,全等三角形的性质和判定,平行线的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.
20.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是().
A.①②B.①②③C.①②④D.①②③④
【答案】C
【解析】
【分析】
如图,连接AP,根据HL判定△APR和△APS全等,即可说明①正确;由△APR和△APS 全等可得∠RAP=∠PAC,再根据等腰三角形性质推出∠QAP=∠QPA,得到
∠QPA=∠BAP,根据平行线判定推出OP//AB,即②正确;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等;连接RS,与AP交于点D,先证
△ARD≌△ASD,即RD=SD;运用等腰三角形的性质即可判定.
【详解】
解:如图,连接AP
∵PR⊥AB,PS⊥AC,PR=PS
∴△APR≌△APS
∴AS=AR,∠RAP=∠PAC
即①正确;
又∵AQ=PQ
∴∠QAP=∠QPA
∴∠QPA=∠BAP
∴OP//AB,即②正确.
在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断Rt△BRP和Rt△QSP是否全等,故③错误.
如图,连接PS
∵△APR≌△APS
∴AR=AS,∠RAP=∠PAC
∴AP垂直平分RS,即④正确;
故答案为C.
【点睛】
本题主要考查了全等三角形的性质和判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解答本题的关键
21.如图,在△ABC中,AB=AC,高BD,CE交于点O,AO交BC于点F,则图中共有全等三角形()
A.8对B.7对C.6对D.5对
【答案】B
【解析】
【分析】
易证△ABC是关于AF对称的图形,其中的小三角形也关于AF对称,共可找出7对三角形.【详解】
全等的三角形有:①△AFB≌△AFC;②△CEB≌△BDC;③△AEO≌△ADO;
④△EOB≌△DOC;⑤△OBF≌△OFC;⑥△AOB≌△AOC;⑦△AEC≌△ADB
证明①△AFB≌△AFC
∵AB=AC,CE⊥AB,BD⊥AC
又∵
11
22
ABC
S AB CE AC BD ==
∴CE=BD
∴在Rt△BCE 和Rt△CBD 中
BC BC CE BD =⎧⎨=⎩
∴△BCE≌△CBD
∴BE=CD,∴AE=AD
在Rt△AEO 和Rt△ADO 中
AE AD AO AO =⎧⎨=⎩
∴△AEO≌△ADO
∴∠EOD=∠DOA
在△BAF 和△CAF 中
AB AC
BAF CAF AF AF
=⎧⎪∠=∠⎨⎪=⎩
∴△BAF≌△CAF,得证
其余全等证明过程类似
故选:B
【点睛】
本题考查全等的证明,解题关键是利用等腰三角形的性质,推导出图形中边的关系,为证全等作准备
22.如图(1),已知AB AC =,D 为BAC ∠的角平分线上一点,连接BD ,CD ;如图(2),已知AB AC =,D ,E 为BAC ∠的角平分线上两点,连接BD ,CD ,BE ,CE ;如图(3),已知AB AC =,D ,E ,F 为BAC ∠的角平分线上三点,连接BD ,CD ,BE ,CE ,BF ,CF ;……,依此规律,第6个图形中有全等三角形的对数是( )
A .21
B .11
C .6
D .42
【答案】A
【解析】
【分析】
根据条件可得图1中△ABD≌△ACD有1对三角形全等;图2中可证出△ABD≌△ACD,△BDE≌△CDE,△ABE≌△ACE有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第6个图形中全等三角形的对数.
【详解】
解:∵AD是∠BAC的平分线,
∴∠BAD=∠CAD.
在△ABD与△ACD中,
AB AC
BAD CAD
AD AD
=


