酶学与酶工程重点总结
最新酶工程-重点整理总结

第一章绪论1、何为酶工程,试述其主要内容和任务。
答:(1)酶工程:酶的生产、改性与应用的技术过程称为酶工程。
(2)主要内容:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等。
(3)主要任务:经过预先设计,通过人工操作获得人们所需的酶,并通过各种方式使酶的催化特性得以改进,充分发挥其催化功能。
2、酶有哪些显著的催化特性?答:(1)酶催化作用的专一性强(①绝对转移性:一种酶只能催化一种第五进行一种反应;②相对专一性:一种酶能够催化一类结构相似的底物进行某种相同类型的反应);(2)酶催化作用的效率高(107~1013倍);(3)酶催化作用条件温和。
3、简述影响酶催化作用的主要因素。
答:(1)底物浓度的影响:决定酶催化作用的主要因素。
酶催化反应速度随底物浓度增加现增加在逐步趋向平衡再反而下降。
(2)酶浓度的影响:底物浓度足够高的条件下,酶催化反应速度与酶浓度成正比。
(3)温度的影响:适宜温度范围内,酶能进行催化反应,最适温度条件下,酶的催化反应速度达到最大。
一般60°C以上易失活,5°C以下活性极低,Taq聚合酶95°C下仍稳定。
(4)PH的影响:适宜PH范围内,酶才能显示其催化活性,最适pH条件下,酶催化反应速度达到最大。
(5)抑制剂的影响:在抑制剂的影响下,酶的催化活性降低甚至丧失,从而影响酶的催化功能,有竞争性抑制、非竞争性抑制、反竞争性抑制。
(6)激活剂的影响:在激活剂的作用下,酶的催化活性提高或者由无活性的酶生成有催化活性的酶。
如Ca、Mg、Co、Zn、Mn、等金属离子和Cl等无机负离子。
5、简述酶活力单位的概念和酶活力的测定方法。
答:概念:在特定条件下(温度可采用25°C,pH等条件均采用最适条件),每1min催化1μmol的底物转化为产物的酶量定义为1个酶活力单位(IU)。
(完整版)酶学与酶工程总结

➢Lecture 1 酶学与酶工程➢酶的概念:酶(enzyme)是一类由活细胞产生的,具有催化活性和高度专一性的特殊蛋白质,是一类生物催化剂。
➢➢酶的分类(6类)、组成、结构特点?和作用机制?组成:单体酶、寡聚酶、多酶复合体Note:一个酶蛋白可有多种催化活性,相当于多个酶(关注原核和真核生物的差别) 除水解酶和连接酶外,其他酶在反应时都需要特定的辅酶。
金属在酶催化中的作用:稳定酶构象、参与酶的催化作用(如激活底物)、电子传递体➢酶作为催化剂的显著特点:强大的催化能力:加快反应速度可高达1017倍;没有副反应;高度的专一性:各种酶都有专一性,但专一程度的严格性上有所差别;可调节性;➢同工酶的概念:同一种属中由不同基因或(复)等位基因编码的多肽链所组成的单体、纯聚体或杂交体,其理化及生物学性质不同而能催化相同反应的酶称同工酶。
同一基因生成的不同mRNA所翻译出来的酶蛋白也列入同工酶的范畴。
酶蛋白合成后经不同类型的共价修饰(如糖基化等)而造成的多种酶分子形式,严格来说不属于同工酶而称为synzyme,但也有人称其为次生性同工酶(secondary isozyme)。
不同种属中催化相同反应的酶称为xenozyme,也不属于同工酶。
➢酶的活性中心指必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物必需基团(essential group):酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的基团。
活性中心内的必需基团:结合基团(与底物相结合)和催化基团(催化底物转变成产物)活性中心外的必需基团:维持酶活性中心应有的空间构象所必需;构成酶活性中心的常见基团:His的咪唑基、Ser的-OH、Cys的-SH、Glu的γ-COOH。
➢酶的作用机制➢酶活力的调节➢酶的应用食品加工方面:生物技术在食品工业中应用的代表就是酶的应用,目前已经有几十种酶成功用于食品工业。
如葡萄糖、饴糖、果葡糖浆的生产、蛋白质制品加工、果蔬加工、食品保鲜以及改善食品品质与风味等。
酶工程期末重点总结

