液压流体力学基础知识..
合集下载
液压流体力学基础
第二章 液压流体力学基础
学习要点: 1、液压油(流体)的基本性质。 2、流体静力学基本规律。 3、流体动力学基本概念。 4、流体流量连续方程、流体能量平衡方程 (伯努利方程)方程、动量方程。 5、小孔及缝隙流量计算。 6、压力损失、液压冲击与空穴现象。
第一节 液压系统的工作介质
液压工作介质
第一节 液压系统的工作介质
第一节 液压系统的工作介质
二、液压工作介质的主要性能(续)
4、液体的热容量、比热
热容量: 液体与外界发生热量交换而使流体的温度变化,
热量交换对温度的变化率称为流体的热容量。 比 热: 单位质量液体的热容量成为比热。
第一节 液压系统的工作介质
5、液体的含气量、空气分离压和汽化压
◎ 含气量: 液体中所含空气的体积百分比数量叫含气量。两种形式:
温度高时选用粘度较高的液压油,减少容积损失。
第一节 液压系统的工作介质
5、液压油的污染与保养
液压油使用一段时间后会受到污染,常使阀内的阀芯 卡死,并使油封加速磨耗及液压缸内壁磨损。造成液压油 污染的原因有三方面:
1)污染: a 外部侵入的污物;b 外部生成的不纯物。
2)恶化: 液压油的恶化速度与含水量、气泡、压力、油温、金属
※ 液体的粘度会随温度、压力变化而变化。 液体的粘度对温度变化十分敏感,对液压系统的性能
有明显影响。温度升高,粘度将显著下降,造成泄漏、磨 损增加、效率降低等问题;温度下降,粘度增加,造成流 动困难及泵转动不易等问题,液压系统工作时发热较严重。 所以,一般控制系统中均要设计冷却装置,尽量保持油液 工作温度的稳定。 ※ 液体承受的压力增大,液体内聚力增大,粘度也随之增 大,但变化幅度不大,低压时一般不考虑。
二、液压工作介质的主要性能(续)
学习要点: 1、液压油(流体)的基本性质。 2、流体静力学基本规律。 3、流体动力学基本概念。 4、流体流量连续方程、流体能量平衡方程 (伯努利方程)方程、动量方程。 5、小孔及缝隙流量计算。 6、压力损失、液压冲击与空穴现象。
第一节 液压系统的工作介质
液压工作介质
第一节 液压系统的工作介质
第一节 液压系统的工作介质
二、液压工作介质的主要性能(续)
4、液体的热容量、比热
热容量: 液体与外界发生热量交换而使流体的温度变化,
热量交换对温度的变化率称为流体的热容量。 比 热: 单位质量液体的热容量成为比热。
第一节 液压系统的工作介质
5、液体的含气量、空气分离压和汽化压
◎ 含气量: 液体中所含空气的体积百分比数量叫含气量。两种形式:
温度高时选用粘度较高的液压油,减少容积损失。
第一节 液压系统的工作介质
5、液压油的污染与保养
液压油使用一段时间后会受到污染,常使阀内的阀芯 卡死,并使油封加速磨耗及液压缸内壁磨损。造成液压油 污染的原因有三方面:
1)污染: a 外部侵入的污物;b 外部生成的不纯物。
2)恶化: 液压油的恶化速度与含水量、气泡、压力、油温、金属
※ 液体的粘度会随温度、压力变化而变化。 液体的粘度对温度变化十分敏感,对液压系统的性能
有明显影响。温度升高,粘度将显著下降,造成泄漏、磨 损增加、效率降低等问题;温度下降,粘度增加,造成流 动困难及泵转动不易等问题,液压系统工作时发热较严重。 所以,一般控制系统中均要设计冷却装置,尽量保持油液 工作温度的稳定。 ※ 液体承受的压力增大,液体内聚力增大,粘度也随之增 大,但变化幅度不大,低压时一般不考虑。
二、液压工作介质的主要性能(续)
液压流体力学基础
第一章 液压流体力学基础
第二节 液体静力学
四. 静压力对固体壁面的作用力 液体和固体壁面接触时,固体壁面将受到液体静压
力的作用 当固体壁面为平面时,液体压力在该平面的总作
用力 F = p A,方向垂直于该平面。 当固体壁面为曲面时,液体压力在曲面某方向上
的总作用力 F = p Ax , Ax 为曲面在该方向的投影面 积。
动力粘度μ和运动粘度ν的量纲计算:
ν=μ/ρ
ν:m2/s
μ:Ns/m2 ρ :Kg/m3
所以 m2/s = Ns/m2 ÷ Kg/m3 = Nsm/Kg
Kg =Nsm ÷ m2/s= Ns2/m
由于 Ft=mv 所以 Ns = Kgm/s Kg =Ns2/m
另外: μ:Ns/m2 或 Pas 由于P=pq 所以 Nm/s =Pa m3/s
二.静压力基本方程式 p=p0+ρgh 静压力分布特征: 1)压力由两部分组成:液面压力p0,自重形成的压 力ρgh。 2)液体内的压力与液体深度成正比。 3)离液面深度相同处各点的压力相等,压力相等的 所有点组成等压面,重力作用下静止液体的等压面 为水平面。
第一章 液压流体力学基础
第二节 液体静力学
第四节 管道流动
通过管道的流量 q =(πd 4/(128μl))Δp
dA 2rdr dq udA 2urdr
u p (R2 r 2 )
4l
q d 4 p 128 l
第一章 液压流体力学基础
第四节 管道流动
管道内的平均流速 v = (d2/32μl )Δp
第一章 液压流体力学基础
第二节 液体静力学
液体静力学 静压力及其特性 静压力基本方程式 帕斯卡原理 静压力对固体壁面的作用力
液压流体力学基础
• 式中μ—衡量流体黏性的比例系数,称为绝对黏度或动力黏度; • du/dy—流体层间速度差异的程度,称为速度梯度。
上一页 下一页 返回
2.1 液压油的主要性质及选用
• 流体的黏度通常有三种不同的测试单位。 • (1)绝对黏度μ • 绝对黏度又称动力黏度,它直接表示流体的黏性即内摩擦力的大小。其 计算公式为
