《博弈论基本模型》PPT课件
合集下载
博弈论基础PPT精品课程课件全册课件汇总
自己处于c还是d。即K缺乏信息。 P
c
E
N
K
L
a
b
P
N
d
K
S
N
R’ K
e N’
0,140
80,0
0,0
40,110 13,120
2 扩展型
参与人对于结果的偏好性。K是否更希望博弈
终止点f而不是h上结束?
我们必须知道参与人关心什么,才能将终止
点根据每个参与人的偏好排列。通常用数字
表述参与人的偏好排序最为简便。这也称为
1 概述
这个理论在许多方面都是有用的。 首先,它提供了一种语言。 其次,它提供了应该框架,能够指导我们建立策略环 境模型。 其三,它有助于我们追朔,对行为假设的逻辑推理过 程。
1 概述
好几百年前,数学家就开 始研究室内游戏,试图构 造最优的游戏策略。
在1713年,沃尔德格雷夫 就某种纸牌游戏的解决方 法,与他的同事德莫特和 贝努利进行交流。沃尔德 格雷夫的解决方法,与现 代理论的结论相一致。
支付(payoff),或者效用(utilities)。
P
c
P
E
N
K
L
a
b
P
N
d
K
S
N
R’ K
e N’
0,140
80,0
0,0
40,110 13,120
2 扩展型
我们引入一些数学符号来考察博弈。
我们来看看一个市场博弈,两个厂商通过选择高价或者低价进行 竞争。
我们用参与人i表示任何一个参与人的数字代码。即在一个有n个 参与人的博弈中,i=1,2,…,n。 在某些博弈中,一个参与人可以在无限多个行动中进行选择。
博弈论PPT课件
有i si 0, i si 1 si Si
这就是混合策略。
混合策略的纳什均衡定义
如果对于博弈中所有的游戏者i,对于所有的 σi∈Mi,都有ui﹙σ*﹚≥ui﹙σi,σ-i*﹚,则称 σ*就是一个混合策略的纳什均。
如何求混合策略的纳什均衡
猜硬币的博弈中 解:设猜方猜正方的概率为p,猜反方的概率则为1-
无名氏(大众)定理
无名氏定理:在无穷次重复的由n个游戏者参与的 博弈里,如果在每一次重复中博弈的行动集是有限 的,则在满足下列三个条件时,在任何有限次重复 中所观察到的任何行动组合都是某个子博弈完美均 衡的惟一结果:
条件1:贴现因子接近于1; 条件2:在每一次重复中,博弈结束的概率或等于0,或 为非常小的一个正值; 条件3:严格占优于一次性博弈中的最小最大收益组合的 那个收益组合集是n维的。
博弈方
博弈方:独立决策、独立承担博弈结果的个人 或组织
博弈规则面前博弈方之间平等,不因博弈方之 间权利、地位的差异而改变
博弈方数量对博弈结果和分析有影响 根据博弈方数量分单人博弈、两人博弈、多人
博弈等。最常见的是两人博弈,单人博弈是退 化的博弈
策略
策略:博弈中各博弈方的选择内容 策略有定性定量、简单复杂之分 不同博弈方之间不仅可选策略不同,而且可
游戏和经济等决策竞争较量的共同特征:规 则、结果、策略选择,策略和利益相互依存, 策略的关键作用
游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊朗、以色列和巴勒斯 坦、中国和日本等等。
博弈的基本要素
博弈的参加者(Player)——博弈方 各博弈方的策略(Strategies)或行动(Actions) 博弈的次序(Order) 博弈方的收益(Payoffs) (或称支付,或得益)
这就是混合策略。
混合策略的纳什均衡定义
如果对于博弈中所有的游戏者i,对于所有的 σi∈Mi,都有ui﹙σ*﹚≥ui﹙σi,σ-i*﹚,则称 σ*就是一个混合策略的纳什均。
如何求混合策略的纳什均衡
猜硬币的博弈中 解:设猜方猜正方的概率为p,猜反方的概率则为1-
无名氏(大众)定理
无名氏定理:在无穷次重复的由n个游戏者参与的 博弈里,如果在每一次重复中博弈的行动集是有限 的,则在满足下列三个条件时,在任何有限次重复 中所观察到的任何行动组合都是某个子博弈完美均 衡的惟一结果:
条件1:贴现因子接近于1; 条件2:在每一次重复中,博弈结束的概率或等于0,或 为非常小的一个正值; 条件3:严格占优于一次性博弈中的最小最大收益组合的 那个收益组合集是n维的。
博弈方
博弈方:独立决策、独立承担博弈结果的个人 或组织
博弈规则面前博弈方之间平等,不因博弈方之 间权利、地位的差异而改变
博弈方数量对博弈结果和分析有影响 根据博弈方数量分单人博弈、两人博弈、多人
博弈等。最常见的是两人博弈,单人博弈是退 化的博弈
策略
策略:博弈中各博弈方的选择内容 策略有定性定量、简单复杂之分 不同博弈方之间不仅可选策略不同,而且可
游戏和经济等决策竞争较量的共同特征:规 则、结果、策略选择,策略和利益相互依存, 策略的关键作用
游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊朗、以色列和巴勒斯 坦、中国和日本等等。
博弈的基本要素
博弈的参加者(Player)——博弈方 各博弈方的策略(Strategies)或行动(Actions) 博弈的次序(Order) 博弈方的收益(Payoffs) (或称支付,或得益)
博弈论完整版PPT课件
R3 3, 2 0, 4 4, 3 50, 1 会将C4从C的战略空间中剔除, 所以 R4 2, 93 0, 92 0, 91 100, 90 R不会选择R4;
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。
2-阶理性: C相信R相信C是理性的,C会将R4从R的战略空间中剔除, 所以 C不会选择C1;
3-阶理性: R相信C相信R相信C是理性的, R会将C1从C的战略空间中剔 除, R不会选择R1;
基本假设:完全竞争,完美信息
个人决策是在给定一个价格参数和收入的条 件下最大化自己的效用,个人的效用与其他人 无涉,所有其他人的行为都被总结在“价格”参数 之中
一般均衡理论是整个经济学的理论基石 和道义基础,市场机制是完美的,帕累托 最优成立,平等与效率可以兼顾。
.