酶工程期末重点总结一、酶工程概述酶工程是将酶应用于工业领域的一门科学,通过对酶的研究和改良,可以提高酶的稳定性、催化活力、选择性和产量,以满足工业生产的需求。
酶工程的应用范围广泛,涉及生物技术、医药化学、食品工程等多个领域。
二、酶的产生和分离纯化1. 酶的产生:酶可以通过天然微生物、重组DNA技术等方法进行生产。
天然微生物通过发酵过程产生酶,而重组DNA技术可以将特定基因导入到宿主微生物中,使其产生目标酶。
2. 酶的分离纯化:酶的分离纯化通常包括细胞破碎、组织液处理、沉淀和层析等步骤。
其中,层析是一种常用的分离纯化方法,包括凝胶过滤层析、离子交换层析、亲和层析等。
三、酶的性质和特点1. 酶的性质:酶是一种特殊的蛋白质,具有催化作用。
酶的催化作用是高度选择性的,可以加速化学反应的速率并降低反应的能量活化值。
2. 酶的特点:酶具有高效、低成本、环境友好等特点。
由于酶具有高度选择性,因此可以在温和的条件下催化反应,减少能耗和废弃物产生。
四、酶的改良和优化酶的改良和优化是酶工程的核心内容之一,旨在提高酶的催化活力、选择性和稳定性,以满足工业生产的需求。
1. 酶的改造:通过理性设计和随机突变等手段,改变酶的氨基酸序列,以改善其性质。
常用的改造方法包括点突变、插入突变和删除突变等。
2. 酶的固定化:将酶固定在材料表面或载体上,增加酶的稳定性和重复使用性。
常用的固定化方法包括包埋法、凝胶包覆法和共价固定法等。
3. 酶的进化:通过模拟自然界的进化过程,通过多代选择和酶库筛选等方法,获得具有改良性质的酶。
进化方法包括DNA重组技术、DNA重组酶库和聚合酶链式反应等。
五、酶工程在工业中的应用酶工程在工业中的应用广泛,涉及到生物能源、纺织印染、制药等多个领域。
1. 生物能源:酶可以催化生物质转化为生物能源,如酶解纤维素制备生物乙醇。
2. 纺织印染:酶可以代替传统的化学处理方法,实现更加环保和高效的染色和整理。
3. 制药:酶可以用于合成药物和研发新药,如利用酶合成青霉素等抗生素。
酶工程精要

《酶工程》要点1、酶工程:酶的生产、改性与应用的技术过程。
酶的生产:获得酶的技术——微生物发酵产酶、动植物培养产酶和酶的提取与分离。
酶的改性:改进酶的催化特性技术过程——酶分子修饰、酶固定化、酶非水相催化和酶定向进化。
酶的应用:获得所需物质或除去不良物质技术过程——酶反应器的选择与设计以及酶在各个领域的应用。
2、酶工程的主要内容:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等。
3、酶的催化特点:(1)酶催化的专一性强——绝对与相对(2)酶催化效率高(3)作用条件温和4、影响酶催化作用的因素:(1)底物浓度——催化反应速度先随底物浓度增加而增加,达最大是趋于平衡,过量时反而下降。
(2)酶浓度——成正比。
(3)温度——过高过低影响酶活性,最适温度。
(4)PH——最适PH,极端PH酶分子空间构象改变而失活。
(5)抑制剂——可逆,不可逆。
(6)激活剂。
(7)底物结构类似物。
5、抑制机理:(1)竞争性抑制——抑制剂和底物竞争与酶分子的结合,V m不变,K m变小。
(2)非竞争性抑制——抑制剂和底物分别与酶分子结合,V m变小,K m不变。
(3)反竞争性抑制——抑制剂与中间复合体结合,V m和K m都变小。
6、酶的分类与命名:蛋白类酶——1氧化还原酶,2转移酶,3水解酶,4裂合酶,5异构酶,6连接酶(合成酶)。
四码编号法:第一个号码为六大类酶,第二个号码为亚类,第三个号码亚类中的小类,第四个号码该小类中的序号。
7、酶活力:一定条件下酶催化反应的初速度。
酶活力单位:特定条件下每1min催化1µmol的底物转化为产物的酶量为1个酶活力单位。
酶的比活力:特定条件下单位质量(mg)蛋白质或RNA所具有的酶活力单位数。
酶比活力=酶活力/mg蛋白质(RNA)8、酶的生产方法:(1)提取分离法——盐溶液提取、酸碱溶液提取、有机溶剂提取。
酶工程总结

酶工程:酶的生产,改性与应用的技术过程。
酶的命名:氧化还原酶,转移酶,水解酶,裂和酶,异构酶,合成酶。
酶的生产方法:提取分离法,生物合成法,化学合成法。
胞外酶:大多数水解酶是微生物为了利用细胞外的大分子而释放到细胞外的酶。
胞内酶:合成后仍留在细胞内发挥作用的酶。
易受到中间产物和终产物的调控。
组成酶:细胞内一直存在的酶,它的合成仅受遗传物质控制。
诱导酶:在环境中有诱导物(底物)存在时,微生物因诱导物的存在而产生的酶。
酶活力:一定条件下,酶所催化的反应初速度。
酶的比活力:是酶纯度的一个标准,是指在特定条件下,单位质量(mg )蛋白质或RNA 所具有的酶活力单位数。
酶的转换数:Kcat,又称摩尔催化活性,指每个酶分子每分钟催化底物转换的分子数。
酶的催化周期:酶的转换数的倒数。
指酶进行一次催化所需的时间。
催化基团接触残基 结合基团酶活性中心的组成 辅助残基结果残基非必须残基产酶微生物的基本要求:1、无致病性2、发酵周期短3、易于培养,营养要求低4、遗传稳定,不易变异退化5、产胞外酶更好常见产酶微生物:大肠杆菌、醋酸杆菌、枯草芽孢杆菌、根霉、曲霉操纵子包括哪些结构? 调节基因、启动子、操纵基因、结构基因酶合成的调节机制:1乳糖操纵 酶的诱导2 Trp 操纵 酶的阻遏(末端产物调控)衰减子调控 Trp-Trna3 分解代谢物阻遏培养基设计原则:1选择合适的培养物质2营养物浓度和配比3物理化学条件4 优化设计提高产酶的措施:1 添加诱导物2 控制阻遏物浓度 3 添加表面活性剂(增大细胞膜穿透性)4 添加产酶促进剂酶合成的模式1同步合成型 微生物生长便产生酶,进入生长期,酶大量产生,进入平衡期,酶生成停止。
2 中期合成型 大部分为诱导型酶3 延续合成型 (最理想模式)µ 比生长浓度 x 细胞浓度 Rx 细胞生长速率宏观产酶动力学:研究群体细胞的产酶速率及其影响因素。
微观产酶动力学:研究细胞中酶合成速率及其影响因素。
酶学与酶工程重点总结