• 2.2.2 液体静力学基本方程及其物理意义
• 静止液体内部受力情况可用图2-2来说明。根据静压力的特性,作用于 这个液柱上的力在各方向都呈平衡,现求各作用力在z方向的平衡方程。
上一页
下一页 返回
2.2 流体静力学基础
• 微小液柱顶面上的作用力为p0dA(方向向下)和液柱本身的重力 G=pghdA(方向向下),液柱底面对液柱的作用力为pdA(方向向上),则 平衡方程为
上一页 返回
2.2 流体静力学基础
• 2.2.1 液体的压力及其性质
• 作用在液体上的力有两种类型:一种是质量力,另一种是表面力。 • 质量力作用在液体所有质点上,它的大小与质量成正比。属于这种力 的有重力、惯性力等。 • 表面力作用于所研究液体的表面上,如法向力、切向力。表面力可以 是其他物体(例如活塞、大气层)作用在液体上的力,也可以是一部分液 体作用在另一部分液体上的力。 • 所谓静压力是指静止液体单位面积上所受的法向力,用p表示。 • 液体内某质点处的法向力ΔF对其微小面积ΔΑ比值的极限称为静压力p, 即
• 式中R—过流断面的水力半径。
上一页 下一页 返回
2.3 流体动力学基础
• R等于液流的有效截面积A和它的湿周(有效截面的周界长度)x之比, 即 • 又如正方形的管道,边长为b,则湿周为4b,因而水力半径为R = b/4。水力半径的大小,对管道的通流能力影响很大。水力半径大, 表明流体与管壁的接触少,同流能力强;水力半径小,表明流体与管 壁的接触多,同流能力差,容易堵塞。
液压流体力学基础知识
真空度=|负的相对压力|=|绝对压力 - 大气压力|
整理ppt
16
2. 压力的单位
国际单位制单位 国际单位制单位为Pa(帕)、N/m2(我国法定 计量单位)或兆帕(MPa),1MPa=106Pa。 工程制单位 kgf/cm2。国外也有用bar(巴),1bar=105Pa。 标准大气压 1标准大气压=101325Pa。 液体柱高度 h=p/(ρg),常用的有水柱、汞柱等,如1个标准 大 气压约等于10m水柱高。
1
F(FX 2FY2FZ2)2
整理ppt
18
§2.3 液体动力学基础
作用在液体上的两种力:质量力和表面力 静压力:单位面积上所受的法向力。静压力在液体传动中简 称压力,在物理学中称为压强。本书以后只用“压力”一词。 静止液体中某点处微小面积A上作用有法线力F,则该点 的压力定义为
p lim F A0 A
整理ppt
12
若法向作用力F均匀地作用在面积A上,则压力可表示为
整理ppt
17
2.2.5 液体静压力对固体壁面的作用力
当承受压力的固体壁面为平面时:则作用在其上的总作用力等于 压力与该壁面面积之积
F p D2
4
当承受压力的固体壁面是曲面时:曲面上总作用力在某一方向上 的分力等于曲面在与该方向垂直平面内的投影面积与静压力的乘 积。若已知曲面上总作用力在三个坐标轴方向的分量分别为Fx、 Fy和Fz时,总作用力的大小为:
整理ppt
15
2.2.4 压力的表示方法及单位
1. 压力的表示方法
相对压力(表压力): 以大气压力为基准,测
量所得的压力,是高于大气 压的部分 。 绝对压力: 以绝对零压为基 准测得的压力
绝对压力=相对压力 + 大气压力 真空度:如果液体中某点的绝对压力小于大气压力,则称该点出现真 空。此时相对压力为负值,常将这一负相对压力的绝对值称为该点 的真空度
整理ppt
16
2. 压力的单位
国际单位制单位 国际单位制单位为Pa(帕)、N/m2(我国法定 计量单位)或兆帕(MPa),1MPa=106Pa。 工程制单位 kgf/cm2。国外也有用bar(巴),1bar=105Pa。 标准大气压 1标准大气压=101325Pa。 液体柱高度 h=p/(ρg),常用的有水柱、汞柱等,如1个标准 大 气压约等于10m水柱高。
1
F(FX 2FY2FZ2)2
整理ppt
18
§2.3 液体动力学基础
作用在液体上的两种力:质量力和表面力 静压力:单位面积上所受的法向力。静压力在液体传动中简 称压力,在物理学中称为压强。本书以后只用“压力”一词。 静止液体中某点处微小面积A上作用有法线力F,则该点 的压力定义为
p lim F A0 A
整理ppt
12
若法向作用力F均匀地作用在面积A上,则压力可表示为
整理ppt
17
2.2.5 液体静压力对固体壁面的作用力
当承受压力的固体壁面为平面时:则作用在其上的总作用力等于 压力与该壁面面积之积
F p D2
4
当承受压力的固体壁面是曲面时:曲面上总作用力在某一方向上 的分力等于曲面在与该方向垂直平面内的投影面积与静压力的乘 积。若已知曲面上总作用力在三个坐标轴方向的分量分别为Fx、 Fy和Fz时,总作用力的大小为:
整理ppt
15
2.2.4 压力的表示方法及单位
1. 压力的表示方法
相对压力(表压力): 以大气压力为基准,测
量所得的压力,是高于大气 压的部分 。 绝对压力: 以绝对零压为基 准测得的压力
绝对压力=相对压力 + 大气压力 真空度:如果液体中某点的绝对压力小于大气压力,则称该点出现真 空。此时相对压力为负值,常将这一负相对压力的绝对值称为该点 的真空度
第1章 液压流体力学基础
作业:1-16
1-17
二、流体平衡微分方程 1 欧拉平衡方程 1755年 Euler
z(铅垂方向) dx
dy
p dx (p )dydz x 2
fz
fy fx z y
dz
y
p dx (p )dydz x 2
x
x
根据牛顿第二定理: Fx 0
1 p fx 0 x
1 p 0 类似地: f y y 1 p fz 0 z
3、进行压力损失计算时应注意哪些问题?