3
然而在以下情况,上述结论不成立:
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
如果你预期我会选择X,我就真的会选择X。
如果参与人事前达成一个协议,在不存在外部强 制的情况下,每个人都有积极性遵守这个协议,这 个协议就是纳什均衡。
.
28
应用1——古诺的双寡头垄断模型(1938)
假定:
只有两个厂商 面对相同的线形需求曲线,P(Q)=a-Q, Q=q1+q2 两厂商同时做决策; 假定成本函数为C(qi)=ciqi
劣策略:如果一个博弈中,某个参与人有占优策略,那么
该参与人的其他可选择策略就被称为“劣策略”。
博弈论的几个经典模型ppt课件
博弈论的几个经典模型
22
模型二、囚徒困境/非合作博弈
该博弈刻划了两大难题: • 冲突情形下,参与人的目标是什么?是采用(作 为个人 ) 他自己的最好策略,还是采用 ( 作为集 体的一员)他们共同的最好策略?前者导致均衡 策略 ( 坦白,坦白 ) ,支付为 (-8 , -8) ;后者的最 好策略是 ( 抵赖,抵赖 ) ,支付为 (-1 , -1) 。这里 反映了个体理性行为与集体理性行为之间的矛 盾、冲突。 • 此博弈只进行一次还是重复进行?如果博弈只 进行一次,参与人似乎只有坦白才是最好的策 略,因为没有理由相信对手会对你有信心,他 总认为你自己会坦白;因此,双方都采取坦白 策略。然而,若博弈进行多次,则结论将会发 生变化。
第四章 博弈论的几个经典模型
1
引言
博弈论又被称为对策论(Game Theory), 按照2005年因对博弈论的贡献而获得诺贝尔经 济学奖的Robert Aumann教授的说法,博弈论 就是研究互动决策的理论。所谓互动决策, 即各行动方(即局中人[player])的决策是相互 影响的,每个人在决策的时候必须将他人的 决策纳入自己的决策考虑之中,当然也需要 把别人对于自己的考虑也要纳入考虑之 中……在如此迭代考虑情形进行决策,选择 最有利于自己的战略(strategy)。
此外此外还与会计学还与会计学统计学统计学数学基础数学基础社会心理学社会心理学以及诸如认识论与伦理学等哲学分支有重要联以及诸如认识论与伦理学等哲学分支有重要联博弈论的几个经典模型按照按照aumannaumann所撰写的所撰写的新帕尔格雷夫经新帕尔格雷夫经济学大辞典济学大辞典博弈论博弈论辞条的看法辞条的看法标准的标准的博弈论分析出发点是理性的博弈论分析出发点是理性的而不是心理的而不是心理的或社会的角度或社会的角度
《博弈论》课程ppt课件
10
图1 进攻与防守的基本式 G={N, S, u},其中N=(1,2), Si={(0,2),(1,1),(2,0)},ui (s1, s2) = ri,i = 1, 2。
守方 (0,2) (1,1) (2,0)
(0,2)
攻方 (1,1)
失败,成功
成功,失败
成功,失败
失败,成功
成功,失败
成功,失败
《博弈论》课程
(一)什么是博弈论
我们首先看几个例子。 例1 石头、剪刀、布
猪八戒
石头 石头 孙悟空 剪刀 布 未定,未定 找水,休息 休息,找水 剪刀 休息,找水 未定,未定 找水,休息 布 找水,休息 休息,找水 未定,未定
2
例2 诺曼底登陆
德军
加来设防 加来登陆 盟军
诺曼底登陆 成功,失败
诺曼பைடு நூலகம்设防 成功,失败
9
例4 进攻与防守 双方争夺一个据点,有两条进攻路线X和Y, 攻方有两个军,而防守方也有两个军,只有 当守方的兵力不少于攻方时,才能击退进攻, 否则据点将会失守。首先可知守方的防守方 案(即策略)为(0,2),(1,1),(2,0),即在X 线路和Y线路驻扎军队数,同样可以到的攻 方的进攻方案(0,2),(1,1)和(2,0)。容易看出, 行动并非策略,策略是行动方案。
正是由于博弈论将博弈如何出现均衡列为核心, 因而博弈论对于各门社会科学而言,就具有了方 法论意义,成为各门学科的有力分析工具。
6
(二)博弈表达的科学式
(1)博弈的策略式
如何将博弈表示成一种便于研究和分析的形式显然 是很重要的。如果用参与者、策略和收益函数来 科学地描述一个博弈,就称为博弈表达的策略式 (或基本式、标准式)。
第1章博弈论基本模型
为什么学习?