酶学与酶⼯程重点总结第⼆章酶学基础⼀、酶的活性中⼼(active center,active site)(⼀)活性中⼼和必需基团1、与酶活性显⽰有关的,具有结合和催化底物形成产物的空间区域,叫酶的活性中⼼,⼜叫活性部位。
2、活性中⼼可分为结合部位和催化部位。
3、结合部位决定酶的专⼀性,催化部位决定酶所催化反应的性质。
4、酶结构概述(1)活性中⼼是⼀个三维实体。
(2)是有⼀些⼀级结构上可能相距较远的氨基酸侧链基团组成,有的还包含辅酶或辅基的某⼀部分基团。
(3)在酶分⼦表⾯呈裂缝状。
(4)酶活性中⼼的催化位点和结合位点可以不⽌⼀个。
(5)酶活性中⼼的基团都是必需基团,但必需基团还包括活性中⼼以外的基团。
5、酶分⼦中的氨基酸残基或其侧链基团可以分为四类1.接触残基2.辅助残基3.结构残基4.⾮贡献残基(⼆)酶活性中⼼中的化学基团的鉴别1.⾮特异性共价修饰:某些化学试剂能使蛋⽩质中氨基酸残基的侧链基团反应引起共价结合、氧化或还原修饰反应,使基团结构和性质发⽣变化。
如果某基团修饰后不引起酶活⼒的变化,就可初步认为此基团可能是⾮必需基团;反之,如修饰后引起酶活⼒的降低或丧失,则此基团可能是酶的必需基团。
2.亲和标记共价修饰剂是底物的类似物,可专⼀性地引⼊酶的活性中⼼,并具有活泼的化学基团(如卤素),可与活性中⼼的基团形成稳定的共价键。
因其作⽤机制是利⽤酶对底物类似物的亲和性⽽将酶共价标记的,故称为亲和标记。
3.差别标记在过量底物或可逆抑制剂遮蔽活性中⼼的情况下,加⼊共价修饰剂,使后者只修饰活性中⼼以外的有关基团;然后去除底物或可逆抑制剂,暴露活性中⼼,再⽤同位素标记的向⼀修饰剂作⽤于活性中⼼的同类基团;将酶⽔解后分离带有同位素的氯基酸,即可确定该氨基酸参与活性中⼼。
4.蛋⽩质⼯程这是研究酶必需基闭和活性中⼼的最先进⽅法,即将酶蛋⽩相应的互补DNA(cDNA)定点突变,此突变的cDNA表达出只有⼀个或⼏个氨基酸被置换的酶蛋⽩,再测定其活性,可以知道被置换的氨基酸是否为活⼒所必需。
酶工程重点

一、名词解释1、酶生物合成中的转录与翻译酶合成中的转录是指以核苷三磷酸为底物,以DNA链为模板,在RNA聚合酶的作用下合成RNA分子。
酶合成中的翻译是指以氨基酸为底物,以mRNA为模板,在酶和辅助因子的共同作用下合成蛋白质的多肽链。
2、诱导与阻遏酶合成的诱导是指加入某种物质使酶的合成开始或加速进行的过程;酶合成的阻遏作用则是指加入某种物质使酶的合成中止或减缓进行的过程。
这些物质分别称为诱导物及阻遏物。
3、酶回收率与酶纯化比(纯度提高比)酶的回收率是指某纯化步骤后酶的总活力与该步骤前的总活力之比。
酶的纯化比是之某纯化步骤后的酶的比活力与该步骤前的比活力之比。
4、酶的变性与酶的失活酶的变性是指酶分子结构中的氢键、二硫键及范德华力被破坏,酶的空间结构也受到破坏,原来有序、完整的结构变成了无序,松散的结构,失去了原有的生理功能。
酶的失活则是指酶的自身活性受损(包括辅酶、金属离子受损),失去了与底物结合的能力。
5固定化酶:是将水溶性酶经物理或化学方法处理后,成为不溶于水但仍具有酶活性的一种酶的衍生物。
6酶分子修饰,通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰。
7酶的共价修饰,指的是酶蛋白肽链上的一些基团与某种化学基团发生可逆的共价结合,从而改变酶的活性。
在共价修饰过程中,酶发生无活性(或低活性)与有活性(或高活性)两种形式的互变;包括磷酸化与脱磷酸化、乙酰化与脱乙酰化、甲基化与脱甲基化、腺苷化与脱腺苷化及-SH与-s-s-的互变等8酶的化学修饰,酶蛋白肽链上的某些基团,在另一种酶的催化下发生可逆的共价修饰,从而引起酶活性改变,这种调节称为酶的化学修饰。
9酶比活力,指在特定条件下,每1mg酶蛋白所具有的酶活力单位数,是酶制剂纯度的指标。
10、非水酶学:通常酶发挥催化作用都是在水相中进行的,研究酶在有机相中的催化机理的学科即为非水酶学11、产酶动力学:主要研究细胞产酶速率及各种因素对产酶速率的影响,包括宏观产酶动力学和微观产酶动力学。
酶工程 总结