作业:
P48:1-14
q =K A
m △P
液压冲击动画演示
思考题:
1、在工程实际中,如何应用薄壁小孔、厚壁小
孔和细长孔?为什么? 2、在液压系统中,如何有效控制泄漏? 3、液体流经缝隙的流量与哪些因素有关? 3、液压冲击和气穴现象产生的原因,有何危害? 如何预防?
P
P
p
弹簧
液体(密闭)
注意:
*当油液中混有空气时,其压缩性会显 著地增加,并将严重影响液压系统的工 作性能。故在液压系统中尽量减少油液 中的空气含量。
牛顿内摩擦定律
思考题
1、试述油液粘性的定义和牛顿内摩擦定律。 2、液压油的牌号是怎样规定的?说明N32、N12 的含义。 3、影响油液粘度的主要因素是什么? 4、试述选用液压油的依据和原则,防止液压油污染 的措施。
一、液体静压力及其特性
1. 作 用 于 流 体 上 的 力
作用在液体上的力有两种,即质量力和表面力。 ① 质量力: 指与流体质量成正比的力。
直线:
如:重力、惯性力
离心:
F ma F mr
② 表面力: 指与流体的作用面积成正比的力。 如:固体壁面对液体的作用力,液体表面上气体的作用力等 外力
液压传动第三章 流体力学基础
1、理想流体和恒定流动
理想流体:既无粘性,又无压缩性的假想液体。
实际流体:有粘性,又有压缩性的液体。
恒定流动:液体在流动时,通过空间某一点的压力、速度和密度等运
动参数只随位置变化,与时 间无关。
非恒定流:液体在流动时,通过空间某一点的压力、速度和密度等
运动参数至少有一个是随时 间变化的。
2、流线 流管、流束、通流截面
dqdt
u22 2
dqdt
u12 2
势能:ΔEP gdqh2dt gdqh1dt
外力做的功=能量变化:
W ΔE ΔEK ΔEP
p1
g
u12 2g
h1
p2
g
u22 2g
h2
1.理想流体的能量方程
p1
g
u12 2g
h1
p2
g
u22 2g
h2
2、实际流体伯努利方程
实际流体:有粘性、可压缩、非恒定流动 速度修正:动能修正系数
正确设计和使用液压泵站。 液压系统各元部件的连接处要密封可靠,严防
空气侵入。 采用抗腐蚀能力强的金属材料,提高零件的机
械强度,减小零件表面粗糙度值。
第六节 液 压 冲 击
一、管内液流速度突变引起的液压冲击
有一液位恒定并能保持 液面压力不变的容器如 图3-40所示。
二、运动部件制动所产生的液压冲击
第四节 孔口和缝隙液流
一、薄壁小孔
➢ 薄壁小孔是指小孔的长度和直径之比l/d<0.5的孔, 一般孔口边缘做成刃口形式,如图3-25所示。
➢薄壁小孔的流量计算
对于图所示的通过薄壁小孔的液体,取小孔前后截面1-1和2-2列伯努利方程
p1
g
v12 2g
第三章 液压流体力学基础
e2
当Ae A2时h ( 1 ) 1 则 v e 1
2 e
2g cv 2p
2( p1 p2 )
流经小孔的流量:
2 p q ve Ae v2 .cc A0 CcCv A0
2 p Cd A0
薄壁孔(l/d0<=0.5)和短孔(0.5>l/d0<=4)的流量计算式 均用此式,但Cc、Cv的大小不同。 式中流量系数Cd=Cc.Cv, Cc 为截面收缩系数, Cc = Ae / A0 Cv 为速度系数; Cd由经验公式或实验确 定。A0为过流断面面积,小孔前后的压差p=p1-p2
第三章 液压流体力学基础
本章重点掌握: 1、压力及其对固体璧面的作用力; 2、液体动力学的基本概念(通流截面、流量、 流速);
3、流体动力学的三大方程(连续性方程、伯努 利方程、动量方程)的应用; 4、压力损失的定义及计算;
5、小孔及缝隙的流量计算
§3-1
静止液体的力学特性
一、压力及其特性
液体在单位面积上所受的内法线方向的法 向力称液体的压力。
q 1 A1 2 A2 constant
液体在密封容腔中连续流动时,流过所有断 面的流量都相等; 平均流速与过流断面成反比。
例:
1
d1
4
2
D
4
2
q
1
D
V
d
(D d )
2
2
4
2
d2
4
2
d1 V1 q1
d2 V2 q2
q q
1
2
三、伯努利方程(液体的能量守恒方程)
液压流体力学基础_
第二章 液压传动的流体力学基础
液体静力学基础 液体动力学基础 管路压力损失计算 液流流经孔口及隙缝的特性 液压冲击
§
2-2
液体动力学基础
液体动力学研究液体在外力作用下运动规律, 液体动力学研究液体在外力作用下运动规律, 液体在外力作用下运动规律 即研究作用在液体上的力与液体运动之间的关系。 即研究作用在液体上的力与液体运动之间的关系。 由于液体具有粘性,流动时要产生摩擦力, 由于液体具有粘性,流动时要产生摩擦力,因此 研究液体流动问题时必须考虑粘性的影响。 研究液体流动问题时必须考虑粘性的影响。