从学习中获得心灵的提高,获得心灵的享受。
学习,其实就为自己创造一个美丽的心灵世界的过程。
有人说,我也没什么追求,就学一点实用知识就行,但问题是, 你没有那些“无用”的知识,你怎么驾驭哪些实用的知识呢? “世人只知有用之用,而不知无用只用”。
很多人30岁后就不再读书,到60岁还是30年前的思维;很多人 感慨“现在一读书就头痛”;农村现在不要为生存而挣扎了,那 做什么呢?“我不打牌又做什么呢?”
齐 田忌策略:
上马 ∨
中马 ∨
下马 ∨
田
上马
中马
下马
结 果:
田忌将军每次输掉三千金
谋士孙膑 策略:
结 果:
齐
上马
中马
下马
∨
∧
∧
田
下马
上马
中马
田忌将军胜二负一赢一千金
博弈论的创立与发展
2、博弈论的发展阶段 第一阶段:萌芽期(20世纪40年代前)。利益冲突的研究是分散和初
步的、带有很大程度的随意性。 孙子兵法:古诺(Cournot,1883)—古诺的“双寡头垄断”模型;艾
专业学习:谋职、谋生(身无长物、何以生存)。 事理学习:明白事理、懂得分析生活中的很多问题。(崔琦:
明白这个世界是一个什么样子,这很重要)。一个人,其实只 要懂得了加减乘除四则运算,就可以挣到钱买房买车,在物质 世界中生活的很好。但这只是像一个盲人一样在生活,“春天 来了,但我却看不到” 。(明明德) 人生学习:充实人生、提高人生的境界、把学习融入人的生活 中。人不是做事和挣钱的工具,而是宇宙中的有血有肉的生灵, 需要提高生活的趣味,享受趣味化的人生,这就需要学习。一 个人,不会欣赏《二泉映月》,不会感受过禅宗的静谧,从来 也不思考什么是天行健,好像也是在生活。看看很多人下班后 在做什么?打牌、或者歌厅洗脚房等,当衣食住行解决了之后, 就不知怎么过了,只有赌博和玩乐,却找不到真正的趣味。 (身体在成长、心灵也在成长吗?)(新民) 仰望星空
博弈论课件
博弈论强调参与者之间的互动关系,通过数学模型和理论分析来研究 策略选择和均衡结果。
博弈论的发展历程
博弈论的起源可以追溯到20世纪初,当时数学家和经 济学家开始研究游戏中的策略和均衡。
1944年,冯·诺依曼和摩根斯坦合著的《博弈论与经济 行为》标志着博弈论的诞生。
随后,纳什、泽尔腾和哈萨尼等学者进一步发展了博弈 论,形成了现代博弈论的基础。
商业竞争与合作
商业竞争
博弈论可以用于分析商业竞争中的策略和行为,例如价格战、广告战等。通过 博弈论,企业可以更好地理解竞争对手的策略,制定出更有效的竞争策略。
商业合作
博弈论也可以用于分析商业合作中的策略和行为,例如供应链管理、合资企业 等。通过博弈论,企业可以更好地理解合作伙伴的需求和期望,制定出更有效 的合作策略。
贝叶斯纳什均衡
在不完全信息博弈中,如果所有参与 者都根据自己掌握的信息选择最优策 略,则所有参与者都能获得最大收益 。
静态博弈与动态博弈
01
静态博弈
02
动态博弈
所有参与者在同一时间点选择策略并获得收益。
参与者的选择有先后顺序,后选择的参与者可以观察到先选择的参与 者的策略和收益。
03
纳什均衡
纳什均衡的定义
博弈优化方法
线性规划
线性规划是一种数学优化方法, 用于找到在满足一组约束条件下 最大化或最小化目标函数的最优
解。
非线性规划
非线性规划是数学优化的一种方 法,用于找到一组变量的最优值 ,使得一个或多个目标函数达到
最优。
动态规划
动态规划是一种通过将问题分解 为相互重叠的子问题来解决问题 的方法,每个子问题的解被保存
博弈论课件
汇报人:
汇报时间:202X-01-04
精品课程《博弈论》PPT课件(全)
人博弈 两人博弈有多种可能性,博弈方的利益方向可
能一致,也可以不一致
三、多人博弈
三个博弈方之间的博弈 可能存在“破坏者”:其策略选择对自身的利
益并没有影响,但却会对其他博弈方的利益产 生很大的,有时甚至是决定性的影响。申办奥 运会是典型例子。 多人博弈的表示有时与两人博弈不同,需要多 个得益矩阵,或者只能用描述法
动态博弈、重复博弈。
静态博弈:所有博弈方同时或可看作同时选择 策略的博弈 —田忌赛马、猜硬币、古诺模型
动态博弈:各博弈方的选择和行动又先后次序 且后选择、后行动的博弈方在自己选择、行 动之前可以看到其他博弈方的选择和行动 —弈棋、市场进入、领导——追随型市场 结构
重复博弈:同一个博弈反复进行所构成的博弈, 提供了实现更有效略博弈结果的新可能 —长期客户、长期合同、信誉问题
博弈论
孔融四届时,有一夛,父亭乘了冩丢梨回宛,
陶谦吏亸叹孜癿时俳,又问亸:“亵绉泶孜癿 觇
店看,佝觏为叴小梨刁算叾?”孔融回答该: “我丌
过觑了一次梨,哏哏単因此爱抋了我一辈子, 社伕
乔绎了我杳高癿荣觋。奝杸抂觑出癿遲丢多梨 看俺
昤道徇成本,简直就昤一本万利唲!