∠=∠

⎪=


∴△ABD≌△ACD.
∴图1中有1对三角形全等;
同理图2中,△ABE≌△ACE,
∴BE=EC,
∵△ABD≌△ACD.
∴BD=CD,
又DE=DE,
∴△BDE≌△CDE,
∴图2中有3对三角形全等,3=1+2;
同理:图3中有6对三角形全等,6=1+2+3;
∴第6个图形中有全等三角形的对数是1+2+3+4+5+6=21.
故选:A.
【点睛】
此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.
23.如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于点F交BC于点E,点G为AB的中点,连接DG,交AE于点H,下列结论错误的是()
A.AH=2DF B.HE=BE C.AF=2CE D.DH=DF
【答案】A
【解析】
【分析】
通过证明△ADF≌△BDC,可得AF=BC=2CE,由等腰直角三角形的性质可得AG=BG,
DG⊥AB,由余角的性质可得∠DFA=∠AHG=∠DHF,可得DH=DF,由线段垂直平分线的性质可得AH=BH,可求∠EHB=∠EBH=45°,可得HE=BE,即可求解.
【详解】
解:∵∠BAC=45°,BD⊥AC,
∴∠CAB=∠ABD=45°,
∴AD=BD,
∵AB=AC,AE平分∠BAC,
∴CE=BE=1
2
BC,∠CAE=∠BAE=22.5°,AE⊥BC,
∴∠C+∠CAE=90°,且∠C+∠DBC=90°,
∴∠CAE=∠DBC,且AD=BD,∠ADF=∠BDC=90°,
∴△ADF≌△BDC(AAS)
∴AF=BC=2CE,故选项C不符合题意,
∵点G为AB的中点,AD=BD,∠ADB=90°,∠CAE=∠BAE=22.5°,
∴AG=BG,DG⊥AB,∠AFD=67.5°
∴∠AHG=67.5°,
∴∠DFA=∠AHG=∠DHF,
∴DH=DF,故选项D不符合题意,
连接BH,
∵AG=BG,DG⊥AB,
∴AH=BH,
∴∠HAB=∠HBA=22.5°,
∴∠EHB=45°,且AE⊥BC,
∴∠EHB=∠EBH=45°,
∴HE=BE,
故选项B不符合题意,
故选:A.
【点睛】
本题考查三角形全等的性质与判定,等腰直角三角形的性质,关键在于熟练掌握基本知识点,灵活运用知识点.
24.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.若BE=7,AB=3,则AD 的长为()
A .3
B .5
C .4
D .不确定
【答案】C
【解析】 根据同角的余角相等求出∠ACD=∠E ,再利用“角角边”证明△ACD ≌△BCE ,根据全等三角形对应边相等可得AD=BC ,AC=BE=7,然后求解BC=AC-AB=7-3=4.
故选:C .
点睛:本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法是解题的关键.
25.如图,在△ABC 中,AB=BC ,90ABC ∠=︒,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接
DF.下列结论正确的是()
A .∠1=∠3
B .∠2=∠3
C .∠3=∠4
D .∠4=∠5
【答案】A
【解析】
【分析】 如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,先根据直角三角形两锐角互余可得BAD CBG ∠=∠,再根据三角形全等的判定定理与性质推出1G ∠=∠,又根据三角形全等的判定定理与性质推出3G ∠=∠,由此即可得出答案.
【详解】
如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则CG BC ⊥,即90BCG ∠=︒ ,90AB BC ABC =∠=︒
45BAC ACB ∠∴∠==︒
904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒
BF AD ⊥
1190BAD CBG ∴∠+∠=∠+∠=︒
BAD CBG ∴∠=∠
在BAD ∆和CBG ∆中,90BAD CBG AB BC ABD BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩
()
BAD CBG ASA
∴∆≅∆
,1
BD CG G
∴=∠=∠
点D是BC的中点
CD BD CG
∴==
在CDF
∆和CGF
∆中,45
CD CG
DCF GCF
CF CF
=