垂直于液体流动方向的截面称为通流截面 垂直于液体流动方向的截面称为通流截面 , 也叫过流断面。 也叫过流断面。 过流断面 单位时间t内流过某通流截面的液体体积V 单位时间t内流过某通流截面的液体体积V称 流量Q 为流量Q,即: Q=V/t=v·A (A-通流截面面积, 平均流速) Q=V/t=v A (A-通流截面面积,v-平均流速) 可看出,流速为流量与通流面积之比 为流量与通流面积之比。 可看出,流速为流量与通流面积之比。实际上 由于液体具有粘性,液体在管道内流动时,通流 由于液体具有粘性,液体在管道内流动时, 截面上各点的流速是不相等的。 截面上各点的流速是不相等的。管道中心处流速 最大;越靠近管壁流速越小;管壁处的流速为零。 最大;越靠近管壁流速越小;管壁处的流速为零。 为方便起见,以后所指流速均为平均流速。 为方便起见,以后所指流速均为平均流速。
3.伯努利方程应用举例 伯努利方程应用举例
(1) 计算泵吸油腔的真空度或泵允许的最大吸油 高度
如图所示,设泵的吸油口比油箱液高h, 如图所示,设泵的吸油口比油箱液高h 取油箱液面I 和泵进口处截面II II列 II取油箱液面I-I水平面。 伯努利方程,并取截面I-I为基准水平面。 泵吸油口真空度为: 泵吸油口真空度为: /ρg+v /2g=P /ρg+ P1/ρg+v12/2g=P2/ρg+h+v22/2g+hw 为油箱液面压力, P1为油箱液面压力,P2为泵吸油口的绝对 压力
液体静力学基础 液体动力学基础 管路压力损失计算 液流流经孔口及隙缝的特性 液压冲击
§
2-2
液体动力学基础
液体动力学研究液体在外力作用下运动规律, 液体动力学研究液体在外力作用下运动规律, 液体在外力作用下运动规律 即研究作用在液体上的力与液体运动之间的关系。 即研究作用在液体上的力与液体运动之间的关系。 由于液体具有粘性,流动时要产生摩擦力, 由于液体具有粘性,流动时要产生摩擦力,因此 研究液体流动问题时必须考虑粘性的影响。 研究液体流动问题时必须考虑粘性的影响。
垂直于液体流动方向的截面称为通流截面 垂直于液体流动方向的截面称为通流截面 , 也叫过流断面。 也叫过流断面。 过流断面 单位时间t内流过某通流截面的液体体积V 单位时间t内流过某通流截面的液体体积V称 流量Q 为流量Q,即: Q=V/t=v·A (A-通流截面面积, 平均流速) Q=V/t=v A (A-通流截面面积,v-平均流速) 可看出,流速为流量与通流面积之比 为流量与通流面积之比。 可看出,流速为流量与通流面积之比。实际上 由于液体具有粘性,液体在管道内流动时,通流 由于液体具有粘性,液体在管道内流动时, 截面上各点的流速是不相等的。 截面上各点的流速是不相等的。管道中心处流速 最大;越靠近管壁流速越小;管壁处的流速为零。 最大;越靠近管壁流速越小;管壁处的流速为零。 为方便起见,以后所指流速均为平均流速。 为方便起见,以后所指流速均为平均流速。
3.伯努利方程应用举例 伯努利方程应用举例
(1) 计算泵吸油腔的真空度或泵允许的最大吸油 高度
如图所示,设泵的吸油口比油箱液高h, 如图所示,设泵的吸油口比油箱液高h 取油箱液面I 和泵进口处截面II II列 II取油箱液面I-I水平面。 伯努利方程,并取截面I-I为基准水平面。 泵吸油口真空度为: 泵吸油口真空度为: /ρg+v /2g=P /ρg+ P1/ρg+v12/2g=P2/ρg+h+v22/2g+hw 为油箱液面压力, P1为油箱液面压力,P2为泵吸油口的绝对 压力
第二章液压流体力学基础知识
层流:液体中质点沿 管道作直线运动而没有 横向运动,即液体作分 层流动,各层间的流体 互不混杂。如图所示。
湍流: 液体中质点除沿 管道轴线运动外,还有 横向运动,呈现紊乱混 杂状态。 也称湍流。
实验证明,液体在圆管中的流动状态不仅与管内的平均流速v有关,还 和管径d、液体的运动粘度ν有关。
雷诺数:由这三个参数组成的无量纲数。雷诺数来判别液体流动时究竟是层 流还是湍流。
二、圆管层流
液体在圆管中的层流流动式液压传动中的常见现象。设计和使用液压系统时,就希望管 道中的也留保持这种状态。
取图中一段液柱进行分析,半径为r、长度l、两端压力p1、p2。 可以证明(P42):液体等速流动作层流运动时,管内流速随半径按抛物线规律分布:
u p R2 r2
4l
p p1 p2 为控制体积端压差,
1)Re较低时,光滑的层流边界层较厚,管壁粗糙突起被掩盖,沿程阻力系数只与Re 有关λ=f(Re)。称水力光滑管