阿克洛夫:买卖
主对于要交易的“旧 车”存在信息不对称, 买主通常不愿意出高 价,这样持有好车的 买主只好退出市场, 市场上都剩下“坏 车”,买主则越来越 不愿意光顾,旧车市 场萎缩直至消失。
20 (q1 q2 q3)
0
i P qi [20 q1 q2 q3 ] qi
No Q 20
Q 20
Image
q1
q2
q3
P
1
2
3
4
8
6
2
8
16
能一致,也可以不一致
三、多人博弈
三个博弈方之间的博弈 可能存在“破坏者”:其策略选择对自身的利
益并没有影响,但却会对其他博弈方的利益产 生很大的,有时甚至是决定性的影响。申办奥 运会是典型例子。 多人博弈的表示有时与两人博弈不同,需要多 个得益矩阵,或者只能用描述法
动态博弈、重复博弈。
静态博弈:所有博弈方同时或可看作同时选择 策略的博弈 —田忌赛马、猜硬币、古诺模型
动态博弈:各博弈方的选择和行动又先后次序 且后选择、后行动的博弈方在自己选择、行 动之前可以看到其他博弈方的选择和行动 —弈棋、市场进入、领导——追随型市场 结构
重复博弈:同一个博弈反复进行所构成的博弈, 提供了实现更有效略博弈结果的新可能 —长期客户、长期合同、信誉问题
博弈论
孔融四届时,有一夛,父亭乘了冩丢梨回宛,
陶谦吏亸叹孜癿时俳,又问亸:“亵绉泶孜癿 觇
店看,佝觏为叴小梨刁算叾?”孔融回答该: “我丌
过觑了一次梨,哏哏単因此爱抋了我一辈子, 社伕
乔绎了我杳高癿荣觋。奝杸抂觑出癿遲丢多梨 看俺
昤道徇成本,简直就昤一本万利唲!
阿克洛夫:买卖
主对于要交易的“旧 车”存在信息不对称, 买主通常不愿意出高 价,这样持有好车的 买主只好退出市场, 市场上都剩下“坏 车”,买主则越来越 不愿意光顾,旧车市 场萎缩直至消失。
20 (q1 q2 q3)
0
i P qi [20 q1 q2 q3 ] qi
No Q 20
Q 20
Image
q1
q2
q3
P
1
2
3
4
8
6
2
8
16
《博弈论的基本概念》课件
智猪博弈
• 总结词:描述大猪和小猪在食槽附近争夺食物的策略博弈。
• 详细描述:在智猪博弈中,一个大猪和一个小猪共同生活在一个猪圈里,食槽位于猪圈的一端。每次食物被放入食槽时 ,大猪和小猪都有两种选择:冲向食槽或继续等待。如果大猪选择冲向食槽,小猪的最佳策略是等待,因为大猪吃掉大 部分食物后,小猪可以享用剩余的食物。相反,如果小猪选择冲向食槽,大猪的最佳策略也是等待,因为小猪可能无法 抢到任何食物。因此,无论大猪如何选择,小猪的最佳策略都是等待;同样地,无论小猪如何选择,大猪的最佳策略也 是等待。
合作博弈
特征
强调合作、协议和联盟,目标是实现共同利益。
应用领域
国际关系、商业合作、团队协作等。
非合作博弈
特征
强调竞争、自利和策略互动,目标是实现个人利益。
应用领域
市场竞争、个人决策、政治选举等。
动态博弈
特征
强调行动的顺序和信息传递,策略和 行动需考虑时间因素。
应用领域
商业竞争、投资决策、谈判策略等。
《博弈论的基本概念》ppt课件
目录
• 博弈论简介 • 博弈论的基本类型 • 博弈论的基本概念 • 博弈论的经典案例 • 博弈论的未来发展
01
博弈论简介
博弈论的定义
01
博弈论:研究决策主体在相互影 响、相互作用的环境中如何进行 决策,以及这种决策的均衡结果 的学科。
02
博弈论强调参与者之间的互动关 系,通过数学模型和理论分析来 研究策略选择和均衡结果。
应用领域:拍卖机制设计、保险市场 分析、医疗资源分配等。
03
博弈论的基本概念
参与者
01
02
03
参与者
在博弈中,参与者是决策 的主体,可以是个人或组 织。
博弈论的几个经典模型PPT课件
博弈论的几个经典模型
模型三、独立私人价值下的一级密 封拍卖/不完全信息静态博弈
N
高成本
低成本
A
默许
阻挠
A
默许
阻挠
B
B
B
B
进入 不进入 进入 不进入 进入 不进入 进入 不进入
(50,40)(300,0)(0,-10)(300,0)(100,30)(400,0)(140,-10)(400,0)
*贝叶斯纳什均衡
模型二、囚徒困境/非合作博弈