第一章酶学概论1.酶:具有生物催化功能的生物大分子。
2.酶工程:酶的生产、改性与应用的技术过程。
3.酶活力(enzyme activity):指在一定条件下,酶所催化的反应初速度。
4.酶活力单位(IU):在特定条件下(温度可采用25℃,pH值等条件均采用最适条件),每1min催化1µmol的底物转化为产物的酶量定义为一个酶活力单位,这个单位称为国际单位(IU)5.酶转换数Kp:又称为摩尔催化活性,是指每个酶分子每分钟催化底物转化的分子数。
即每摩尔酶每分钟催化底物转化为产物的摩尔数,是酶催化效率的一个指标。
6.酶的催化周期:转换数的倒数,即催化周期是指酶进行一次催化所需的时间,单位为毫秒(ms)或微秒(µs)。
7.酶结合效率:又称为酶的固定化效率,是指酶与载体结合的百分率。
酶结合效率的计算一般由固定化的总活力减去未结合的酶活力所得到的差值,再除以用于固定化的总酶活力而得到。
8.酶活力回收率:指固定化酶的总活力与用于固定化的总酶活力的百分率。
9.相对酶活力:具有相同酶蛋白(或酶RNA)量的固定化酶活力与游离酶活力的比值。
10.核酸酶(ribozyme):具有催化活性的RNA。
抗体酶(Abzyme):具有催化活力的抗体。
11.组成型酶:有的酶在细胞中的量比较恒定,环境因素对这些酶的合成速度影响不大,如DNA/RNA聚合酶。
12.适应型酶/调节性酶:有的酶在细胞内的含量变化很大,其合成速度明显受到环境因素的影响,如β-半乳糖苷酶13.模拟酶:又称人工合成酶或酶模型,是指根据酶的作用原理,用人工合成的具有活性中心和催化作用的非蛋白质结构的化合物。
14.酶催化作用的特点:1.酶催化作用的专一性强(相对/绝对专一性) 2.酶催化作用的效率高3.酶催化作用的条件温和 4.酶活性受到调节和控制15.影响酶催化作用的因素:1.底物浓度的影响2.酶浓度的影响3.产物浓度的影响4.温度的影响5.pH值的影响6.抑制剂的影响7.激活剂的影响16.酶生物合成的调节:1、分解代谢物阻遏作用2、酶生物合成的诱导作用3、酶生物合成的反馈阻遏作用17. 从如下实验方法和结果分析酶生物合成的调节作用。
酶学与酶工程学习重点知识整理

2012年10月酶学与酶工程复习重点酶的定义与化学本质定义:酶---活细胞产生的,能在细胞内外起作用的(催化)生理活性物质。
酶的化学本质: 酶是生物体内一类具有催化活性和特殊空间构象的生物大分子物质,包括蛋白质和核酸等酶催化作用的特点1.催化效率极高反应速度比无催化剂时高108~1020倍,比其他催化剂高107~1013倍。
常用分子比来表示,即每摩尔的酶催化底物的摩尔数。
Kcat:每秒每个酶分子能催化多少个微摩尔的底物发生转化。
2.高度的专一性酶对反应物(底物)具有严格的选择性。
一种酶只能催化某一种或某一类特定的底物发生反应。
绝对专一性:有些酶只作用于一种底物,催化一个反应,而不作用于任何其它物质。
相对专一性:这类酶对结构相近的一类底物都有作用。
包括键专一性和簇(基团)专一性。
立体异构专一性:这类酶能辨别底物不同的立体异构体,只对其中的某一种构型起作用,而不催化其他异构体。
包括旋光异构专一性和几何异构专一性。
3.反应条件温和酶在强酸、强碱、高温、高压等条件下会变性失活,故催化反应一般在常温、常压、接近中性的溶液中进行。
4.酶的催化活性是受调节控制的易受各种因素的影响,在活细胞内受到精密严格的调节控制,这是酶与非生物催化剂的本质区别。
酶的国际系统分类法及编号1.氧化还原酶2.转移酶3.水解酶4.裂合酶5.异构酶6.合成酶酶活力、酶单位、比活力酶活力(也称酶活性):指酶专一催化一定化学反应的能力。
酶单位(u): 在酶作用最适底物、最适pH、最适缓冲液的离子强度及25 ℃下,每分钟内催化1.0微摩尔底物转化为产物底酶量为一个国际酶活力的单位(IU)。
比活力(specific activity):每mg蛋白质所具有的酶活力单位数,用(U/mg蛋白)来表示。
酶活力测定方法单体酶,寡聚酶(oligomeric enzyme ),多酶体系(multienzyme system) ,多酶复合体单体酶:它是一个具有完整生物功能、独立三级结构的单酶蛋白部分只有一条多肽链的酶称为单体酶。
酶工程重点汇总