2)Re增大时,层流边界层变薄,部分突起显露,λ与Re和△/d(△为管壁粗糙度,d 为管径)有关,λ=f(Re,△/d)。称水力粗糙管
3)Re进一步增大时,管壁粗糙度完全显露,λ仅与△/d有关,λ=f(△/d),这时称为进 入阻力平方区。
l
控制体积长度 粘度
在半径为r处取一厚dr的圆环,其面积为dA=2πr dr。通过环的流量
dq=udA= 2πur dr
对其由r=R到r=0范围内积分,可得圆管层流的流量计算公式
q
R4 8l
p
d4 128l
p
表明:如欲将粘度为μ的液体,在直径为d ,长度为l的直管中,以流量q流
过,则管两端需有p 的压降。
q Cd wxv
第二章 液压流体力学基础
1.2静力学
1.3动力学
1.4 压力 损失
1.5 小孔 和缝隙流 量
1.6 液压 冲击空穴 现象
盛放在密封容器内的液体,其外加压力p0发生 变化时,只要液体仍然保持原有的静止状态, 液体中的任一点的压力,均将发生同样大小的 变化。
1.1液压油
§1-3 液体动力学基础
液体动力学: 1.基本概念; 2.基本方程: 连续方程 (质量守恒定律) 伯努利方程(能量守恒定律) 动量方程 (动量守恒定律)
1.2静力学
1.3动力学
1.4 压力 损失
1.5 小孔 和缝隙流 量
1.6 液压 冲击空穴 现象
1.1液压油
四、液压油的污染及控制
1、污染的危害 (1)堵塞 (2)加速液压元件的磨损,擦伤密封件, 造成泄漏增加 (3)水分和空气的混入会降低液压油的润 滑能力,并使其变质,产生气蚀,使液压 元件加速损坏,使液压系统出现振动、噪 音、爬行等现象。
1.6 液压 冲击空穴 现象
1.1液压油
§1-2 液体静力学
三、压力的表示方法及单位
1.绝对压力
2.相对压力 3.真空度 帕(Pa):N/㎡
1.2静力学
1.3动力学
1.4 压力 损失
1.5 小孔 和缝隙流 量
1MPa 106 Pa
1bar 10 Pa
5
1.6 液压 冲击空穴 现象
绝对压力=相对压力+大气压力 真空度=大气压力-绝对压力=负的相对压力
1.2静力学
1.3动力学
1.4 压力 损失
1.5 小孔 和缝隙流 量
1.6 液压 冲击空穴 现象
1.1液压油
2、液压油的品种
主要分为:矿油型、合成型和乳化型三大类
液压流体力学基础
表面力作用于所研究液体的表面上,如法向 力、切向力。
液压传动
一、液体静压力及其特性
表面力 法向力
切向力
液体
由于理想液体质点间的内聚力很小,液体不 能抵抗拉力或切向力,即使是微小的拉力或切向 力都会使液体产生流动。
因为静止液体不存在质点间的相对运动,也 就不存在拉力或切向力,所以,静止液体只能承 受压力 。
液压传动
三、重力作用下静力学基本规律
容器内盛有液体,液体水平面上的表面压力
p0
p0 为 p0,现研究距液面 h 深处某点 b 的压力。
h
在液体中取出一底部通过 b 点的垂直小液柱,
ρgh
b
液柱的高为 h,底面积为dA。
dA
pb
pb
处于平衡状态时,液柱在垂直方向的力平衡
方程为 pbdA=p0dA+ ghdA
A1
q vA 常数
2
1
不可压缩液体作定常流动时的连续性方程。
【物理意义】在稳定流动的情况下,当不考虑液体的压缩性时, 通过管道各通流截面的流量相等。
液压传动
二、连续性方程
【 例 题 1】 已 知 流 量 q1=25L/min , 小 活
v1
塞 杆 直 径 d1=20mm , 直 径 D1=75mm ,
向的动量方程。如在x方向的动量方程可写成
Fx q 2v2x 1v1x
特别注意,在工程上往往需要的是固体壁面所受到的液流作用 力,即ΣF的反作用力ΣF’(称为稳态液动力)。
液压传动
三、动量方程
【例题3】求图中滑阀阀芯所受的轴向稳态液动力。
θ q
解:取阀进出口之间的液体为研究
v2 v1 q
一、液体的流动状态 二、雷诺实验 三、雷诺数
液压传动
一、液体静压力及其特性
表面力 法向力
切向力
液体
由于理想液体质点间的内聚力很小,液体不 能抵抗拉力或切向力,即使是微小的拉力或切向 力都会使液体产生流动。
因为静止液体不存在质点间的相对运动,也 就不存在拉力或切向力,所以,静止液体只能承 受压力 。
液压传动
三、重力作用下静力学基本规律
容器内盛有液体,液体水平面上的表面压力
p0
p0 为 p0,现研究距液面 h 深处某点 b 的压力。
h
在液体中取出一底部通过 b 点的垂直小液柱,
ρgh
b
液柱的高为 h,底面积为dA。
dA
pb
pb
处于平衡状态时,液柱在垂直方向的力平衡
方程为 pbdA=p0dA+ ghdA
A1
q vA 常数