有两个小偷A和B联合犯事、私入民宅被 警察抓住。警方将两人分别置于不同的两个 房间内进行审讯,对每一个犯罪嫌疑人,警 方给出的政策是:如果一个犯罪嫌疑人坦白 了罪行,交出了赃物,于是证据确凿,两人 都被判有罪。如果另一个犯罪嫌疑人也作了 坦白,则两人各被判刑8年;如果另一个犯罪 嫌人没有坦白而是抵赖,则以妨碍公务罪(因 已有证据表明其有罪)再加刑2年,而坦白者 有功被减刑8年,立即释放。如果两人都抵赖, 则警方因证据不足不能判两人的偷窃罪,但 可以私入民宅的罪名将两人各判入狱1年。
为个人)他自己的最好策略,还是采用(作为集 体的一员)他们共同的最好策略?前者导致均衡 策略(坦白,坦白),支付为(-8,-8);后者的最 好策略是(抵赖,抵赖),支付为(-1,-1)。这里 反映了个体理性行为与集体理性行为之间的矛 盾、冲突。 • 此博弈只进行一次还是重复进行?如果博弈只 进行一次,参与人似乎只有坦白才是最好的策 略,因为没有理由相信对手会对你有信心,他 总认为你自己会坦白;因此,双方都采取坦白 策略。然而,若博弈进行多次,则结论将会发 生变化。
四,杀鸡给猴看。其实猴子是没有思维的,它们 有一定的群体意识,但没有社会意识,人们关 于它们的故事其实是说人自己的。我们这里也 讲一个猴子的故事……。
模型三、独立私人价值下的一级密 封拍卖/不完全信息静态博弈
N
高成本
低成本
A
默许
阻挠
A
默许
阻挠
B
B
B
B
进入 不进入 进入 不进入 进入 不进入 进入 不进入
(50,40)(300,0)(0,-10)(300,0)(100,30)(400,0)(140,-10)(400,0)
*贝叶斯纳什均衡
模型二、囚徒困境/非合作博弈
有两个小偷A和B联合犯事、私入民宅被 警察抓住。警方将两人分别置于不同的两个 房间内进行审讯,对每一个犯罪嫌疑人,警 方给出的政策是:如果一个犯罪嫌疑人坦白 了罪行,交出了赃物,于是证据确凿,两人 都被判有罪。如果另一个犯罪嫌疑人也作了 坦白,则两人各被判刑8年;如果另一个犯罪 嫌人没有坦白而是抵赖,则以妨碍公务罪(因 已有证据表明其有罪)再加刑2年,而坦白者 有功被减刑8年,立即释放。如果两人都抵赖, 则警方因证据不足不能判两人的偷窃罪,但 可以私入民宅的罪名将两人各判入狱1年。
为个人)他自己的最好策略,还是采用(作为集 体的一员)他们共同的最好策略?前者导致均衡 策略(坦白,坦白),支付为(-8,-8);后者的最 好策略是(抵赖,抵赖),支付为(-1,-1)。这里 反映了个体理性行为与集体理性行为之间的矛 盾、冲突。 • 此博弈只进行一次还是重复进行?如果博弈只 进行一次,参与人似乎只有坦白才是最好的策 略,因为没有理由相信对手会对你有信心,他 总认为你自己会坦白;因此,双方都采取坦白 策略。然而,若博弈进行多次,则结论将会发 生变化。
四,杀鸡给猴看。其实猴子是没有思维的,它们 有一定的群体意识,但没有社会意识,人们关 于它们的故事其实是说人自己的。我们这里也 讲一个猴子的故事……。
博弈论的几个经典模型课件
02
在这个模型中,如果双方都抵赖,则各自获得2年的监禁;如果双方都坦白,则 各自获得3年的监禁;如果一方坦白而另一方抵赖,则坦白的一方获得1年的监 禁,抵赖的一方获得10年的监禁。
03
囚徒困境反映了人类在有限理性和不完全信息下的决策问题。
囚徒困境的策略和最优解
01
02
03
在囚徒困境中,每个参 与者都有两种策略:坦
博弈论的发展趋势和应用前景
发展趋势
随着计算机科学的发展,博弈论在人工智能、机器学 习等领域的应用逐渐增多。同时,博弈论也在生物学 、环境科学、社会学等多个学科中得到广泛应用和发 展。未来,博弈论将继续探索更为复杂和现实的模型 ,以解释和预测更为复杂的行为和现象。
应用前景
博弈论在经济学、政治学、军事等领域有着广泛的应 用前景。例如,博弈论可以帮助理解国际贸易中的策 略行为、国际政治中的权力均衡以及军事战略中的最 优攻击策略等。此外,博弈论也在社交网络分析、市 场机制设计等领域展现出强大的应用潜力。
政治学中的应用
投票悖论
投票悖论是指在某些情况下,多数投票的结 果可能导致无法达成一致意见或产生不合理 的结果。在政治学中,投票悖论被用于探讨 民主制度的缺陷和改进方法。
权力均衡
权力均衡是一种政治博弈模型,它描述了政 治权力在多个参与者之间的分配和转移。在 政治学中,权力均衡被用于分析权力斗争、
政治制度稳定性和政策制定等问题。