第一章绪论酶:生物细胞产生的,具有催化能力的生物大分子。
酶分两大类:主要由蛋白质组成——蛋白类酶(P酶)主要由核糖核酸组成——核酸类酶(R酶)酶工程:研究酶的生产与应用的技术过程。
酶工程分两大类:化学酶工程与生物酶工程第二章酶学基本原理1.酶的分类:氧化还原酶,转移酶,水解酶,裂合酶 ,异构酶,合成酶。
2.新酶:核酸酶:是唯一的非蛋白酶。
它是一类特殊的RNA,能够催化RNA分子中的磷酸酯键的水解及逆反应。
抗体酶:抗体通过对抗原的包裹、降解等作用使抗原失活,其生物特性十分类似于酶3.根据酶的组成分为单纯蛋白酶,结合蛋白酶4.根据酶蛋白分子的特点,可将酶分为:单体酶,寡聚酶,多酶复合物5.根据金属离子与酶蛋白结合程度,可分为:金属酶和金属激酶6.结合蛋白酶的组成:酶蛋白、辅酶,辅基和金属离子。
结合蛋白酶的蛋白质部分称为酶蛋白,非蛋白质部分包括辅酶、辅基及金属离子(统称为辅因子)。
7.全酶:酶蛋白与辅因子组成的完整分子称为全酶。
单纯的酶蛋白无催化功能。
一般来说,全酶中的辅酶决定了酶所催化的类型(反应专一性),而酶蛋白则决定了所催化的底物类型(底物专一性)。
8.金属酶中离子催化作用 :1. 提高水的亲核性能 2.电荷屏蔽作用3.电子传递中间体9.激酶:是一种磷酸化酶类,在ATP存在下催化葡萄糖,甘油等磷酸化。
10.酶蛋白的结构:一级结构:多肽链的氨基酸残基的排列顺序。
(它是由基因上遗传密码的排列顺序所决定的)二级结构:指多肽链借助于氢键沿一维方向排列成具有周期性的结构的构象,是多肽链局部的空间结构(构象)。
二级结构形式:α-螺旋、β-折叠、β-转角和无规则卷曲等(α-螺旋:同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键。
)三级结构:指整条多肽链由二级结构元件构建成的总三维结构,包括一级结构中相距远的肽段之间的几何相互关系,骨架和侧链在内的所有原子的空间排列。
四级结构:在亚基和亚基之间通过疏水作用等次级键结合成为有序排列的特定的空间结构必需基团:这些基团若经化学修饰使其改变,则酶的活性丧失。
酶工程考试重点

酶工程考试重点第一章绪论1、什么是酶工程:是一项利用酶、含酶细胞器或细胞(微生物、动物植物)作为生物催化剂来完成重要的化学反应,并将相应底物转化成有用物资的应用型生物高新技术。
2、酶对日常生活生产的影响:①作为一种新的工业催化剂;②用于食品加工;③用作医药;④用作分析试剂;⑤用于筛选新的生理活性物质;⑥用作开发新能源;⑦用于污水处理。
3、固定化酶的优点:①稳定性高;②酶可反复利用;③产物纯度高,副产物少,从而有利于提纯;④生产可连续化,自动化;⑤设备小型化,节约能源等。
第二章和第三章1、酶的生产方法:①提取分离法;②生物合成法(发酵法);③化学合成法。
2、产酶的微生物:①细菌:无芽孢杆菌、芽孢杆菌、球菌;②放线菌:链霉菌(主要产胞外酶和抗生素);③酵母菌:酿酒酵母(真核生物);④霉菌:根霉、毛霉和犁头霉;⑤曲霉:青霉、木霉。
3、酶生物合成的模式:①生长偶联型:酶的合成与细胞生长同步进行,所以又称同步合成型。
当细胞进入生长期,酶即开始大量合成;当细胞生长进入平衡期后,酶的合成随即停止。
(根瘤生产脂肪酶和树状黄杆菌生产葡萄糖异构酶)②非生长偶联型:只有当细胞生长进入平衡期以后,酶才开始合成并大量积累,所以又称滞后合成型。
(黑曲霉产生的酸性蛋白酶)③部分生长偶然联型:又称连续合成型,酶的合成与细胞生长同步开始在细胞生长进入平衡期后,酶还可以继续合成。
(黑曲霉中聚乳糖醛酸酶)4、提高酶产量的策略:⑴条件控制:①添加诱导物:酶的作用底物、酶作用底物的前体、酶的反应产物、酶的底物类似物或底物修饰物等。
②降低阻遏物浓度:设法从培养基中除去其终产物,以消除反馈阻遏;向培养基中加入代谢途径的某个抑制因子,切断代谢途径通路,可限制细胞内末端产物的积累,便可达到缓解其反馈阻遏的目的;③促进分泌;④添加产酶促进剂。
⑵遗传控制:①改良菌种:使诱导型变为组成型;使阻遏型变成去阻遏型;②基因工程育种。
5、用于产酶细胞需具备哪些条件:①酶的产量高;②容易培养和管理;③产酶性能稳定;④利于酶产品的分离纯化;⑤安全可靠。
酶学和酶工程研究今后的方向、进展、热点问题