∠=∠=︒

⎪=

()
CDF CGF SAS
∴∆≅∆
3G
∴∠=∠
13
∠∠
∴=
故选:A.
【点睛】
本题是一道较难的综合题,考查了直角三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造两个全等的三角形是解题关键.
26.如图,AO⊥OM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度是 ( )
A.3.6 B.4 C.4.8 D.PB的长度随B点的运动而变化
【答案】B
【解析】
【分析】
作辅助线,首先证明△ABO≌△BEN,得到BO=ME;进而证明△BPF≌△MPE,即可解决问题.
【详解】
如图,过点E作EN⊥BM,垂足为点N,
∵∠AOB=∠ABE=∠BNE=90°,
∴∠ABO+∠BAO=∠ABO+∠NBE=90°,
∴∠BAO=∠NBE ,
∵△ABE 、△BFO 均为等腰直角三角形,
∴AB=BE ,BF=BO ;
在△ABO 与△BEN 中,
BAO NBE AOB BNE AB BE ∠∠⎧⎪∠∠⎨⎪⎩
=== ∴△ABO ≌△BEN (AAS ),
∴BO=NE ,BN=AO ;
∵BO=BF ,
∴BF=NE ,
在△BPF 与△NPE 中,
FBP ENP FPB EPN BF NE ∠∠⎧⎪∠∠⎨⎪⎩
=== ∴△BPF ≌△NPE (AAS ), ∴BP=NP=
12BN ;而BN=AO , ∴BP=12AO=12
×8=4, 故选B .
【点睛】
本题考查了三角形内角和定理,全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形,灵活运用有关定理来分析或解答.
27.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC-CD-DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,△ABP 和△DCE 全等.
A.1 B.1或3 C.1或7 D.3或7
【答案】C
【解析】
【分析】
分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.
【详解】
解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,
由题意得:BP=2t=2,
所以t=1,
因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,
由题意得:AP=16-2t=2,
解得t=7.
所以,当t的值为1或7秒时.△ABP和△DCE全等.
故选C.
【点睛】
本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.
28.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:
①△PFA≌△PEB,②EF=AP,③△PEF是等腰直角三角形,④当∠EPF在△ABC内绕顶点P旋
转时(点E不与A,B重合),S四边形AEPF=1
2
S△ABC,上述结论中始终正确有()
A.1个B.2个C.3个D.4个【答案】C
【解析】
∵AB=AC,∠BAC=90°,P是BC中点,
∴AP⊥BC,AP=PB,
∠B=∠CAP=45°,
∵∠APF+∠FPA=90°,
∠ APF+∠BPE=90°,
∴∠APF=∠BPE,
在△BPE和△APF中,
∠B=∠CAP, BP=AP,∠BPE =∠APF,
∴△PFA≌△PEB;故①正确;
∵△ABC是等腰直角三角形点P是BC的中点,
∴AP=1
2 BC,
又∵EF不一定是△ABC的中位线,
∴EF≠AP,故结论②错误;
∵△PFA≌△PEB,
∴PE=PF,
又∵∠EPF=90°,
∴△PEF是等腰直角三角形,故③正确;∵△PFA≌△PEB,
∴S△PFA =S△PEB,
∴S四边形AEPF=S△APE+S△APF=S△APE+S△BPE=S△APB=1
2
S△ABC,故结论④正确;
综上,当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),始终正确的有3个结论.
故选:C.
点睛:本题意旋转为背景考查了全等三角形的判定和性质,解题时需要运用等腰直角三角形的判定和性质,综合性较强,根据题意得出△PFA≌△PEB是解答此题的关键.
29.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()
①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.
A.①②③B.①②④C.①②D.①②③④
【答案】A
【解析】
【分析】
根据题意结合图形证明△AFB≌△AEC;利用四点共圆及全等三角形的性质问题即可解决.【详解】
如图,
∵∠EAF=∠BAC,
∴∠BAF=∠CAE;
在△AFB与△AEC中,
AF AE
BAF CAE
AB AC


∠∠







∴△AFB≌△AEC(SAS),
∴BF=CE;∠ABF=∠ACE,
∴A、F、B、C四点共圆,
∴∠BFC=∠BAC=∠EAF;
故①、②、③正确,④错误.
故选A..
【点睛】
本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.
30.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC 分别交于点G,F,H为CG的中点,连结DE、EH、DH、FH.下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若
2
3
AE
AB
=,则
3
13
DHC
EDH
S
S
=.其中结论正确的有()
A.1个B.2个C.3个D.4个
【答案】D
【解析】
分析:①根据题意可知∠ACD=45°,则GF=FC,则EG=EF-GF=CD-FC=DF;
②由SAS证明△EHF≌△DHC即可;
③根据△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-
∠HDC=180°;
④若AE
AB
=
2
3
,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则
∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则
DM=5x,DH=26x,CD=6x,则S△DHC=1
2
×HM×CD=3x2,S△EDH=
1
2
×DH2=13x2.
详解:①∵四边形ABCD为正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG为等腰直角三角形,
∴GF=FC,
∵EG=EF−GF,DF=CD−FC,
∴EG=DF,故①正确;
②∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=1
2
∠GFC=45°=∠HCD,
在△EHF和△DHC中,
EF=CD;∠EFH=∠DCH;FH=CH,
∴△EHF≌△DHC(SAS),故②正确;
③∵△EHF≌△DHC(已证),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF−∠HDC=∠AEF+∠ADF=180°,故③正确;
④∵AE
AB
=
2
3

∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,
EG=DF;∠EGH=∠HFD;GH=FH,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD为等腰直角三角形,
如图,过H点作HM⊥CD于M,
设HM=x,则,CD=6x,
则S△DHC=1
2
×HM×CD=3x2,S△EDH=
1
2
×DH2=13x2,
∴3S△EDH=13S△DHC,故④正确;
故选D.
点睛:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解题关键在于根据题意熟练的运用相关性质.。

相关文档
最新文档