纳什均衡模型被广泛应用于市场均衡、产业组织、公共经济学
等领域。
生物学
02
纳什均衡模型也被用于解释生物种群竞争、生态系统平衡等问
题。
社会学
03
纳什均衡模型可以用来分析社会现象,如犯罪、婚姻、教育等
矿产
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 大医医心:能医心者,才是大医。
0 绪论
▪ 一、从三国演义谈起
▪ 1、曹操走华容道,有一条大路和一条小路,走哪条路呢? ▪ 2、田忌与齐王赛马,孙膑出主意。 ▪ 3、三个和尚没水喝,为什么? ▪ 4、一个村子里,道路泥泞,村子里一家很富有,其他贫穷,
该修一条好路,能修成吗?
▪ 5、剪刀-石头-布,为什么成为猜先的选择? ▪ 6、黔驴是如何技穷的? ▪ 7、A、B、C三人去钓鱼,A钓了5条,B钓了3条,C没钓着,
第二阶段:创立期(20世纪40年代)。博弈论首次系统地被引入经济 学。
1944年冯·诺依曼(Von.Neuman)和摩根斯坦恩(Morgen Stlern)合作 出版了《对策论与经济行为》,从而奠定了合作博弈的理论与方法。
博弈论的创立与发展
第三阶段:大发展期(20世纪50’s—90’s)。非合作博弈以及合作博弈的理论获得了 空前的发展。
奇 沃 思 (F.Y.Edgeworth , 1925)——“ 双 寡 头 等 分 市 场 ” ; 霍 特 林 (H.Hotelling,1929)——产品差异而引起的“价格竞争”模型;斯塔克 尔伯格(H.V.Stackelberg,1934)——“领导——跟随(leader—follower)” 模 型 ; 斯 威 齐 (P.M.Sweezy , 1939)——“ 折 弯 的 需 求 曲 线 (Kinky Demand Curve)”模型等等。
为什么学习?
▪ 从学习中获得心灵的提高,获得心灵的享受。
▪ 学习,其实就为自己创造一个美丽的心灵世界的过程。
▪ 有人说,我也没什么追求,就学一点实用知识就行,但问题是, 你没有那些“无用”的知识,你怎么驾驭哪些实用的知识呢? “世人只知有用之用,而不知无用只用”。
▪ 很多人30岁后就不再读书,到60岁还是30年前的思维;很多人 感慨“现在一读书就头痛”;农村现在不要为生存而挣扎了,那 做什么呢?“我不打牌又做什么呢?”
▪ 博:? 弈:? ▪ 下棋的最高享受是什么?
✓ 囚徒困境(Prisoner’s dilemma)
博弈论的创立与发展
1、博弈论思想最早产生于我国古代
2000多年前的春秋时期孙武在《孙子兵法》中论述的军事思想和治 国策略,就蕴育了丰富和深刻的博弈论思想。
田忌赛马:齐威王的上、中、下马分别优于大将田忌的上、中、下, 但田忌上马、中马分别优于齐威王的中、下马。比赛规则:每次双方各 出三匹马,一对一比赛三场,第一场的输方要赔一千金给赢方。
纳什(Nash,1950)——n人非合作博弈及提出博弈均衡的定义 塔克(A Tucker)——提出“囚徒困境”(prisoner’s dilemma)模型 泽尔腾(Selten,1965)——提出精练子博弈纳什均衡概念,并把这一概念引入到了 动态分析之中 海萨尼(J.Harsnyi,1967~1986)——提出贝叶斯纳什均衡概念,并把这一概念引入 不完全信息博弈模型研究 泽尔腾(Selten ,1975),克瑞普斯(Kreps,1982)和威尔森(Wilson,1982)。 弗得伯格(Fudenberg,1991)和泰勒尔(Tirole,1991)研究了精练贝叶斯纳什均衡, 解决动态不完全信息博弈。泽尔腾定义了“颤抖手均衡”(trembling hand equilibrium); 克瑞普斯和威尔森定义了“序贯均衡”(Sequential equilibrium)并提出了著名的“信誉” 问题模型;弗得伯格和泰勒尔给出了“精练贝叶斯均衡”的正式定义。 颤抖手均衡>序贯均衡>精练贝叶斯均衡(但在许多情况下,三个概念是一致的) 博弈论近期发展:除了博弈论与信息经济学的结合外,还出现了新的理论与应用分 支诸如博弈学习理论、进化(演化)博弈论、博弈论与新制度经济学、博弈论与行为科学、 博弈论与实验经济学、博弈论与组织管理的结合。
第1章 博弈论基本模型
(Game Theory)
华侨大学商学院
什么是学习?