目录
• 酶学和酶工程研究概述 • 酶学和酶工程研究的方向 • 酶学和酶工程研究的进展 • 酶学和酶工程研究的热点问题 • 未来展望与挑战
01 酶学和酶工程研究概述
酶学和酶工程定义
酶学
研究酶的特性、功能、作用机制 以及酶促反应动力学的一门科学 。
酶工程
利用酶或细胞代谢途径进行工业 化生产,以满足人类对化学品、 药物、食品和其他产品的需求。
酶的稳定性与活性调控
总结词
酶的稳定性与活性调控是酶工程中的关 键技术,对于酶的应用具有重要意义。
VS
详细描述
通过蛋白质工程和基因工程技术,可以实 现对酶的稳定性与活性调控。例如,通过 定点突变技术对酶的活性中心进行改造, 以提高其热稳定性或改变其催化特性;通 过调节基因表达水平或添加小分子调节剂 ,实现对酶活性的调控,以满足不同应用 场景的需求。
酶学和酶工程的重要性
生物催化
酶是生物催化反应的核心,能够 高效地催化各种有机化学反应, 具有高选择性、低能耗和环保的
特点。
工业生产
酶工程技术的应用能够实现工业化 生产,提高产品质量、降低成本、 减少环境污染。
生物医药
酶在生物医药领域具有广泛的应用, 如药物合成、生物诊断和治疗等。
产与应用
要点一
总结词
酶的工业化生产与应用是酶工程研究的重点领域,具有广 阔的市场前景。
要点二
详细描述
随着生物技术的不断发展,越来越多的酶被发现和分离, 并在工业生产中得到广泛应用。例如,在生物医药领域, 酶可用于药物的合成和改造;在环保领域,酶可用于污染 物的降解和治理;在食品工业领域,酶可用于食品加工和 品质改良。未来,随着酶工程技术的不断进步,酶在工业 生产中的应用将更加广泛和高效。
酶工程重点

第一章绪论1.酶是生物合成的具有催化功能我那个的生物大分子。
按照其化学组成,可以分为蛋白类酶(P酶)和核酸类酶(R酶)。
按照催化作用的类型,将蛋白类酶分为6大类:氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶。
将核酸类酶分为剪切酶、剪接酶、多功能酶三类。
2.酶工程:酶的生产与应用的技术过程3.酶工程的组成:1、酶的生产;2.酶的分离纯化;3、酶的固定化;4.酶的生物反应器;5.酶的应用。
4.酶催化反应的基本动力学方程米氏方程:V=Vm[S]/(Km+[S])5.酶还可分为单纯酶(只有蛋白质成分)和结合酶(蛋白质成分和非蛋白质部分的辅酶和辅基)。
6. 酶催化作用特点:1、酶催化作用的专一性强:绝对专一性(锁钥学说);相对专一性(诱导契合学说)。
基团专一性键专一性2、酶催化作用的效率高(由于酶催化反应可以使反应所需的活化能显著降低);3、酶催化作用的条件温和。
7.影响酶催化作用的因素⑴.底物浓度的影响米氏方程:v=VmS/(Km+S)式中:v——反应速度S——底物浓度Vm——最大反应速度Km——米氏常数,为酶催化反应速度等于最大反应速度的一半时底物的浓度。
物理意义:与底物的亲和力。
Km在实际应用中的重要意义:1.鉴定酶;2.判断酶的最佳底物;3.计算一定速度下的底物浓度;4.了解酶的底物在体内具有的浓度水平;⑵.酶浓度的影响:V=K[E]⑶. 温度的影响最适温度:在某一特定的温度的条件下,酶催化反应速度达到最大,这就是最适温度。
添加酶的作用底物或者某些稳定剂可以适当提高酶的热稳定性。
、⑷.pH的影响原因:主要在不同的ph值条件下,酶分子和底物分子中的基团的解离状态发生改变,从而影响酶分子的构象以及酶与底物的结合能力和催化能力。
在极端的ph条件下,酶分子的空间结构发生改变,从而引起酶的变性失活。
⑸.抑制剂的影响抑制剂:能够使酶的催化活性降低或者丧失的物质。
不可逆性抑制剂:与酶分子结合后,抑制剂难于除去,酶活性不能恢复。
酶工程课程期末总结

酶工程课程期末总结引言酶工程是一门综合性应用学科,涉及生物学、化学、工程学等多个学科的知识。
通过对酶的研究和应用,可以提高酶的活性、稳定性和选择性,从而在生物技术、制药、食品加工、环境保护等领域得到广泛应用。
在酶工程课程的学习中,我们深入掌握了酶的分类、酶的性质、酶催化反应机理,以及酶工程的基本原理和方法。
本文将对酶工程课程进行总结和回顾。
一、酶的分类酶是一类可以催化生物反应的蛋白质,根据酶的催化反应类型和底物,可以将酶分为六大类:氧化还原酶、转移酶、水解酶、异构酶、合成酶和裂解酶。
每一类酶都有其特定的底物和催化机理。
通过了解和掌握各种酶的分类和属性,可以更好地选择和应用适当的酶。
二、酶的性质酶具有高度的专一性、高效催化和可调节性等特点。
酶的专一性使其只对特定底物具有催化活性,而对其他物质无作用。
酶的催化效率高,可以大大加速生物反应速度。
此外,酶的活性还可以受到温度、pH值和金属离子等环境因素的影响,可以进行调节和控制。
三、酶催化反应机理酶催化反应的机理主要有两种:键合模型和诱导拟钥模型。
键合模型认为酶与底物之间形成亲和力强的作用,而诱导拟钥模型则认为底物在与酶结合后,酶的三维结构会发生变化,从而适应催化反应的需要。
了解酶催化反应机理,可以更好地理解酶的催化过程和调控方式。
四、酶工程的基本原理和方法酶工程是指通过改变酶的基因序列或表达条件,来提高酶的活性、稳定性和选择性等性质。
酶工程可以通过基因重组技术、蛋白工程技术、诱变和筛选等方法来实现。
其中,基因重组技术可以通过克隆和转化方法,插入外源基因到宿主细胞中,从而大量产生目标酶。
蛋白工程技术则通过改变酶的氨基酸序列,来改变酶的性质。
诱变和筛选则通过诱发随机突变和筛选优良突变体的方法,来提高酶的性能。
酶工程的基本原理和方法为我们进一步进行酶研究和应用提供了有效的手段。
五、酶工程在生物技术领域的应用酶工程在生物技术领域有广泛的应用,主要包括制药、食品加工、生物燃料和环境保护等方面。
酶工程考试重点整理