2
1
不可压缩液体作定常流动时的连续性方程。
【物理意义】在稳定流动的情况下,当不考虑液体的压缩性时, 通过管道各通流截面的流量相等。
液压传动
二、连续性方程
【 例 题 1】 已 知 流 量 q1=25L/min , 小 活
v1
塞 杆 直 径 d1=20mm , 直 径 D1=75mm ,
向的动量方程。如在x方向的动量方程可写成
Fx q 2v2x 1v1x
特别注意,在工程上往往需要的是固体壁面所受到的液流作用 力,即ΣF的反作用力ΣF’(称为稳态液动力)。
液压传动
三、动量方程
【例题3】求图中滑阀阀芯所受的轴向稳态液动力。
θ q
解:取阀进出口之间的液体为研究
v2 v1 q
一、液体的流动状态 二、雷诺实验 三、雷诺数
第二章液压流体力学基础
一、液体静压力及其特性
1、压力:液体单位面上所受的法向力称为压力。 这一定义在物理学中称为压强,用p表示,单位为 Pa(N/m2)或MPa 1MPa=106Pa(其他单位见表)
Pa 1X105 bat 1 at 1bf/in2 atm
0.986923
mmH2O
1.01972X 104
mmHG
7.50062X102 3
a
h1 h2 p1
15
p1 gh1
1 12
2
p2 gh2
2 2 2
2
pw
α1 α2动能修正系数,层流时α=2,紊流时α=1
•3、动量方程
在液压传动中,要计算液流作用在固体壁面上的力时, 应用动量方程求解比较方便。 刚体力学动量定律:作用在物体上的力的大小等于物体 在力作用方向上的动量的变化率,即
p r
v
2
2
---局部阻力系数。 各种局部装臵的结构的ξ值可查相关手册
返回
(四)、管路系统的总压力损失
l v 2 v 2 p p p d 2 2
上式仅在两相邻的局部损失之间的距离大于
管道内径10∽20倍时才是正确的,否则液体
受前一个局部阻力的干扰还没有稳定下来, 就又经历后一个局部压力。它所受干扰就更 为严重因而利用上式算得的压力值比实际数 值小。
1、尽量缩短管道长度,减少管道弯曲和截面突变;
2、提高管道内壁的加工质量,力求光滑;
3、选用的液压油粘度要适当;
4、减小流速 其中流速的影响最大,故管道内液体的流速不能太快 ,但太小又使管道直径太大,成本增高,因此需统筹考 虑.推荐按下表中数值选取。
36
表 油液流经不同元件时的推荐流速
2、液压流体力学知识
⒋黏度指数提高剂 用来提高油液的黏度,使其使用的温度范围 扩大。 其他添加剂在此不多介绍。 四、液压传动用油的要求、选择 在液压传动中,油液是传递动力或力矩的工 作介质,所选用油液的性质将直接影响到液 压传动系统工作的好坏。必须正确选择液压 油。
(一)对液压传动用油的基本要求 ①合适的黏度和良好的粘温特性; ②润滑性能好; ③对密封材料的相容性; ④对氧化、乳化和剪切都有良好的稳定性,长 期工作不易变质; ⑤抗泡沫性好、腐蚀性小; ⑥清洁度高,质地纯洁,杂质少; ⑦燃点高、凝固点低; ⑧对人无害,成本低。
(二)油液的选择 在具体选择液压油的粘度时,一般应考虑下 列具体因素: 1.液压系统中工作压力的高低。 2.液压系统中运动速度的快慢。 3.液压系统周围环境温度。 有时也从以下几个因素考虑: ①液压系统所处的环境; ②液压系统的工作条件; ③液压油的性质; ④经济性;
P6表1-1是液压泵使用油液的粘度范围。
第二章 液压流体力学基础知识 主要掌握的知识点是:
液压流体力 学基础知识
工作液体 -介质 (液压油)
静止液体 的性质
流动液体 的性质
液体流动时 液体流动时 的压力损失 的泄漏
液压冲击 气穴现象
§2-1 液压油的性质
(Working medium of hydraulics— hydraulic oil)
动力粘度的物理意义: 液体在单位速度梯度 (|dv/dy|=1)下流动时,相邻液层单位面积 上的内摩擦力。 动力粘度µ的单位: 帕· 秒(Pa· s)帕=N/㎡ (帕· 秒 —N · S/㎡, 1Pa· s=1N· S/㎡) 通过动力粘度的公式得知:在静止液体中,由 于速度梯度等于零内摩擦力为零,故液体在 静止液体状态下不显粘性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流束
流管 通流截面
通过一条封闭曲线的密集流线束。 垂直于流动方向的截面,也称为过流截面。
流线、流束、流管和通流截面
3.流量和平均流速
流量 单位时间内流过某一通流截面的液体体积,流量以q表 示,单位为m3/s或L/min。
在通流截面A上取一微小流束的截面dA,则通过dA的微 小流量为 对上式积分,可得流经整个通流截面A的流量