▪ 学习的三个层次(大学之道,在明明德,在亲民,在止于至善)
▪ 专业学习:谋职、谋生(身无长物、何以生存)。 ▪ 事理学习:明白事理、懂得分析生活中的很多问题。(崔琦:
明白这个世界是一个什么样子,这很重要)。一个人,其实只 要懂得了加减乘除四则运算,就可以挣到钱买房买车,在物质 世界中生活的很好。但这只是像一个盲人一样在生活,“春天 来了,但我却看不到” 。(明明德) ▪ 人生学习:充实人生、提高人生的境界、把学习融入人的生活 中。人不是做事和挣钱的工具,而是宇宙中的有血有肉的生灵, 需要提高生活的趣味,享受趣味化的人生,这就需要学习。一 个人,不会欣赏《二泉映月》,不会感受过禅宗的静谧,从来 也不思考什么是天行健,好像也是在生活。看看很多人下班后 在做什么?打牌、或者歌厅洗脚房等,当衣食住行解决了之后, 就不知怎么过了,只有赌博和玩乐,却找不到真正的趣味。 (身体在成长、心灵也在成长吗?)(新民) ▪ 仰望星空
▪ 每个人都生活在现实的物质世界和心灵的精神世界中,但很多人 只知现实世界的繁华,却不知心灵世界的清新和高远。行万里路、 读万卷书,就是为追求心灵世界。这些年我深刻体会到:生活的 基础是衣食住行,但生活的重点在于文化和精神。我不知道文化 有什么用,我只知道一个人没有了文化还有什么用呢?
▪ 教师的功能:催化剂(使学生更快速更深入地学习)
中午一起吃饭,把钓的鱼吃完了,C不好意思,就给了A和B 共8元钱,A和B如何分配?
▪ 二、什么是博弈论
▪ 1、安踏的广告是什么? ▪ 2、一般人平时的思维是怎么样的?
(决策,只知其一不知其二)(“我以为…”,“我觉得…”) ▪ 3、博弈论的思想是什么?(对策)
▪ 博弈,就是对手之间的游戏(game),在游戏中如何做到立 于不败之地。
齐 田忌策略:
上马 ∨
中马 ∨
下马 ∨
田
上马
中马
下马
结 果:
田忌将军每次输掉三千金
谋士孙膑 策略:
结 果:
齐
上马
中马
下马
∨
∧
∧
田
下马
上马
中马
ቤተ መጻሕፍቲ ባይዱ
田忌将军胜二负一赢一千金
博弈论的创立与发展
2、博弈论的发展阶段 第一阶段:萌芽期(20世纪40年代前)。利益冲突的研究是分散和初
步的、带有很大程度的随意性。 孙子兵法:古诺(Cournot,1883)—古诺的“双寡头垄断”模型;艾
0 绪论
▪ 一、从三国演义谈起
▪ 1、曹操走华容道,有一条大路和一条小路,走哪条路呢? ▪ 2、田忌与齐王赛马,孙膑出主意。 ▪ 3、三个和尚没水喝,为什么? ▪ 4、一个村子里,道路泥泞,村子里一家很富有,其他贫穷,
该修一条好路,能修成吗?
▪ 5、剪刀-石头-布,为什么成为猜先的选择? ▪ 6、黔驴是如何技穷的? ▪ 7、A、B、C三人去钓鱼,A钓了5条,B钓了3条,C没钓着,
第二阶段:创立期(20世纪40年代)。博弈论首次系统地被引入经济 学。
1944年冯·诺依曼(Von.Neuman)和摩根斯坦恩(Morgen Stlern)合作 出版了《对策论与经济行为》,从而奠定了合作博弈的理论与方法。
博弈论的创立与发展
第三阶段:大发展期(20世纪50’s—90’s)。非合作博弈以及合作博弈的理论获得了 空前的发展。
奇 沃 思 (F.Y.Edgeworth , 1925)——“ 双 寡 头 等 分 市 场 ” ; 霍 特 林 (H.Hotelling,1929)——产品差异而引起的“价格竞争”模型;斯塔克 尔伯格(H.V.Stackelberg,1934)——“领导——跟随(leader—follower)” 模 型 ; 斯 威 齐 (P.M.Sweezy , 1939)——“ 折 弯 的 需 求 曲 线 (Kinky Demand Curve)”模型等等。
为什么学习?
▪ 从学习中获得心灵的提高,获得心灵的享受。
▪ 学习,其实就为自己创造一个美丽的心灵世界的过程。
▪ 有人说,我也没什么追求,就学一点实用知识就行,但问题是, 你没有那些“无用”的知识,你怎么驾驭哪些实用的知识呢? “世人只知有用之用,而不知无用只用”。
▪ 很多人30岁后就不再读书,到60岁还是30年前的思维;很多人 感慨“现在一读书就头痛”;农村现在不要为生存而挣扎了,那 做什么呢?“我不打牌又做什么呢?”