第一章绪论:酶学(Enzymology)是研究酶的性质、酶的作用规律、酶的结构和功能、酶的生物学功能及酶的应用的科学。
酶工程(Enzyme engineering) 又称酶技术,是酶制剂的大批量生产和应用的技术。
是酶学、微生物学的基本原理与化学工程有机结合而产生的交叉科学技术。
生物催化剂(改变生化反应的速率,不改变反应的平衡点和性质以及反应方向,本身在反应前后也不发生变化的生物活性分子,外在因素),酶:酶是一种高效、高度专一、和生命活动密切相关的、蛋白质性质的生物催化剂(更高的催化效率,更高的反应专一性,温和的反应条件,具有调节能力,本质是蛋白质;)酶的本质(具有生物活性的蛋白质或RNA),第二章酶的分类和命名酶的分类(根据催化作用分为六大类:氧化还原酶类,转移酶类,水解酶类,裂合酶类,异构酶类,合成酶类)酶分子结构与功能:①酶的蛋白质本质为酶的催化活性提供了多种功能性残基。
②酶的一级结构一方面为酶准备了功能片段,另一方面又为酶形成特定的活性构象奠定基础。
③酶通过高级结构将相应的功能基团组织在酶分子的特定区域(如凹穴),形成活性中心;活性中心指直接参与和底物结合并参与催化底物转化的各有关氨基酸按特定构象分布组成的活性结构。
④活性中心的这种活性结构也要求活性中心以外的其他氨基酸残基共同维系;这些残基被修饰、改变,或相互间连接被破坏,活性中心就会瓦解,酶失活。
活性中心(与催化作用直接相关的少数氨基酸残基组成的催化区域,具有严格保守性,构象依赖于酶分子空间结构的完整性,活性中心各基团的相对位置得以维持,就可以保证全酶的活力)结合部位(binding site)和催化部位(catalytic site)。
催化过程:酶和底物的结合;催化底物进行转化。
酶分子是在一级结构基础上,通过二、三级的折叠盘绕,形成了具有催化功能的特定活性构象结构域;酶分子是以这个活性构象结构域参与和底物结合,参与对底物进行催化,这个结构域就是“活性中心”第三章酶促反应动力学:比活力specific activity(每毫克蛋白里面所含有的酶活力单位数U/mg),活力(又叫酶活力单位,一个标准单位:在特定条件下,如25摄氏度,pH和底物浓度等其他条件都是最适条件时,一分钟能转化一微摩尔底物所需的酶量),Km,米氏常数,在特定的反应条件下,是个特征常数,描述酶反应性质,反应条件对酶反应速度的影响。
矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
酶工程要点总结

酶工程要点1、酶:具有生物催化功能的生物大分子。
酶工程:由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新的技术科学。
从应用目的出发,研究酶的产生、酶的制备与改造、酶反应器以及酶的各方面应用。
2、酶的活性中心:①指酶与底物结合并之反应的区域,一般位于酶分子表面的裂缝或凹槽,往往是疏水区,可容纳一个或多个小分子底物或大分子底物的一部分。
②酶的必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异地结合,并将底物转化为产物,这一区域称为酶的活性中心。
3、酶的必需基团:①包含结合基团和催化基团;结合基团具有与底物特异结合的作用,催化基团则直接参与催化,可使底物敏感键断裂。
两者组成酶的活性中心。
②酶分子中氨基酸残基的侧链由不同的化学基团组成,其中一些与酶的活性密切相关的一类化学基团称为酶分子的必需基团。
4、辅酶(coenzyme):与酶蛋白结合疏松(不形成共价键,能通过透析、超滤方法去除)。
5、辅基(prosthetic group):与酶蛋白结合紧密(以共价键相连,不能通过透析、超滤方法去除) 辅酶与辅基无严格区别。
7、酶催化作用的特点:(1)专一性;(2)高效性;(3)作用条件温和;(4)酶活受到很多因素影响。
8、酶的专一性:(1)绝对专一性:酶只作用于特定结构的底物,进行一种专一的反应,生成一种特定结构的产物;(2)相对专一性:酶作用于一类结构相似的化合物进行某种相同类型的反应;分为1)键专一性:有的酶只作用于一定的键,而对键两端的基团并无严格要求;2)基团专一性:另一些酶,除要求作用于一定的键以外,对键两端的基团还有一定要求,往往是对其中一个基团要求严格,对另一个基团则要求不严格。
(3)立体结构专一性:酶仅作用于立体异构体中的一种。
9、影响酶催化作用的主要因素:(1)底物;(2)酶浓度;(3)温度;(4)pH;(5)抑制剂;(6)激活剂10、抑制剂:凡能使酶的催化活性下降而不引起酶蛋白变性的物质统称为酶的抑制剂。
《酶工程》总复习整理

