二氧化钛的光催化性能及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二氧化钛的光催化性能及其应用
作者姓名秦幸海
学号************
专业无机非金属材料
指导教师姓名王峰
目录
摘要 (3)
第一章二氧化钛的性能 (3)
1.1二氧化钛的结构 (3)
第二章反应机理 (4)
2.1光催化反应机理 (4)
2.2杀菌机理 (5)
2.3光催化活性的影响因素 (5)
第三章二氧化钛催化剂的应用 (7)
3.1在空气净化方面的应用 (7)
3.2在水处理方面的应用 (7)
3.3在其它方面的应用 (8)
第四章结束语 (9)
摘要
二氧化钛是一种应用广泛的半导体材料,它因成本低、稳定性好、对人体无毒性,并具有气敏、压敏、光敏以及强的光催化特性而被广泛应用到传感器、电子添料、油漆涂料、光催化剂以及其它化工原料等[1-3],国内外很多科技工作者投身到二氧化钛的研究开发之中,每年都有大量论文报道。80年代末以来人们在纳米二氧化钛的制备工艺和性能研究方面做了大量工作。特别是在利用二氧化钛光催化降解污水等方面取得了一定成果,本文就二氧化钛在光催化方面的研究现状做分析,并就其应用前景的提出几点看法。
关键词:二氧化钛光催化性能应用
第一章二氧化钛的性能
1.1二氧化钛的结构
二氧化钛,俗名为钛白粉,有3种晶型:锐钛矿型(Anatase,简写为A )、金红石型(R utile简写为R ) 和板钛矿型,三者在自然界中都存在。其中, 板钛矿型在自然界中很稀有,属斜方晶系,是不稳定的晶型,因而没有工业价值。但是锐铁矿和金红石相在自然界普遍存在,在光催化领域有广泛的应用。金红石和锐钛矿两者均为四方晶系,晶型结构均可由相互衔接的Ti06八面体表示。两者的差别在于八面体的畸变程度和八面体间相互衔接的方式不同,如图1所示。在金红石相中,晶体结构表现为氧离子近似六方最紧密堆积,钛离子位于变形的八面体空隙中,构成[Ti06]八面体,铁离子的配位数为六,氧离子的配位数为三,[Ti06] 配位八面体沿C轴共棱成链状排列,链间由配位八面体共角顶相连,Ti06八面体有稍微的畸变,金红石型中每个八面体与周围10个八面体相连(其中两个共边, 八个共顶角),而锐铁矿型中每个八面体与周围8个八面体相连(四个共边,四个共顶角) 。这些结构上的差异导致了两种晶型有不同的质量密度和电子能带结构。锐钛矿型的质量密度 (3.894 g*cm_3) 略小于金红石型 (4.250 g*cm_3), 带隙(3.2eV) 略大于金红石型(3.0 eV)。通常,锐钛矿相 Ti02 在高温热处理下会逐渐转变成金红石相。金红石TiO2具有很高的热稳定性因此锐钛矿由于其低的介电常数和质量密度以及高的电子迁移率是公认具有较高光催化活性的光催化材料。[1]
图1 金红石和锐钛矿的结构
第二章反应机理
半导体TiO2是一种新型的高效光催化即剂,具有很强的氧化能力,在一定能量的光照条件下,它不仅能将环境中的有害有机物降解为二氧化碳和水,而且可以氧化去除大气中低浓度的NOx和含硫化合物(如硫化氢、二氧化硫)等有毒气体。另外,光催化剂TiO2还具有杀菌、除臭、防雾、自洁净等作用,可以进一步改善生活环境。TiO2光催化具有能耗低、操光催化性能,使操作简单、反应条件温和以及无二次污染等优点。纳米TiO2光催化氧化杀菌具有显著的优点:无需昂贵的氧化试剂,空气中的氧就可作为氧化剂;而二氧化钛催化剂价格低廉,无毒,化学及光化学性质稳定;自然光中的紫外光就可作为光源激发催化剂,因此无需能源,系统维护费用低;氧化还原反应无选择性,可以杀灭大多数的微生物。目前,二氧化钛光催化技术在环境保护中越来越受到人们的关注和重视,它对于环境保护、维持生态平衡、节约费用、实现可持续发展具有重大意义。[2] 2.1光催化反应机理
TiO2属于一种n型半导体材料,它的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+)。
如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O
分子氧化成·OH自由基,·OH 自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染物,将其矿化为无机小分子、CO2和H2O等无害物质。
纳米TiO2光催化降解机理共分为7个步骤来完成光催化的过程[3
1、TiO2 + hv→ eˉ+ h+
2、h+ + H2O→OH + H+
3、eˉ+ O2→OOˉ
4、OOˉ+H+ →OOH
5、2OOH → O2 + H2O2
6、OOˉ+ eˉ+ 2H+ →H2O2
7、H2O2 + eˉ→OH + OHˉ
8、h+ + OHˉ→OH
有hv能量大小的光子或者具有大于半导体禁带宽度Eg的光子射入半导体时,一个电子由价带(VB)激发到导带(CB),因而在导带上产生一个高活性电子(eˉ ),在价带上留下了一个空穴(h +),形成氧化还原体系。溶解氧及水和电子及空穴相互作用,最终产生高活性的羟基。OHˉ、O2ˉ、OOHˉ自由基具有强氧化性,能把大多数吸附在TiO2表面的有机污染物降解为CO2、H2O,把无机污染物氧化或还原为无害物。
2.2杀菌机理
ZXL-001纳米二氧化钛具有很强的光催化杀菌作用。通过对纳米TiO2光催化杀灭革兰氏阴、阳性细菌的致死曲线进行对比、常规培养验证和透射电镜观察得出结论:纳米TiO2光催化灭菌首先是从细菌细胞壁开始,其产生的自由基能破坏细胞壁结构,使细胞壁断裂、破损,质膜解体,然后进入胞体内部破坏内膜和细胞组分,使细胞质凝聚,导致细胞内容物溢出,可出现菌体空化现象。从而证实了纳米TiO2的抑菌机理是在光催化作用下,纳米TiO2禁带上的电子由价带跃迁到导带,在表面形成高活性的电子-空穴对,并进一步形成·OHˉ、·O2ˉ、·OOHˉ通过一系列物理化学作用破坏细菌细胞,从而杀灭细菌。
2.3光催化活性的影响因素
2.3.1晶体结构的影响:
Ti02主要有两种晶型—锐钛矿型和金红石型,锐钛红石型均属四方晶系,图1-2为两种晶型的单元结构[10],两种晶型都是由相互连接的TiO6八面体组成的,每个Ti原子都位于八面体的中心,且被6个O原子围绕。两者的差别主要是八面体的畸变程度和相互连接方式不同。