▪ 博:? 弈:? ▪ 下棋的最高享受是什么?
✓ 囚徒困境(Prisoner’s dilemma)
博弈论的创立与发展
1、博弈论思想最早产生于我国古代
2000多年前的春秋时期孙武在《孙子兵法》中论述的军事思想和治 国策略,就蕴育了丰富和深刻的博弈论思想。
田忌赛马:齐威王的上、中、下马分别优于大将田忌的上、中、下, 但田忌上马、中马分别优于齐威王的中、下马。比赛规则:每次双方各 出三匹马,一对一比赛三场,第一场的输方要赔一千金给赢方。
纳什(Nash,1950)——n人非合作博弈及提出博弈均衡的定义 塔克(A Tucker)——提出“囚徒困境”(prisoner’s dilemma)模型 泽尔腾(Selten,1965)——提出精练子博弈纳什均衡概念,并把这一概念引入到了 动态分析之中 海萨尼(J.Harsnyi,1967~1986)——提出贝叶斯纳什均衡概念,并把这一概念引入 不完全信息博弈模型研究 泽尔腾(Selten ,1975),克瑞普斯(Kreps,1982)和威尔森(Wilson,1982)。 弗得伯格(Fudenberg,1991)和泰勒尔(Tirole,1991)研究了精练贝叶斯纳什均衡, 解决动态不完全信息博弈。泽尔腾定义了“颤抖手均衡”(trembling hand equilibrium); 克瑞普斯和威尔森定义了“序贯均衡”(Sequential equilibrium)并提出了著名的“信誉” 问题模型;弗得伯格和泰勒尔给出了“精练贝叶斯均衡”的正式定义。 颤抖手均衡>序贯均衡>精练贝叶斯均衡(但在许多情况下,三个概念是一致的) 博弈论近期发展:除了博弈论与信息经济学的结合外,还出现了新的理论与应用分 支诸如博弈学习理论、进化(演化)博弈论、博弈论与新制度经济学、博弈论与行为科学、 博弈论与实验经济学、博弈论与组织管理的结合。
第1章 博弈论基本模型
(Game Theory)
华侨大学商学院
什么是学习?
▪ 学习的三个层次(大学之道,在明明德,在亲民,在止于至善)
▪ 专业学习:谋职、谋生(身无长物、何以生存)。 ▪ 事理学习:明白事理、懂得分析生活中的很多问题。(崔琦:
明白这个世界是一个什么样子,这很重要)。一个人,其实只 要懂得了加减乘除四则运算,就可以挣到钱买房买车,在物质 世界中生活的很好。但这只是像一个盲人一样在生活,“春天 来了,但我却看不到” 。(明明德) ▪ 人生学习:充实人生、提高人生的境界、把学习融入人的生活 中。人不是做事和挣钱的工具,而是宇宙中的有血有肉的生灵, 需要提高生活的趣味,享受趣味化的人生,这就需要学习。一 个人,不会欣赏《二泉映月》,不会感受过禅宗的静谧,从来 也不思考什么是天行健,好像也是在生活。看看很多人下班后 在做什么?打牌、或者歌厅洗脚房等,当衣食住行解决了之后, 就不知怎么过了,只有赌博和玩乐,却找不到真正的趣味。 (身体在成长、心灵也在成长吗?)(新民) ▪ 仰望星空
▪ 每个人都生活在现实的物质世界和心灵的精神世界中,但很多人 只知现实世界的繁华,却不知心灵世界的清新和高远。行万里路、 读万卷书,就是为追求心灵世界。这些年我深刻体会到:生活的 基础是衣食住行,但生活的重点在于文化和精神。我不知道文化 有什么用,我只知道一个人没有了文化还有什么用呢?
▪ 教师的功能:催化剂(使学生更快速更深入地学习)
中午一起吃饭,把钓的鱼吃完了,C不好意思,就给了A和B 共8元钱,A和B如何分配?
▪ 二、什么是博弈论
▪ 1、安踏的广告是什么? ▪ 2、一般人平时的思维是怎么样的?
(决策,只知其一不知其二)(“我以为…”,“我觉得…”) ▪ 3、博弈论的思想是什么?(对策)
▪ 博弈,就是对手之间的游戏(game),在游戏中如何做到立 于不败之地。
齐 田忌策略:
上马 ∨
中马 ∨
下马 ∨
田
上马
中马
下马
结 果:
田忌将军每次输掉三千金
谋士孙膑 策略:
结 果:
齐
上马
中马
下马
∨
∧
∧
田
下马
上马
中马
ቤተ መጻሕፍቲ ባይዱ
田忌将军胜二负一赢一千金
博弈论的创立与发展
2、博弈论的发展阶段 第一阶段:萌芽期(20世纪40年代前)。利益冲突的研究是分散和初
步的、带有很大程度的随意性。 孙子兵法:古诺(Cournot,1883)—古诺的“双寡头垄断”模型;艾