《酶工程》总复习整理生物酶工程主要研究内容(1)用基因工程技术大量生产酶(克隆酶)如:尿激酶原和尿激酶是治疗血栓病的有效药物。
用DNA重组技术将人尿激酶原的结构基因转移到大肠杆菌中,可使大肠杆菌细胞生产人尿激酶原,从而取代从大量的人尿中提取尿激酶。
(2)用蛋白质工程技术定点改变酶结构基因(突变酶)如:酪氨酰-tRNA合成酶,用Ala5(第5位的丙氨酸)取代Thr51(第51位的丝氨酸),使该酶对底物ATP的亲和力提高了100倍。
(3)设计新的酶结构基因,生产自然界从未有过的性能稳定、活性更高的新酶。
酶工程原理和基本过程菌种→扩大培养→发酵→发酵酶液→酶的提取→酶成品↓原料→前处理→杀菌→酶反应器←酶的固定化↓反应液→产品提取→产品●世界三大酶制剂公司Novo Nordisk (丹麦)Genencor International(美国杰能科国际公司)Cuitor(芬兰)●三大公司销售额占世界总额的70%2、米氏常数的意义Km:米氏常数,物理意义为反应速率为最大速率Vmax一半时底物的浓度,单位与底物浓度同(1)Km 是酶的一个特性常数,Km大小只与酶性质有关,而与酶浓度无关。
当底物确定,反应温度,pH及离子强度一定时,Km值为常数,可用来鉴别酶。
Km一般在1×10-6~10-1mol/L之间不同的酶Km 值不同,测定Km要在相同测定条件(pH、温度、离子强度)下进行。
(2)Km 值可用于判断酶的专一性和天然产物,若一个酶有几种底物就有几个Km值,其中Km值最小的底物称为该酶的最适底物,又称天然底物。
(3)可近似表示酶与底物亲和力的大小。
真正表示酶与底物亲和力为Ks =k2/k1(注 Km = k2+k3/ k1)(4)已知Km可由[S]计算v,或由v计算[S]。
酶活力是指一定条件下,酶所催化的反应初速度;酶催化反应速度用单位时间内底物的减少量或产物的增加量来表示。
V=-dS/dt=dP/dt二、酶的活力单位:表示酶活力大小所用的两个国际单位1IU:在最适反应条件下,每分钟催化1μmol底物转化为产物所需的酶量,称一个IU。
酶工程复习要点

酶工程复习要点名词解释:1、酶活性中心:只有少数特异的氨基酸残基与底物结合及催化作用。
这些特异的氨基酸残基比较集中的区域,即与酶活力直接相关的区域称为没得活性中心或活性部位。
2、酶别构调节的定义:某些小分子物质与酶的非催化部位或别位特异地结合,引起酶蛋白构象的变化,从而改变酶活性的方式。
能发生别构效应的酶称为别构酶。
3、效应物:与别构酶的别构中心结合,能调节酶的反应速率和代谢过程的物质。
4、同促效应和异促效应:当一个效应物分子和酶结合后,影响另一个相同的效应物分子与酶的另一部位结合称为同促效应;如果一分子效应物和酶结合后,影响另一不同的效应物分子与酶的另一部位结合则称为异促效应。
一个效应物分子与别构酶的别构中心结合后对第二个效应物分子结合的影响称为协同效应。
当一个效应物分子与酶蛋白的一个部位结合后,可使另一部位对效应物亲和力增高的效应称为正协同效应,反之称为负协同效应。
5、酶的专一性:酶对催化的反应和反应物有严格的选择性。
1、结构专一性:分为绝对专一性和相对专一性2、立体异构专一性:分为光学专一性和几何专一性6、酶原的激活:分子内肽键的一处或多处断裂,进而使分子构象发生某种改变,形成酶的活性中心。
7、酶原:有些酶在细胞内合成及初分泌时是没有活性的酶的前体,称为酶原。
8、酶活力:又称为酶活性,是指酶催化某一化学反应的能力。
9、抑制剂:能降低酶的活性,使酶促反应速率减慢的物质10、分解代谢物阻遏:是指细胞内同时有两种分解底物(碳源或氮源)存在时,利用快的那种分解底物会阻遏利用慢的底物有关酶合成的现象。
11、反馈阻遏作用:是指酶催化作用的产物或代谢途径的末端产物使该酶的生物合成受阻的过程。
12、操纵子:原核基因组中,由几个功能相关的结构基因及其调控区组成一个基因表达的协同单位,这种单位称为操纵子。
操纵子分:诱导型操纵子、阻遏型操纵子13、效应物:效应物是一类低相对分子质量的信号物质(如糖类及其衍生物、氨基酸和核苷酸等),包括诱导物和辅阻遏物两种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。