2.1.4 液压油的污染及控制
液压油污染的危害 造成系统故障 降低元件寿命 使液压油变质 影响工作性质
系统残留物 外界侵入物 内部生成物
液压油的污染源
污染的控制
彻底清洗系统 保持系统清洁 定期清除污物 定期换油
§2.2
液体静力学基础
2.2.1 液体的压力及其特性
1.液体的压力
作用在液体上的两种力:质量力和表面力 静压力:单位面积上所受的法向力。静压力在液体传动中 简称压力,在物理学中称为压强。本书以后只用“压力”一词。 静止液体中某点处微小面积A上作用有法线力F,则该点 的压力定义为
§2
§2.1 §2.2 §2.3 §2.4 §2.5 §2.6
液压传动基础知识
液压油 液体静力学基础 液体动力学基础 管路内液流的压力损失 孔口和缝隙的流量 气穴现象和液压冲击
§2.1
液压油
2.1.1 液压油的主要性质
1.密度
单位体积液体的质量称为液体的密度。液体的密度为
m ρ V
式中
m:液体的质量(kg); V:液体的体积(m3); 液压油的密度ρ=900 kg/ m3
液体的流动状态是层流还是紊流,可以通过无量纲 值雷诺数来判断。实验证明,液体在圆管中的流动 状态可用下式来表示
Re
d
v
常见管道的临界雷诺数
2.3.2 流体连续性方程
流体连续性方程是质量守恒定律在流体力学中的表达方式。 液体在管内作恒定流动, 任取1、2两个通流截面,根据 质量守恒定律,在单位时间内 流过两个截面的液体质量相等, 即: ρ 1v1 A1 = ρ 2v 2 A 2 不考虑液体的压缩性则得 q = v A = 常量
2.4.1 沿程压力损失
液体在等截面直管中流动时因粘性摩擦而产生的压力损失称为 沿程压力损失。
l 2 p f d 2
2.4.2 局部压力损失
局部压力损失,就是液体流经管道的弯头、接头、阀口以 及突然变化的截面等处时,因流速或流向发生急剧变化而在局 部区域产生流动阻力所造成的压力损失。由于液流在这些局部 阻碍处的流动状态相当复杂,影响因素较多,因此除少数(比 如液流流经突然扩大或突然缩小的截面时)能在理论上作一定 的分析外,其它情况都必须通过实验来测定。
(kg/m3)
表2-1常用工作介质的密度
工作油液
2.可压缩性
液体受增大的压力作用而使体积缩小的性质称为液体的可压 缩性。液体的可压缩性可用体积压缩系数表示,它是指液体在单 位压力变化下的体积相对变化量,用公式表示为
k
1 V p V0
液体压缩系数的倒数,称为液体的体积弹性模量,简称体 积模量,用K 表示,即 1 p K V0 k V
例2:用伯努利方程分析如图所示液压泵的吸油过程,试分 析吸油高度H对泵工作性能的影响。
例3:如图,已知液压泵的流量q=32L/min,吸油管内径d=20mm,液压泵 吸油口距离液面高度h=500mm,油箱足够大,液压油的运动粘度 v=20x10-6m2/s,密度ρ=900kg/m3.试求: 1.吸油管中油液的流速? 2.判别吸油管中油液的流态? 3.不计压力损失,泵吸油口的真空度?(为简化计算可取g=10m/s2)
例4:如图,水箱两侧壁开一个小孔,水箱自由液面1-1与小孔22处的压力分别为P1和P2,小孔中心到水箱自由液面的距离为h,且 h基本不变,如果不计损失,求水从小孔流出的速度。
§2.4
管路内液流的压力损失
实际液体在管道中流动时,因其具有黏性而产生摩擦 力,故有能量损失。另外,液体在流动时会因管道尺寸或形 状变化而产生撞击和出现漩涡,也会造成能量损失。在液压 管路中这种能量消耗表现为压力损失。损耗的能量转变为热 能,使液压系统温度升高,性能变差。因此在设计液压系统 时,应尽量减少压力损失。这种压力损失一般可分为两种, 一种是沿程压力损失,一种是局部压力损失。
典型液压油的粘温特性曲线
(4)其它性质 油液的其他物理机化学性质包括:防锈性、润滑性、抗燃性、 抗凝性、抗氧化性、抗泡沫性、导热性、相溶性以及纯净性等。 都对液压系统工作性能有重要影响。
液压油的要求:
粘温特性好 有良好的润滑性 有良好的化学稳定性 成分要纯净 抗泡沫性和抗乳化性好 材料相容性好 无毒、价格便宜 燃点高,凝点低
2.2.4 压力的表示方法及单位
1. 压力的表示方法
相对压力(表压力): 以大气压力为基准,测 量所得的压力,是高于大气 压的部分 。 绝对压力: 以绝对零压为基 准测得的压力 绝对压力=相对压力 + 大气压力 真空度:如果液体中某点的绝对压力小于大气压力,则称该点出现 真空。此时相对压力为负值,常将这一负相对压力的绝对值称为该 点的真空度 真空度=|负的相对压力|=|绝对压力 - 大气压力|
2. 压力的单位
国际单位制单位 国际单位制单位为Pa(帕)、N/m2(我国法定 计量单位)或兆帕(MPa),1MPa=106Pa。 工程制单位 kgf/cm2。国外也有用bar(巴),1bar=105Pa。 标准大气压 1标准大气压=101325Pa。 液体柱高度 h=p/(ρg),常用的有水柱、汞柱等,如1个标准 大 气压约等于10m水柱高。
2 F ( FX FY2 F ) 1 2 2 Z
§2.3
液体动力学基础
2.3.1 基本概念
1.理想液体和恒定流动
理想液体 恒定流动 假设的既无粘性又不可压缩的流体称为理想流体。 液体流动时,液体中任一点处的压力、速度和密度 都不随时间而变化的流动,亦称为定常流动或非时 变流动。
恒定流动与非恒定流动
静压力基本方程
p p0 gh
重力作用下静止液体的受力分析
可以看出:静止液体在自重作用下任何一点的压力随着液体 深度呈线性规律递增。液体中压力相等的液面叫等压面,静止液 体的等压面是一水平面。
2.2.3 压力的传递
由帕斯卡原理可知,由外力作用所产生的压力可以等值地传递 到液体内部所有各点,故在液体内部各点的压力也就处处相等了。 液压传动是依据帕斯卡原理实现力的传递、放大和方向变换的。 液压系统的压力完全决定于外负载。
3.解决措施
2.1.2 液压油的种类
表2-2液压油的主要品种及其特性和应用
2.1.3 液压油的选用
选择液压系统的工作介质一般需考虑以下几点:
环境因素 工作压力——压力高,选粘度较大的液压油 环境温度——温度高,选粘度较大的液压油
运动性能
运动速度——速度高,选粘度较低的液压油 液压泵的类型 液压泵的类型——各类泵适用粘度范围见表2-6
2.4.3 管路系统的总压力损失
整个管路系统的总压力损失是系统中所有直管中的沿程压力 损失和所有局部压力损失之和。
减小液压系统压力损失的措施: 减小流速 缩短管道长度 减小管道截面的突变 提高管道内壁的加工质量
例 1 :某液压泵装在油箱油面以下,液压泵的流量 q=25L/min ,所用 液压油的运动粘度为 20mm2/s ,油液密度为 900kg/m3 ,吸油管为光滑 圆管,管道直径为 20mm ,过滤器的压力损失为 0.2x105pa ,试求油泵 入口处的绝对压力。
2.细长小孔的流量压力特性
3.液体经小孔流动时流量压力的统一公式
§2.6
气穴现象和液压冲击
2.6.1 液压冲击
1.液压冲击概念
在液压系统工作过程中,由于运动部件急速换向或关闭油路, 因液流和运动部件的惯性作用,使系统内产生很高的瞬时压力峰 值。
2.液压冲击的危害
引起振动,产生噪声 引起系统误动作 损坏密封装置、管道和液压元件
但是工程实际中常用的物理量。
一般的: 同种介质比较大小时常用运动粘度 不同介质比较大小时一般用动力粘度
恩氏粘度0E —— 中国、德国、前苏联等用 赛氏粘度SSU—— 美国用 雷氏粘度R —— 英国用 巴氏粘度0B —— 法国用
(3)温度和压力对粘度的影响 液体的粘度随液体的压力和温度而变。对液压传动工作 介质来说,压力增大时,粘度增大。在一般液压系统使用的 压力范围内,增大的数值很小,可以忽略不计。但液压传动 工作介质的粘度对温度的变化十分敏感,温度升高,粘度下 降。这个变化率的大小直接影响液压传动工作介质的使用, 其重要性不亚于粘度本身。
2.流线、流束、流管和通流截面
流线 某一瞬时液流中一条条标志其各处质点运动状态的 曲线。在流线上各点处的瞬时液流方向与该点的切 线方向重合,在恒定流动状态下流线的形状不随时 间而变化。对于非恒定流动来说,由于液流通过空 间点的速度随时间而变化,因而流线形状也随时间 变化而变化。液体中的某个质点在同一时刻只能有 一个速度,所以流线不能相交,不能转折,但可相 切,是一条条光滑的曲线 。 许多流线组成的一束曲线。
2. 实际液体的伯努利方程
实际流体存在粘性,流动时存在能量损失,ΔPW 为单位质量液体 在两截面之间流动的能量损失。 用平均流速替代实际流速, α为动能修正系数。层流为2,紊流 为1.
3. 伯努利方程应用举例
例1:如图示简易热水器,左端接冷水管,右端接淋浴莲蓬 头。已知 A1=A2/4和A1、h值,问冷水管内流量达到多少时 才能抽吸热水?
2.2.5 液体静压力对固体壁面的作用力
当承受压力的固体壁面为平面时:则作用在其上的总作用力等 于压力与该壁面面积之积
Fp
4
D2
当承受压力的固体壁面是曲面时:曲面上总作用力在某一方向 上的分力等于曲面在与该方向垂直平面内的投影面积与静压力的 乘积。若已知曲面上总作用力在三个坐标轴方向的分量分别为Fx、 Fy和Fz时,总作用力的大小为: